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Multiple faces of image similarity
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Multiple faces of image similarity
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How to compute image similarity
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How to compute image similarity



Institute of C
om

puting Technology, C
hinese Academ

y of Sciences

How to compute image similarity

12

Traditional Solutions:
• Mathematical 

computing through 
visual descriptors
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Traditional Solutions:
• Mathematical 

computing  distance 
of visual descriptors

How to compute image similarity

Euclidean distance

Manhattan distance

Earth Mover distance

Chebyshev distance

Minkowski distance

Mahalanobis distanceHamming distance

Cosine distance

Jaccard distance

Correlation distance

Hausdorff distance

……
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Non-metric similarity 
modeling

How to compute visual similarity
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How to compute visual 
similarity
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 Disadvantage
 Visual descriptor could not fully represent the original image
 Big gap between  human’s recognition and  digital computation
 Visual similarity is not consensus among users

Traditional Solutions:
• Mathematical 

computing through 
visual descriptors
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 Disadvantage
 Visual descriptor could not fully represent the original image
 Big gap between  human’s recognition and  digital computation
 Visual similarity is not consensus among usersSocial information could help!

How to compute visual 
similarity

Most Solutions:
• Mathematical 

computation through 
visual descriptors
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 Disadvantage
 Visual descriptor could not fully represent the original image

 Textual information in social context is more reliable
 Big gap between human’s recognition and  digital computation

 Social information are generated by many people 
 Visual similarity is not consensus among users

 Social information can represent the public opinion in many cases

How to compute visual similarity

Most Solutions:
• Mathematical 

computation through 
visual descriptors
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 Disadvantage
 Visual descriptor could not fully represent the original image
 Big gap between  human’s recognition and  digital computation
 Visual similarity is not consensus among users
Social information could help!
It is also a complex issue！

How to compute visual 
similarity

Most Solutions:
• Mathematical 

computation through 
visual descriptors
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Many images on the web
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Well labeled images

Noisy labeled Images

sky
sunset
lake
sea
tree

Unlabeled images
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Well labeled images

Noisy labeled Images

sky
sunset
lake
sea
tree

Unlabeled images
Social Platform

Social Connection

Social Activity
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Computing image similarity
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Computing image similarity
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Visual 
descriptor

Social 
information
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Some techniques

 Image similarity with social tags

 Image similarity with hierarchical 
semantic relations

23
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A. The users give the tagging freely, so it contains a lot of noise.
B. It is provided by many users, so it is abundant and contains subjective intention.

How can we take advantage of social tagging for visual content analysis
A. Use them in a noise-resistant manner.
B. Use them as an auxiliary information for model learning.
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 Basic assumptions：
 Data on regions with similar local density 

is more similar than data on regions with 
different local density.

 Data on dense manifolds tend to be more 
similar than sparse manifolds.
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 Advantage：
 It appropriately measures the distance of two convex hulls formulated 

by two sets of neighborhood data, instead of over-sensitive point-to-
point distance.

 Robust to noise.



Institute of C
om

puting Technology, C
hinese Academ

y of Sciences 26

 Conduct distance metric learning(DML) on each feature 
channel

 Fusing multiple features：
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 Implementation details towards large scale data：
 Several KLSHs are built on each feature channel.
We construct 3 hash tables for each KLSH, so that 

higher recall can be achieved.
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 Dataset
Caltech256:30K
Web images:2M
#features：5

Methods Performance Methods Performance 
NN-1 33.0  2.1% D-NN-1 37.5 1.8% 
NN-3 36.5 1.75% D-NN-3 41.5 1.6% 
NN-5 40.1 1.4% D-NN-5 43.6 1.31% 

UNN-1 35.0 1.1% D-UNN-1 40.1 1.0% 
UNN-3 38.6 0.76% D-UNN-3 44.9 0.9% 
UNN-5 44.4 0.42% D-UNN-5 47.1 0.37% 

[Boiman08] 42%  
 

#Neighbors 1 3 5 10 15 20
UNN-5 1.2 1.8 2.6 3.7 5.3 8.8

D-UNN-5 1.3 2.1 2.8 3.9 5.7 9.2

Average Retrieval Time (Platform: Matlab, in seconds)

Large scale Web image can help the model to better reflect the true distribution 
in high dimensional feature space, which can be used in our neighborhood 
similarity and make it better approximate the true local density information
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Using all the labeled 
training data, MAP: 0.2995

Our approach with 50% 
labeled data+50% 
unlabeled data, MAP: 
0.2797

Only using 50% labeled data,
MAP: 0.2434

NUS-WIDE Dataset
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The propose metric definition：

The primal problem based on ideal kernel, lp-MKL and MTL:

Motivation：can we incorporate multiple sources (i.e. category 
information and social tagging) to enhance  the semantic consistence of 
the learned metrics？
Solution outline：design a multi-task learning framework to learning multiple 
(hyper-)category specific metrics with information sharing.

The dual problem is smooth convex function：
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A0 denotes the shared metric in 
our multi-task metric learning framework

Regularization on A

Empirical loss

Regularization on 
Kernel weight
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Advantage:  multiple tasks share information in a unified shared task. The task 
of semantic categorization(main task ) can borrow abundant social tagging 
information, and the learning task of automatic tagging (auxiliary task) can 
borrow clean semantic category information .

Disadvantage:  the proposed task grouping method does not full develop the 
relation between of hierarchical category level similarity and multi-task learning

Task grouping based on visual clustering

C1 C3 C5 C6 C7C2 C4

Data： VOC’07：10K
ImageNet-250：250K(250  classes)
MIRFLICKR:  1M



Institute of C
om

puting Technology, C
hinese Academ

y of Sciences

Methods VOC 07 ImageNet-250
EUC 0.181 0.192

EUC-PCA 0.296 0.264
ITML 0.398 0.298
LFDA 0.364 0.305

st-LMNN 0.569 0.367
mt-LMNN 0.572 0.374

NCA 0.375 0.315
M2SL-L 0.577 0.378
M2SL-K 0.603 0.445

Table 4: The MAP on VOC 07 and MA for ImageNet-250

MAP with different #main tasks(M2SL-K) Comparison with state-of-the-art

Setting: p=2.5, 8S

S

C
N

 4D

D

C
N

0 2 1t 

.

Model：Metric learning k-NN

A. When the number of categories is large, multi-task 
learning outperforms single task learning

B. Nonlinear metric learning outperforms single
task learning
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Left：VOC 07                                   Right：ImageNet-250

Given #main_tasks fixed, the performance on semantic categorization is 
evaluated on different settings of #auxiliary_tasks

Experimental finding：
Social tagging is beneficial for semantic categorization, but more
data with social tagging means more noisy information.
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Future work：
We will study how to construct a semantic category structure and 
use it to provide better information sharing structure for metric learning  

The words in red denotes the 
results of semantic 
categorization.

The words in black denotes the 
results of automatic tagging.

The results shows that our 
approach 
provide complementary 
understanding on visual content.

1st: the model tells more in tagging that  it’s Eiffel Tower.
14th: the semantic categorization is  “wild dog”, more accurate than any tag
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Some techniques

 Image similarity with social tags

 Image similarity with hierarchical 
semantic relations

35
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Proposed Framework
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Semantic distance metric learning
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Concept similarity measures
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Experimental Results on Caltech40 
Dataset
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Experimental Results on Image40 
Dataset
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Unknown Concept Annotation
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Concept Expansion
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Semantic Voting
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Candidate concept:
Concept histogram:
Semantic voting:
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Experimentation on unknown concept 
annotation 

 GIST and HSV feature with  semantic similarity(path)

 SV(semantic voting ) outperforms MV(majority voting) 
 CE(concept expansion) outperforms non-CE

2013/8/1745
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Experimentation on unknown concept 
annotation 

 CM and pHOG feature with  semantic similarity(path)

 SV(semantic voting ) outperforms MV(majority voting) 
 CE(concept expansion) outperforms non-CE

2013/8/1746
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Conclusion

 Image similarity is useful in real 
applications

 It is a complex and challenging problem
Only visual information
Only Social information
 Combining visual and social information 

together

 Social context information and big data 
provide a opportunity to satisfactorily 
solve the problem
 It is still at the preliminary stage, needs a long 

way to go. 47
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Thanks!

48


