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Discriminative Exemplar Coding for Sign Language
Recognition with Kinect

Chao Sun, Tianzhu Zhang, Bing-Kun Bao, Changsheng Xu,Senior Member, IEEE,and
Tao Mei, Senior Member, IEEE

AbstractÐSign language recognition is a growing research
area in the ®eld of computer vision. A challenge within it is to
model various signs, varying with time resolution, visual manual
appearance, and so on. In this paper, we propose a discriminative
exemplar coding (DEC) approach, as well as utilizing Kinect
sensor, to model various signs. The proposed DEC method can
be summarized as three steps. First, a quantity of class-speci®c
candidate exemplars are learned from sign language videos in
each sign category by considering their discrimination. Then,
every video of all signs is described as a set of similarities
between frames within it and the candidate exemplars. Instead
of simply using a heuristic distance measure, the similarities
are decided by a set of exemplar-based classi®ers through the
multiple instance learning, in which a positive (or negative) video
is treated as a positive (or negative) bag and those frames similar
to the given exemplar in Euclidean space as instances. Finally,
we formulate the selection of the most discriminative exemplars
into a framework and simultaneously produce a sign video
classi®er to recognize sign. To evaluate our method, we collect an
American sign language dataset, which includes approximately
2000 phrases, while each phrase is captured by Kinect sensor with
color, depth, and skeleton information. Experimental results on
our dataset demonstrate the feasibility and effectiveness of the
proposed approach for sign language recognition.

Index TermsÐDiscriminative exemplar coding, Kinect sensor,
sign language recognition.

I. Introduction

SIGN LANGUAGE is one of the most natural means of
exchanging information for deaf and hearing impaired

person. It is a kind of visual language via hands and arm
movements accompanying facial expressions and lip motions.
Sign language recognition aims to ef®ciently and accurately
translate sign language into text or speech. Generally, there
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are two important components in sign language recognition.
One is how to extract useful information from raw video data,
and the other is how to model different signs and measure
their similarities for recognition. We deal with both two in this
paper. Meanwhile, no one universal sign language is spread
all over the world. Regionally different sign languages have
been evolved, such as American sign language (ASL) [1],
German sign language (GSL) [2], Chinese sign language
(CSL) [3]. For simpli®cation, we focus on the ASL in this
paper, and the proposed method can also be utilized to other
sign languages. Currently, automatic sign language recognition
is still in its infancy, roughly decades behind automatic speech
recognition. It corresponds to a gradual transition from isolated
to continuous recognition for small vocabulary task. Many
approaches to sign language recognition treated the problem as
gesture recognition and mainly focused on robust extraction of
manual features or statistical modeling of signs. Recent works
[4]±[9] have proved the feasibility of action recognition based
on key poses from single video frame. This kind of methods
attempt to describe an action video with a set of representative
frames called exemplars and then model various actions into a
space de®ned by distances (or similarities) to these exemplars.
However, varying from actors, environments or cameras, etc.,
videos of the same sign may contain dissimilar frames as
well as different lengths or time resolutions [sequences (1)
and (2) of Fig. 1]. Furthermore, videos from different signs
may also include similar frames [sequences (1)±(4) of Fig. 1].
All these issues, but not limited to them, will increase the
dif®culties to recognize various signs from videos. Inspired
by the exemplar-based approach, we attempt to build a generic
method to recognize sign language.

The frames in videos collected by the Kinect sensor contain
a huge range of variability, which include images of signs
performed by people who have varying body sizes and differ-
ent clothing. Although those noises included, there exist some
representative key poses for others to recognize the signs. In
many cases, the background clutter impedes good exemplar-
based recognition using existing algorithms. It is observed
that, how to select the key-pose frames as the representative
exemplars and how to learn a suitable distance metric between
the key-pose frames are the two important and challenging
issues in the exemplar-based model.

In exemplar selection aspect, many research efforts have
been conducted. For instance, some methods proposed to sub-
sample or cluster the space of exemplars [10], [11]. Such

2168-2267 c° 2013 IEEE



SUN et al.: DISCRIMINATIVE EXEMPLAR CODING FOR SIGN LANGUAGE RECOGNITION WITH KINECT 1419

Fig. 1. Some examples of different signs. Each row indicates frames from
the video with the shown sign name.

methods required nevertheless a large mount of exemplars.
What worse is, the clustering might miss some important
exemplars [5]. In the works of Daniel and Edmond [8]
and Weinlandet al. [5], some discriminative exemplars are
obtained with forward selection, which was particularly robust
against over-®tting. However, the forward selection algorithm
was slow calculation caused by the iterative learning and
evaluation cycles.

In distance metric learning aspect, generally, heuristic
distance metrics or speci®ed matching approaches, such
as squared Euclidean distance [8] or HMM-based (Hidden
Markov Models) matching [5], were conducted to measure
the similarity between exemplars. However, these approaches
ignore the distribution of frames in the feature space and fail
to achieve the best discrimination for recognition. As shown
in Fig. 2, for one frame, not all its similar frames evaluated
by a heuristic distance, such as Euclidean distance, belong to
the same sign with it. Therefore, it is necessary to learn the
similar frames for every frame across all samples within the
same sign, instead of using a prede®ned and heuristic distance.

To overcome these two issues, in this paper, we propose
a discriminative exemplar coding (DEC) approach (Fig. 3)
to recognize various signs. First, amount of class-speci®c
candidate exemplars are obtained by using of K-means for
simplicity. Second, for each candidate exemplar, we employ
the multiple instance learning (MIL) to learn the exemplar-
based classi®er to measure the similarity. For the MIL prob-
lem, each video of a sign is considered as a bag, and frames
of the video are deemed as instances. Hence, if we obtain
E candidate exemplars, each bag is then described as a
E-dimensional vector of similarities between theE exemplars
and the bag. Third, we apply AdaBoost algorithm to integrate
the further selection of representative exemplars and sign mod-
eling together. Speci®cally, the most discriminative exemplars
are selected through the boosting learning, and simultaneously
the similarities based on the selected exemplars as the weak
classi®er are combined to obtain a bag-based sign classi®er.

Fig. 2. Learning a classi®er to describe the similarity of other frames to a
frame. Note that the heuristic distance may lead to a wrong result.

Experimental results on our self-built dataset demonstrate the
feasibility and effectiveness of the proposed approach.

Beyond theoretical ®eld, a dif®culty in sign language recog-
nition is to capture hand movement by sensor. In computer
vision techniques, sensor is typically a camera which can gen-
erate depth maps for sign language recognition. Different kinds
of sensors are explored varying from tracking systems, like
data gloves, to computer vision techniques using camera [12]
and motion capture systems [13]. As for now, commercially
available depth camera systems are expensive, and only a few
researchers use depth information to recognize hand pose.

Fortunately, the release of Microsoft Kinect sensor has
provided a low cost and off-the-shelf choice for depth sensors.
The Kinect sensor involves an infra-red(IR) light projector,
standard CMOS camera, color camera, and a standard USB
interface. The distortion of IR pattern is used to calculate
depth maps, which have a per-pixel depth resolution of one
centimeter while camera is two meters far away. The images
are 640x480 and transferred at 30 frames per second [14].
The complementary nature of the depth and visual information
provided by the Kinect sensor opens up new opportunities to
some solve problems in computer vision [15], for example,
object tracking, human activity analysis, hand gesture analysis,
and sign language recognition in this paper.

The conjunction of depth map and color image from Kinect
sensor could produce great contribution for sign language
recognition in three aspects. First, with the depth map, back-
ground modeling becomes more simple and robust. we can
easily and accurately extract human body part from color
images. Second, in previous 2-D solutions, how to track
hands is a dif®culty task. However, the skeleton information,
developed from depth map, can be utilized to locate the
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Fig. 3. Framework of our approach.

positions of hands robustly and in real time. Third, beyond the
traditional 2-D features, Kinect senor can provide some novel
3-D features, which are quite useful and hence and improve the
performance of sign language recognition. These advantages
will emerge in our following experimental results.

The paper is organized as follows. In Section II we review
the related work. The detailed implementation of the proposed
DEC method is introduced in Section III. In Section IV we
evaluate our approach on our self-built dataset. We conclude
the paper with future work in Section V.

II. Related Work

Acquiring data is the ®rst step in a sign language recogni-
tion. Many early methods used datagloves and accelerometers
to acquire data of the hands. However, due to the high costs
of such approaches, the use of vision has become more
popular. In the case of vision input, a sequence of images
are captured from a combination of cameras (e.g., monocular,
stereo, orthogonal) or other noninvasive sensors. Most recently
Microsoft Kinect has offered an affordable depth camera,
which has made depth a viable option for more researchers.
However, at present there are no datasets available and as such
the results are limited.

Once data have been acquired, they are described via fea-
tures. The features selection often depends on the elements of
sign being detected. Exemplar-based embedding methods have
already been proposed in computer vision ®eld [10], [16], [17].
Athitsos and Sclaroff [10] presented an approach for hand
pose estimation based on Lipschitz embeddings. In these
approaches complex distances between signals were approxi-
mated in a Euclidean embedding space that was spanned by
a set of distances to exemplar measures.

Recently, such exemplar-based approaches have been ap-
plied in many methods on action recognition. Dedeoglu
et al. [18] proposed a real-time system for action recognition
based on key poses and histograms. In order to group similar
human poses together, Wanget al. [19] utilized deformable
template matching for computing the distance between poses.
In the work of Carlsson and Sullivan [4], class representative
silhouettes were matched against video frames to recognize
forehand and backhand strokes in tennis recordings. Thurau

and Hlavac [7] approached the problem by using non-negative
matrix factorization on pose primitives. In the work of Daniel
and Edmond [8], exemplar-based approach was adopted to
transform length-variant orderless feature set of action videos
into matching distances to exemplars. A classi®er was then
trained based on this ®xed length representation. In simple
terms, the pose primitives were learned from non cluttered
videos and applied on images to ®nd the closest pose.

In terms of the discriminative exemplars selection, the
forward selection method was conducted by Weinlandet al. [5]
and Danielet al. [8]. Some other exemplar-based approaches,
like [5], [11], [20], [21], attempted to learn HMMs with
observation probabilities based on matching distances to exem-
plars. However, the similarities between frames and exemplars
were measured using heuristic distance, which might not be
accurate. Therefore, adapting an ef®cient approach to select
the discriminative exemplars is essential and necessary.

To overcome this defect, we learn the similarity metric
by MIL [22] instead of using heuristic distance. MIL allows
of training classi®ers with only labeling at the bag level,
instead of labeling at the instance level. It has been developed
into many different MIL approaches [23]±[25]. For example,
Chenet al. [23] proposed a learning method, named multiple-
instance learning via embedded instance selection (MILES),
which converts the multiple-instance learning problem to
a standard supervised learning problem that does not im-
pose the assumption relating instance labels to bag labels.
Zhaet al. [24] proposed an integrated multilabel multiinstance
learning (MIML) approach, which simultaneously models both
the relation between semantic labels and instances, and the
correlations among the labels in an integrated formulation. In
our work, we employed multiinstance support vector machines
(mi-SVM) [26] to learn exemplar-based classi®ers for sign bag
description.

III. Discriminative Exemplar Coding for Sign
Language Modeling

In this section, we elaborate our DEC approach for sign
language recognition. To recognize sign videos, our discrim-
inative exemplar-based sign model should overcome the fol-
lowing three challenges: 1) to ef®ciently describe each sign
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instance; 2) to accurately describe sign bag based on the
candidate exemplars when only sign bag label is given; and
3) to effectively explore sign bags into an overall classi®er on
the given descriptions of sign bags. In our DEC approach, a
uni®ed and effective solution against these three challenges is
presented.

Fig. 3 illustrates the framework of our DEC approach.
Speci®cally, each sign instance is described by features, its
details are introduced in Section IV-C. Based on this de-
scription, for each kind of sign, some candidate exemplars
are selected ®rstly. Then, corresponding classi®ers are trained
for each candidate exemplar via mi-SVM. Next, based on
the classi®er of each exemplar, similarities between the ex-
emplar and instances in a sign bag can be obtained. Then,
the sign bag can be described using the similarities as its
features. Finally, sign level classi®ers are trained based on
those sign bag descriptions. Considering the large intraclass
variation of different sign, AdaBoost is employed to form
a strong classi®er to classify signs, as well as to select the
most discriminative features, which corresponds to the most
discriminative exemplars.

In the following, we present the candidate exemplars selec-
tion in Section III-A, the multiple instance learning for sign
bag description in Section III-B, and the AdaBoost based sign
classi®er in Section III-C.

A. Candidate Exemplars Selection

Before elaborating our method, we ®rst introduce the nota-
tions in this paper. A sign bag is a video of this sign and a
sign instance is a frame of a video. Denotevi as theith sign
bag andI vi ;j is the feature of thej th instance of bagvi . Based
on this description, for a sign bagvi , it can be described as a
set of histogram features. The formal de®nition of signvi is as
follows: vi = fI vi ;j jj = 1; 2; : : : ; n ig, whereni is the number
of instances from sign bagvi . Let v+

i denote a positive sign
bag andv¡

i denote a negative sign bag.v+
ij is the j th instance

of a positive sign bagv+
i and v¡

ij denotes thej th instance
of a negative sign bagv¡

i . Let fv+
1; v+

2; : : : ; v+
s ; v¡

1 ; v¡
2 ; : : : v¡

t g
denote the set ofs positive andt negative training sign bags.
l(vi ) 2 f +1; ¡ 1g is the bag label ofvi and l(vij ) 2 f +1; ¡ 1g
is the instance label ofvij . For each negative sign bags, all
its instances are negative. For each positive sign bags, all its
instances should contain at least one true positive instance.

Intuitively, each sign instance could be treated as an ex-
emplar. However, it will produce a huge number of candidate
exemplars and leads to a very high computational cost when
training each exemplar-based classi®er. One possible remedy is
to select a representative subset of instances (called candidate
exemplars). For simplicity, we use k-means to create an initial
vocabulary by grouping similar sign instances based on their
features for each sign category, and select instances nearest
to each cluster as initial exemplar set. As a result, for each
categoryc, we obtain E

0

c exemplars. In this way, we can
obtain candidate exemplars for each kind of sign, and the total
number of exemplars isE = E

0

1 + : : : + E
0

c + : : : + E
0

C. Based
on these candidate exemplars, we then adapt discriminative
exemplar coding to model the discrimination of exemplars for
sign language recognition.

B. Sign Bag Description

After candidate exemplars are selected from each classc
in Section III-A, we then describe each sign bag as a set of
similarities between its instances. Assume thatM

0

c exemplars
from positive sign bags are obtained:fI mjm = 1: : : E

0

cg, where
I e represents the feature for theeth exemplar. For exemplar
e in the sign bag of categoryc, it is possible that some
instances from the same sign toe are less similar than the ones
from other signs when a uniform distance metric is adopted
(Fig. 2). To tackle this problem, we propose a discriminative
solution to obtain semantic similarity by learning exemplar-
based classi®ers. Here, we formulate the similarity measure
learning as a problem of MIL [22] and mi-SVM [26] is
employed to solve the problem.

To obtain the exemplar-based classi®ers, for an exemplar
e(e = 1; : : : ; E

0

c) from the sign of categoryc, a corresponding
mi-SVM classi®er is trained and denoted bymi ¡ SVMe. After
that, This process is conducted for different kinds of signs
to train all exemplar-based classi®ers. The training samples
are the bags inc denoted as positive bags and those in other
categories are denoted as negative ones. Some sign bags may
contain a large number of instances. If we train the mi-SVM
classi®er by using all the instances, the computational and
storage requirements may become too large. To reduce the
computational burden and learn ef®cient classi®er, we adapt
an ef®cient KNN-based strategy to obtain sign bags by ®ltering
out the instances which are very different frome for each sign
bagvi . This strategy enables the classi®er to be learned only
in the local feature space. Speci®cally, mi-SVM classi®er is
trained in the hyper-sphere centered atI e with radius ofre in
the feature space (as shown in Fig. 2).

Denoteyvi ;j as the instance label ofI vi ;j andYvi as the label
of sign bagvi , whereI vi ;j indicates the feature of the instance
j in the sign bagvi . Then mi-SVM is formulated as follows:

min
fyvi ;j g

min
w;b;»

1
2

kwk2 + C
X

vi ;j

»vi ;j

s:t:
X

j

yvi ;j + 1
2

> 1; 8vi s:t: Yvi = 1;

yvi ;j = ¡ 1; 8vi s:t: Yvi = ¡ 1;

8j : yvi ;j (hw; I vi ;j i + b) > 1 ¡ »vi ;j ; »vi ;j > 0;

yvi ;j 2 f¡ 1; 1g

(1)

where»vi ;j is a slack variable.
For the eth classi®ermi ¡ SVMe, a sign bagvi can be

projected to real value with a function. For simplicity, The
projection function is de®ned as follows:

ge(vi ) =

(
max

j
mi SVMe(I vi ;j ) 9I vi ;j ; s:t:

°
° I vi ;j ¡ I e

°
° 6 re

¡ 1 otherwise
(2)

where mi SVMe(I vi ;j ) 2 R is the output ofmi ¡ SVMe

with the input I vi ;j . Consequently, we can obtainge(vi ) as
the similarity for sign bagvi with the learned classi®er of
exemplare. If we have selectedE = E

0

1 + : : : + E
0

c + : : : + E
0

C
exemplars for all kinds of sign in training dataset, we then
haveE classi®ers trained according to mi-SVM, respectively.
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Algorithm 1 Proposed DEC algorithm. We ®rst select candidate
exemplars from all sign videos, then train mi-SVM for each candidate
to get sign bag description, and ®nally adapt boosting to select the
discriminative exemplars and classify sign language videos.

1: Given: N labeled training examples (vi ; y i ) with yi 2
f¡ 1; 1g and vi = fI vi ;1; : : : ; I vi ;ng, and initial distribution
of weightswi = 1

N ; i = 1; : : : ; N .
2: SelectE candidate exemplars for all kinds of sign using

the proposed method in Section III-A and train their cor-
responding classi®ers using mi-SVM to obtainfge(vi )ji =
1; : : : ; N; e = 1; : : : ; E g for sign bag description. The
ge(vi ) can be viewed as theeth feature of sign bagvi .

3: For t = 1; : : : ; T :, Do
1) Train: Find E hypotheseshe, by training the base
learner on each featurege of the given training set, using
current weightingwi , and calculate the weighted training
error for each hypothesishe

"e =
NP

i=1
wt;i 1(yi 6= he(ge(vi )))

2) Select: hypothesishe with the lowest"e, set ht = he

and" t = "e.
3) Calculate: hypothesis coef®cient®t = 1

2 log(1¡ " t
" t

).
4) Update: sample weights wt+1;i =
1
Z t

wt;i exp(¡ ®tyiht(vi )), where Z t is a normalization
coef®cient such that

P
i (wt+1;i ) = 1.

4: Output: the DEC classi®erH (v) = sgn(
TP

t=1
®tht(v)).

Eventually, each sign bagvi can be described asE dimensional
features (g1(vi ); : : : ; ge(vi ); : : : ; gE(vi ))T based on theseE
classi®ers, which are then utilized to train Adaboost classi®er
for sign recognition.

C. Sign-level AdaBoost Classi®er

Based on the obtained sign bag descriptions, we turn to learn
a sign-level classi®er. In our paper, we utilize the boosting [27]
method. Practically, boosting method is ideally suitable for
combining diverse classi®ers into an overall classi®er. It com-
bines multiple weak learners into a single strong classi®er
to achieve a low overall error of classi®cation, while each
of those weak learners may suffer from the high classifying
error. In boosting, weak classi®ers are trained sequentially
with adjusting the weights of the training samples, which will
optimize the weight of the incorrectly classi®ed examples and
improve the ®nal classifying performance.

The discrete version of AdaBoost [27] de®nes a strong
binary classi®erH

H (vi ) = sgn(
TX

t=1

®tht(ge(vi ))) (3)

using a weighted combination ofT weak learnersht with
weights®t. Each weak learner

ht(ge(vi )) =
½

1 if g e(vi ) > threshold

¡ 1 otherwise
(4)

may explore any featurege(vi ) of the sign bagvi .

Based on the features of sign bags, the optimal threshold in
(4) is determined and weak learners are trained and combined
to get a strong classi®er for sign recognition.

In addition, as each dimension of one feature vector cor-
responds to an exemplar, the discriminative exemplars can
be selected from the candidate frames during the AdaBoost
learning process.

The procedure of proposed DEC method can be summarized
as Algorithm 1.

IV. Experimental Results

In this section, we ®rst introduce our self-built sign language
dataset collected by Kinect sensor, then conduct recognition
on this dataset to validate the effectiveness of our proposed
method. In experiments, for the multiclass classi®cation prob-
lem, we deal with it as a series of two-class problems, for
which one-against-all strategy is adopted.

A. Kinect Sign Language Dataset

Currently, these is no public kinect sign language dataset.
The existing public sign language datasets are totally based on
2-D camera, which lack the depth information and thus can
not be used to evaluate the proposed method. In this situation,
we built the Kinect sign language dataset by ourselves.

Our dataset includes 73 ASL signs, while each sign corre-
sponds to a vocabulary, as shown in Fig. 4. These signs came
from a hundred basic ASL signs that are frequently used by
the beginners of signers. We discarded those look like too
similar in vision, and ®nally selected 73 signs of them. We
recruited nine participants, each of which stood in front of
Kinect sensor and performed all the signs three times. A total
of 1971 phrases were collected, each of which includes a set
of color image, a set of depth map, and a set of skeleton
information.

B. Baselines

To evaluate our discriminative exemplar coding method for
sign language recognition, we compare with several state-
of-the-art coding methods, such as hard-assignment coding
(HC) [28], soft-assignment coding (LSC) [29], and locality-
constrained linear coding (LLC) [30]. Our sign language
model is based on exemplars, and ignores the temporal infor-
mation. To compensate this disadvantage, we make use of the
basic idea of spatial pyramid matching (SPM) [31] to model
the temporal information for representation. In our paper, the
SPM with two levels 1£ 1 and 1£ 3 is adopted.

For these coding methods [28]±[30], the basic ideas are
the following. Let bi (bi 2 Rd) denote a visual word or an
exemplar, whered is the dimensionality of a local feature or
a frame representation. The total number of exemplars isn.
A matrix B = [b1; b2; ¢ ¢ ¢; bn] denotes a visual codebook or a
set of basis vectors. Letxi (xi 2 Rd) be theith local feature
in an image. Letzi (zi 2 Rn) be the coding coef®cient vector
of xi , with zij being the coef®cient with respect to wordbj .

Hard-assignment coding [28]: For a local featurexi , there is
one and only one nonzero coding coef®cient. It corresponds to
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Fig. 4. Some examples of collected images for sign language recognition. These show the cropped images based on the mask, and each example is one kind
of sign language. In total, there are 73 classes.

the nearest visual word subject to a prede®ned distance. When
Euclidean distance is used

zij =

8
<

:

1 if j = arg min
j =1;::: ;n

°
° xi ¡ bj

°
° 2

2

0 otherwise:

Soft-assignment coding [29]: Thej th coding coef®cient
represents the degree of membership of a local featurexi to
the j th visual word

zij =
exp(¡ ®

°
° xi ¡ bj

°
° 2

2)
P n

k=1 exp(¡ ®kxi ¡ bkk2
2)

where ® is the smoothing factor controlling the softness of
the assignment. Note that all then visual words are used in
computingzij .

Locality-constrained linear coding (LLC) [30]: Unlike the
sparse coding, LLC enforces locality instead of sparsity. This
leads to smaller coef®cient for the basis vectors farther away
from a local featurexi . The coding coef®cient is obtained by
solving the following optimization:

zi = arg min
z2< n

kxi ¡ Bzk2
2 + ¸ kdi ¯ zk2

2

s:t: 1Tzi = 1 (5)
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Fig. 5. Skeleton joints' names.

TABLE I

Body pose features

3D Vectors Angles Distance
SR ! ER (3) \ SC-SR-ER (1) HR ! HL (1)
ER ! WR (3) \ SR-ER-WR (1)
WR ! HR (3) \ ER-WR-HR (1)
SL ! DEC (3) \ SC-SL-DEC (1)
DEC ! WL (3) \ SL-DEC-WL (1)
WL ! HL (3) \ DEC-WL-HL (1)
HR ! HL (3)

where di = exp(dist(xi ; B)
±

±) and dist(xi ; B) =
(dist(xi ; b1); dist(xi ; b2); : : : ; dist(xi ; bn))T , dist(xi ; bj )
denotes the Euclidean distance betweenxi and eachbj . ± is
a parameter controlling the weighting vectordi . In [30], a
smart approximation is proposed to improve its computational
ef®ciency in practice. Ignoring the second term in (5), it
directly selects thek nearest basis vectors ofxi to minimize
the ®rst term by solving a much smaller linear system. This
gives the coding coef®cient for the selectedk basis vectors
and other coef®cient are simply set to zero.

After coding, Libnear SVM [32] is adopted for classi®cation
as in [28]±[30].

C. Features and Sign Instance Description

For sign language recognition, our algorithm was conducted
on the self-built dataset. We ®rst introduce features to describe
sign instance. In this paper, we adopt two different features
including HOG features and Kinect features. The HOG feature
can describe the appearance information. Based on the output
of Kinect, we can know the position of hands, and obtain
their shape information and motion features. In addition, we
can also estimate body pose by using of Kinect features.

HOG Features: Based on the depth map from Kinect, it
is easy to obtain the mask image and crop the foreground.
Once the humans are centralized, we extract HOG descriptor
for each detected area. In human detection, the HOG has been
shown to be successful [33]. We follow the construction in [33]
to de®ne a dense representation of an image at a particular res-
olution. The image is ®rst divided into 8£ 8 non-overlapping
pixel regions, or cells. For each cell we accumulate a 1-D
histogram of gradient orientations over pixels in that cell.

Fig. 6. Four kinds of output from Kinect.

These histograms capture local shape properties but are also
somewhat invariant to small deformations.

The gradient at each pixel is discretized into one of nine
orientation bins, and each pixel votes for the orientation of
its gradient, with a strength that depends on the gradient
magnitude at that pixel. For color images, we compute the
gradient of each color channel and pick the channel with
the highest gradient magnitude at each pixel. Finally, the
histogram of each cell is normalized with respect to the
gradient energy in a neighborhood around it. We look at the
four 2 £ 2 blocks of cells that contain a particular cell and
normalize the histogram of the given cell with respect to the
total energy in each of these blocks. This leads to a 9£ 4
dimensional vector representing the local gradient information
inside a cell. In our implementation, we resize each image to
256£ 128 and then extract HOGs in 8£ 8 cells. Our ®nal
feature vector is the 2340-dimensional normalized HOG cell
vector. After PCA [34], the dimension of the feature is further
reduced to 750 to obtain compact description and ef®cient
computation.

Kinect Features: Kinect sensor has four kinds of output:
color image, depth image, mask image, and skeleton image,
as shown in Fig 6. The Kinect features include body pose,
hand shape, and hand motion features. The body pose features
are extracted using skeleton information. By using Microsoft
KinectSDK 1.5, we can obtain the positions of shoulder,
elbow, wrist and hand, both in right and left side of the body.
The body pose features are the combination of three parts.

1) The unit vectors of the elbows with respect to the
shoulders, the wrists with respect to the elbows, the
hands with respect to the wrists, and the left hand with
respect to the right hand.

2) The joint angles of shoulders, elbows, and wrists.
3) The distance between the right hand and the left hand,

normalized by being divided by twice shoulder width.
In total, the body pose feature has 28 dimensions. Fig. 5
and Table I show the details of body pose feature.
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Fig. 7. Comparison of different methods on each sign class.

Fig. 8. Confuse matrix on the randomly selected 30 different kinds of signs.

To generate the hand shape feature, we ®rst crop a 48£ 48
pixels patch in the position of hand point on every color frame.
Then we extract the HOG feature on every patch and treat this
feature as hand shape feature. This hand shape feature has 288
dimensions.

For generating the hand motion feature, we re-use the
patch mentioned above. Optic ¯ow (OP) feature is calculated
between one patch on a color frame and the patch in the same
position on the previous frame. This feature is treated as hand
motion feature and has 2304 dimensions.

To obtain compact description and ef®cient computation,
the combined 2592 dimensions feature is the reduced to about
300 dimensions using PCA [34].

D. Sign Language Recognition Results

As the training dataset contains tens of thousands of cropped
frames, we use K-means to cluster the cropped frames and the

cluster number is manually set to 100 for each kind of sign.
Then, the frames closest to the cluster are viewed as exemplars.
For each exemplar,kp = 20 andkn = 2 are adopted to obtain
some training samples for training an mi-SVM classi®er. After
obtaining all mi-SVM classi®ers, each sign bag is described
and the discriminative exemplars are selected by AdaBoost
classi®er.

1) Comparison of different methods:The recognition rates
for individual classes, as well as the average recognition rate,
are shown in Fig. 7. Comparison results of different baselines
and our method are also shown in Table II. From Fig. 7,
we can see that the recognition rate of our method on each
class is much better than other state-of-the-art methods. In
addition, as shown in Table II, the average recognition rate is
about 85:5% with all 73 classes when using HOG and Kinect
features without temporal information, which has about 15%
improvement compared with HC [28]. Even compared with the
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Fig. 9. Illustrations of the discriminative exemplars for different signs selected by the ®nal AdaBoost classi®ers, (a) mom, (b) dad, (c) boy, (d) girl, (e) milk,
(f) work, (g) school, (h) store, (i) holding, (j) in-out, (k) egg, (l) night, (m) week, (n) month, (o) year, (p) will, (q) today, (r) apple, (s) cold, and (t) pizza.

TABLE II

Comparison of Different Methods on Our Dataset Without

Temporal Information. Percentages are the Average

Accuracies Over All Signs

Methods Mean Accuracy Feature
HC [28] 65:6% HOG
LSC [29] 74:1% HOG
LLC [30] 73:4% HOG

DEC 78:1% HOG
HC [28] 70:2% HOG + Kinect
LSC [29] 73:1% HOG + Kinect
LLC [30] 77:6% HOG + Kinect

DEC 85.5% HOG + Kinect

best baseline [30], our method has about 8% improvement.
We believe that the improvement attributes to the ef®cient
similarity measure learning and the effectively selected and
combined discriminative exemplars via DEC approach. These
results demonstrate that our DEC method outperforms all other
state-of-the-art methods on sign language recognition.

TABLE III

Comparison of Different Methods on Our Dataset Considering

Temporal information for Sign Language Representation.

Percentages are the Average Accuracies Over all Signs

Methods Mean Accuracy Feature
HC [28] 67:9% HOG
LSC [29] 74:4% HOG
LLC [30] 73:7% HOG

DEC 79:1% HOG
HC [28] 75:2% HOG + Kinect
LSC [29] 75:0% HOG + Kinect
LLC [30] 80:1% HOG + Kinect

DEC 86.8% HOG + Kinect

2) Comparison with different features:To demonstrate
the effectiveness of Kinect features, we conduct comparing
experiments between recognition with Kinect features and
recognition without Kinect features. The results are reported
in Tables II and III. The ®rst four lines in each table show
recognition accuracy using only HOG feature, while the last
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four lines in each table show recognition accuracy using
Kinect features together with HOG feature. We can observe
that, each method, no matter our DEC or other baseline, get
a higher recognition accuracy when using Kinect features
together with HOG feature than the one without Kinect
features. The highest improvement is about 8%. These results
prove the effectiveness of Kinect features in sign language
recognition. The 3-D features provided by Kinect, such as
depth information, skeleton information, are useful and could
improve the performance of recognition.

3) Comparison of temporal information:We believe that
the temporal information in sign videos could contribute to
sign language recognition. To prove this, we conduct compar-
ing experiments between recognition with considering tem-
poral information and the one without considering temporal
information. Experimental results are shown in Tables II and
III. Experiments shown in Table III have considered temporal
information by using SPM and the ones shown in Table II
have not. It is observed that, for every method, recognition
accuracy with considering temporal information is higher
than the one without considering temporal information. The
average improvement is about 2%. These results prove that,
by considering temporal information, recognition accuracy
of sign language could improve. Consideration of temporal
information is necessary in sign language recognition.

4) Conclusive results:Besides above comparisons, we also
give out the confusion matrix. Due to the large number of
classes (73), it is dif®cult to show all of them in a confusion
matrix. To show it clearly, we randomly select 30 different
kinds of signs. The confusion matrix is shown in Fig. 8.
From the confusion matrix, we can see that our DEC method
could distinguish signs very well. Almost every sign is distinct
from each other and is recognized correctly. The most of
confusion occurs between ªgreen" and ªyellow" signs. This
is not surprising, as these two signs look very similar and
have minor differences in ®nger movements. Humans can also
sometimes confuse these two signs. This similarity leads to
some mistaken recognition results between these two signs by
our method.

All the above results could demonstrate the validity and
effectiveness of our proposed method for sign language recog-
nition. In addition, our DEC method could also ®nd out
the most discriminative exemplars during sign recognition,
as described in Section III-C. Fig. 9 shows the selected
discriminative exemplars in the ®rst four iterations of some
signs. From the results, we can see that our method has ability
to ®nd out the most discriminative exemplars to represent each
kind of signs.

V. Conclusion

We presented a DEC approach for ASL recognition with
Kinect sensor. On one hand, we ef®ciently conducted back-
ground modeling to extract human body and locate the hand
position in frames. On the other hand, we obtained more
discriminative features, as well as sign description. Based
on this description, the MIL was employed to learn the
similarities between frames. Based on the learned exemplar-

based classi®ers, each sign bag were described, then AdaBoost
was employed to select the most discriminative features to
form a strong classi®er, which was used to classify signs.
Experimental results demonstrated the effectiveness and ef®-
ciency of the proposed method for sign language recognition.
In future, we will extend our work to: 1) continuous sign
language recognition, beyond the current isolated one, and 2)
recognition under complex scene.
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