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Social-sensed Multimedia Computing
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Social Sensed Image Search



Today’s Image Search
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50% search sessions fail to provide any
satisfactory results, even worse for image search.
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The visual style search is often
cannot be cl oratory with

expressed by clear goal.
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Intention Gap between user search
Intent and query
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Combining knowledge from Social Media will
significantly reduce the Intention Gap in image search.




Bridging Image Search and Social Media
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Social Relevance & Visual Relevance

The degree of relevance with The degree of semantic
user interest relevance with the query
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The Framework
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Social Sensed Recommendation



Social Media Recommendation

More to Explore m

You looked at You might also consider
S
Rock 'n'Roll Ky
Wikiswmic
ff off
Net, Bl and Rock 'n' Roll: Wikinomics: How Mass Live 1974 Audio CD ~ Harmonia
H ow... Pa| pe rback by David Collaboration... Hardcover by Don £7.98
nings Tapscott, Anthony...
s-u—so £10.49 £45.09 £8.49

> Find similar items

amazon  Google

cwiccer You@lD fFlickr

Recommendation Recommendation
»is a natural process in real life »should simulate the natural process
»drives the diffusion of new ideas, ) »should facilitate information seeking
information and tools. and sense making




Challenges in Social Media Recommendation

Different Two Domains - Multiple Domains

Different

Different
Object Label = Rich Semantic

" Individual > Interpersonal

New Problem ------------ - New Observations ---------------- - New Research



Interest-oriented: Joint Social-content
Recommendation
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(a) Content based recommendation. (b) Social based recommendation. (c) Joint social and content recommendation.

e Joint social and content recommendation

e Make use of user relationship, content
similarity simultaneously



Joint Social-content Recommendation

e Components 1n JSCR

 User—content update based on social graph,
content graph and user—content graph

 User—content relative space construction

e Social action based relative evaluation
 Recommendation for import
e Recommendation for re—share



User-content Matrix Updating

 Propagation based
updating

e Inferring users’
interests from the
propagation
patterns

e Content—analysis
based updating

e Inferring users’
interests from
content
similarities

User-content
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graph
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Content
graph

Propagation based
completion
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based completion
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Social Context Recommendation

* Social context information give us new thinking

* Rich context for user to make information adoption
decision

* Context can help us to understand and then predict user
behaviors

* Intention of Information adoption: personal issue or social
issue?

=> Social context recommendation



Information Adoption Mechanism
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Whether to Adopt the Item

 Read the content and its comments to see whether
the item is interesting

User Preference

e Care about whom the sender is, whether the
sender is a close friend or authoritative

Social Influence
Social Contextual Information



Data-Driven Study
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Accepted cases and refused cases have different

distributions in the preference-influence space
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(b) Tencent Weibo Dataset
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Data-Driven Study

Preferences and influences are weakly

Percent of Users
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correlated for most users

0z2~04
|Correlation|

T
- Renren
-Tencent i




Social Contextual Recommendation
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Social Sensed Video Replication



Social Network Changes How People
Consume Multimedia

Over 700 YouTube video
links are imported to Twitter
every minute
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sharing
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/“ Over 500 years of YouTube
) videos are watched every
~a\ T 19 day on Facebook
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Over 30% users select
videos using social network

service in China



Related Works

Ly j\-\—E> _' Propagation-
i % Content correlation E*‘, based social-
o for UGC distribution 3 aware
[INFOCOM’09] replication
[IMM’12]
_— 2 <---7 User relation/influence for
#l oz Cache, CDN, and P2P \1 social media distribution
i wl  [TMM’04, TMM’07, MM’09] . [SIGCOMM’10, INFOCOM’12]
2005 2008 2011
YouTube Facebook, Twitter YouTube & Google+
f ! 1
2005

2012



The Framework

Propagation Inference: Jointly consider user, content, and context
Propagation inference

Propagation prediction

Influence Region predictor
User Global-audience o
oredictor Replication based on
Relation Local-audience social propagation
Preference Locality predictor
Content Context Strategy

Propagation pattern _
Popularity Location Architecture
Social locality

Geo locality

Temporal locality



Architecture Design of PSAR

Propagation pattern: social, geographical and temporal localities
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Edge-cloud and peer-
assisted architecture
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