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AbstracBSign language recognition is a growing research are two important components in sign language recognition.
area in the ®eld of computer vision. A challenge within it is to  One is how to extract useful information from raw video data,
model various signs, varying with time resolution, visual manual and the other is how to model different signs and measure

appearance, and so on. In this paper, we propose a discriminative L o . . .
eggmmar coding (DEC) appropacp;] as vﬁellpas utilizing Kinect their similarities for recognition. We deal with both two in this

sensor, to model various signs. The proposed DEC method canpaper. Meanwhile, no one universal sign language is spread
be summarized as three steps. First, a quantity of class-speci®call over the world. Regionally different sign languages have
candidate exemplars are learned from sign language videos in heen evolved, such as American sign language (ASL) [1],
each sign category by considering their discrimination. Then, German sign language (GSL) [2], Chinese sign language
every video of all signs is described as a set of similarities . . ) ' . .
between frames within it and the candidate exemplars. Instead (CSL) [3]. For simpli®cation, we focus on the ASL in this
of simply using a heuristic distance measure, the similarities paper, and the proposed method can also be utilized to other
are decided by a set of exemplar-based classi®ers through thesign languages. Currently, automatic sign language recognition
multiple instance learning, in which a positive (or negative) video s stjll in its infancy, roughly decades behind automatic speech
Is treated as a positive (or negative) bag and those frames similar oo hition. It corresponds to a gradual transition from isolated

to the given exemplar in Euclidean space as instances. Finally, . ition f I bul K M
we formulate the selection of the most discriminative exemplars © €ontinuous recognition for small vocabulary task. Many

into a framework and simultaneously produce a sign video a@pproaches to sign language recognition treated the problem as
classi®er to recognize sign. To evaluate our method, we collect angesture recognition and mainly focused on robust extraction of
American sign language dataset, which includes approximately manual features or statistical modeling of signs. Recent works
2000 phrases, while each phrase is captured by Kinect sensor with 141, 191 have proved the feasibility of action recognition based
color, depth, and skeleton information. Experimental results on . . ..
our dataset demonstrate the feasibility and effectiveness of the O" K€y poses from single video frame. This kind of methods
proposed approach for sign language recognition. attempt to describe an action video with a set of representative
frames called exemplars and then model various actions into a
space de®ned by distances (or similarities) to these exemplars.
However, varying from actors, environments or cameras, etc.,
videos of the same sign may contain dissimilar frames as
well as different lengths or time resolutions [sequences (1)
IGN LANGUAGE is one of the most natural means otnd (2) of Fig. 1]. Furthermore, videos from different signs
exchanging information for deaf and hearing impaireghay also include similar frames [sequences (1)+(4) of Fig. 1].
person. It is a kind of visual language via hands and arpll these issues, but not limited to them, will increase the
movements accompanying facial expressions and lip motio@§®culties to recognize various signs from videos. Inspired
Sign language recognition aims to ef®ciently and accuratly the exemplar-based approach, we attempt to build a generic
translate sign language into text or speech. Generally, th@fiethod to recognize sign language.
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Fig. 1. Some examples of different signs. Each row indicates frames fror
the video with the shown sign name.

school

methods required nevertheless a large mount of exemplar
What worse is, the clustering might miss some important
exemplars [5]. In the works of Daniel and Edmond [8Fig. 2. Learning a classi®er to describe the similarity of other frames to a
and Weinlandet al. [5], some discriminative exemplars ardrame. Note that the heuristic distance may lead to a wrong result.
obtained with forward selection, which was particularly robust
against over-®tting. However, the forward selection algorit Experimental results on our self-built dataset demonstrate the
was slow calculation caused by the iterative learning arfieasibility and effectiveness of the proposed approach.
evaluation cycles. Beyond theoretical ®eld, a dif®culty in sign language recog-
In distance metric learning aspect, generally, heuristigtion is to capture hand movement by sensor. In computer
distance metrics or speci®ed matching approaches, suidion techniques, sensor is typically a camera which can gen-
as squared Euclidean distance [8] or HMM-based (Hiddemate depth maps for sign language recognition. Different kinds
Markov Models) matching [5], were conducted to measui sensors are explored varying from tracking systems, like
the similarity between exemplars. However, these approaclizga gloves, to computer vision techniques using camera [12]
ignore the distribution of frames in the feature space and faihd motion capture systems [13]. As for now, commercially
to achieve the best discrimination for recognition. As showawvailable depth camera systems are expensive, and only a few
in Fig. 2, for one frame, not all its similar frames evaluatetesearchers use depth information to recognize hand pose.
by a heuristic distance, such as Euclidean distance, belong t&-ortunately, the release of Microsoft Kinect sensor has
the same sign with it. Therefore, it is necessary to learn tpeovided a low cost and off-the-shelf choice for depth sensors.
similar frames for every frame across all samples within thEhe Kinect sensor involves an infra-red(IR) light projector,
same sign, instead of using a prede®ned and heuristic distastandard CMOS camera, color camera, and a standard USB
To overcome these two issues, in this paper, we propdséerface. The distortion of IR pattern is used to calculate
a discriminative exemplar coding (DEC) approach (Fig. 3Jepth maps, which have a per-pixel depth resolution of one
to recognize various signs. First, amount of class-speci@ntimeter while camera is two meters far away. The images
candidate exemplars are obtained by using of K-means fire 640x480 and transferred at 30 frames per second [14].
simplicity. Second, for each candidate exemplar, we empldy e complementary nature of the depth and visual information
the multiple instance learning (MIL) to learn the exemplaprovided by the Kinect sensor opens up new opportunities to
based classi®er to measure the similarity. For the MIL profeme solve problems in computer vision [15], for example,
lem, each video of a sign is considered as a bag, and franebgect tracking, human activity analysis, hand gesture analysis,
of the video are deemed as instances. Hence, if we obtaimd sign language recognition in this paper.
E candidate exemplars, each bag is then described as @he conjunction of depth map and color image from Kinect
E-dimensional vector of similarities between tBeexemplars sensor could produce great contribution for sign language
and the bag. Third, we apply AdaBoost algorithm to integratecognition in three aspects. First, with the depth map, back-
the further selection of representative exemplars and sign mgdeund modeling becomes more simple and robust. we can
eling together. Speci®cally, the most discriminative exemplagasily and accurately extract human body part from color
are selected through the boosting learning, and simultaneoushages. Second, in previous 2-D solutions, how to track
the similarities based on the selected exemplars as the weakds is a dif®culty task. However, the skeleton information,
classi®er are combined to obtain a bag-based sign classi@eveloped from depth map, can be utilized to locate the
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Fig. 3. Framework of our approach.

positions of hands robustly and in real time. Third, beyond tland Hlavac [7] approached the problem by using non-negative
traditional 2-D features, Kinect senor can provide some novalatrix factorization on pose primitives. In the work of Daniel
3-D features, which are quite useful and hence and improve gnred Edmond [8], exemplar-based approach was adopted to
performance of sign language recognition. These advantagassform length-variant orderless feature set of action videos
will emerge in our following experimental results. into matching distances to exemplars. A classi®er was then
The paper is organized as follows. In Section Il we revietvained based on this ®xed length representation. In simple
the related work. The detailed implementation of the proposéetms, the pose primitives were learned from non cluttered

DEC method is introduced in Section lll. In Section IV wevideos and applied on images to ®nd the closest pose.
evaluate our approach on our self-built dataset. We concluden terms of the discriminative exemplars selection, the
the paper with future work in Section V. forward selection method was conducted by Weinlanal. [5]

and Danielet al. [8]. Some other exemplar-based approaches,
like [5], [11], [20], [21], attempted to learn HMMs with
Il. Related Work observation probabilities based on matching distances to exem-

Acquiring data is the ®rst step in a sign language recogptars. However, the similarities between frames and exemplars
tion. Many early methods used datagloves and acceleromeigege measured using heuristic distance, which might not be
to acquire data of the hands. However, due to the high coaksurate. Therefore, adapting an ef®cient approach to select
of such approaches, the use of vision has become méfe discriminative exemplars is essential and necessary.
popular. In the case of vision input, a sequence of imagesTo overcome this defect, we learn the similarity metric
are captured from a combination of cameras (e.g., monoculgy, MIL [22] instead of using heuristic distance. MIL allows
stereo, orthogonal) or other noninvasive sensors. Most recerdfytraining classi®ers with only labeling at the bag level,
Microsoft Kinect has offered an affordable depth camergnstead of labeling at the instance level. It has been developed
which has made depth a viable option for more researchefio many different MIL approaches [23]£[25]. For example,
However, at present there are no datasets available and as gtgénet al. [23] proposed a learning method, named multiple-
the results are limited. instance learning via embedded instance selection (MILES),

Once data have been acquired, they are described via fg@ich converts the multiple-instance learning problem to
tures. The features selection often depends on the elementg aftandard supervised learning problem that does not im-
sign being detected. Exemplar-based embedding methods hewee the assumption relating instance labels to bag labels.
already been proposed in computer vision ®eld [10], [16], [174haet al. [24] proposed an integrated multilabel multiinstance
Athitsos and Sclaroff [10] presented an approach for hamghrning (MIML) approach, which simultaneously models both
pose estimation based on Lipschitz embeddings. In thepe relation between semantic labels and instances, and the
approaches complex distances between signals were appresirelations among the labels in an integrated formulation. In
mated in a Euclidean embedding space that was spannedolly work, we employed multiinstance support vector machines

a set of distances to exemplar measures. (mi-SVM) [26] to learn exemplar-based classi®ers for sign bag
Recently, such exemplar-based approaches have beendcription.

plied in many methods on action recognition. Dedeoglu

et al [18] proposed a real-time system for action recognition S ) )

based on key poses and histograms. In order to group similar!!l- Discriminative Exemplar Coding for Sign

human poses together, Waeg al. [19] utilized deformable Language Modeling

template matching for computing the distance between posesin this section, we elaborate our DEC approach for sign
In the work of Carlsson and Sullivan [4], class representatil@nguage recognition. To recognize sign videos, our discrim-
silhouettes were matched against video frames to recognizative exemplar-based sign model should overcome the fol-
forehand and backhand strokes in tennis recordings. Thutawing three challenges: 1) to ef®ciently describe each sign
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instance; 2) to accurately describe sign bag based on B.eSign Bag Description

candidate exemplars when only sign bag label is given; andagfter candidate exemplars are selected from each dass
3) to effectively explore sign bags into an overall classi®er @q section II-A, we then describe each sign bag as a set of
the given descriptions of sign bags. In our DEC approach.sgmilarities between its instances. Assume thigtexemplars
uni®ed and effective solution against these three chakeisy fom positive sign bags are obtaindtiy,jm = 1::: Egg where
pre§ented_. | represents the feature for tte exemplar. For exemplar

F|g.. 3 illustrates 'the.framework of our DEC approacfb' in the sign bag of category, it is possible that some
Speci®cally, each sign instance is described by features,idistances from the same signeare less similar than the ones
details are introduced in Section IV-C. Based on this dgom other signs when a uniform distance metric is adopted
scription, for each kind of sign, some candidate exemplgfisig. 2). To tackle this problem, we propose a discriminative
are selected ®rstly. Then, corresponding classi®ers are trag§dtion to obtain semantic similarity by learning exemplar-
for each candidate exemplar via mi-SVM. Next, based Qfhsed classi®ers. Here, we formulate the similarity measure
the classi®er of each exemplar, similarities between the ®arning as a problem of MIL [22] and mi-SVM [26] is
emplar and instances in a sign bag can be obtained. ThSﬁwponed to solve the problem.

the sign bag can be described using the similarities as itstg optain the exemplar-based classi®ers, for an exemplar
feature;. Finally, sign Igvel cIass@ers_ are trained pased =1 ;Eg) from the sign of category, a corresponding
those sign bag descriptions. Considering the large intraclagssy/Mm classi®er is trained and denotedrbii SVMe. After
variation of different sign, AdaBoost is employed to formngat, This process is conducted for different kinds of signs
a strong classi®er to classify signs, as well as to select {Beqain all exemplar-based classi®ers. The training samples
most discriminative features, which corresponds to the mqgle the bags irt denoted as positive bags and those in other
discriminative exemplars. categories are denoted as negative ones. Some sign bags may
In the following, we present the candidate exemplars selegntain a large number of instances. If we train the mi-SVM
tion in Section IlI-A, the multiple instance learning for sigry|assi®er by using all the instances, the computational and
bag o_Iescri_ption iq Section IlI-B, and the AdaBoost based Sig;'t'brage requirements may become too large. To reduce the
classi®er in Section IlI-C. computational burden and learn ef®cient classi®er, we adapt
an ef®cient KNN-based strategy to obtain sign bags by ®Itering
i , out the instances which are very different frerfor each sign
_ Before elaborating our method, we ®rst introduce the noigsq .y, This strategy enables the classi®er to be learned only
tions in this paper. A sign bag is a video of this sign and § the |ocal feature space. Speci®cally, mi-SVM classi®er is

sign instance is a frame of a video. Deneteas theith sign  ( 5ined in the hyper-sphere centered atvith radius ofre in
bag and,; is the feature of th¢th instance of bagi. Based ihe feature space (as shown in Fig. 2).

on this _description, for a sign bag, it can b(_e'descril:.)e.d as a Denotey,,; as the instance label of ; andY,, as the label
set of histogram features. The formal de®nition of sigis as ¢ sign bagvi, wherel,; indicates the feature of the instance

follows: vi =fly;jj =1;2;::1;nig wheren; is the number ; iy the sign bagsi. Then mi-SVM is formulated as follows:
of instances from sign bag. Let vi denote a positive sign

bag andvi denote a negative sign baq". is thej th instance

A. Candidate Exemplars Selection

1 X
min min = kwk?> +C  »

of a positive sign bag/” andvj denotes thg " instance fyy, 5 gwibi» 2 }

of a negative sign bag . Let fvi;v5;:::;vivi;vh;iiivig X v 41 e

denote the set of positive andt negative training sign bags. st Ywi * 2 > 1 8visitt ¥, =1,

I(v}) 2 f+1; | 1gis the bag label of; andl(vj) 2 f+1;; 1g ;2 (1)
is the instance label of; . For each negative sign bags, all Yoy =i L 8vistY, =il

its instances are negative. For each positive sign bagssall i
instances should contain at least one true positive instance.
Intuitively, each sign instance could be treated as an ex- Yo 2fi 119
emplar. However, it will produce a huge number of Ca”didaWhere»\,i;j is a slack variable.

exemplars and leads to a very high computational cost whengey the eth classi®emi | SVM, a sign bagv; can be

training each exemplar-based classi®er. One possible remegyigected to real value with a function. For simplicity, The
to select a representative subset of instances (called candigection function is de®ned as follows:

exemplars). For simplicity, we use k-means to create an initial . s

vocabulary by grouping similar sign instances based on their maxmi_ SVMe(ly,j) Oy St g i le 6 Te

features for each sign category, and select instances nearest Je(Vi) = ! _ 2)

to each cluster as initial exemplar set. As a result, for each i1 otherwise

categoryc, we obtain Eg exemplars. In this way, we can wheremi_SVM(ly;;) 2 R is the output ofmij SVM.
obtain candidate exemplars for each kind of sign, and the towith the inputl,,;. Consequently, we can obtam(vi) as
number of exemplars iE = Ei +i+ Ez +i+ EOC. Based the similarity for sign bagv; with the learned classi®er of
on these candidate exemplars, we then adapt discriminatesemplare. If we have selecte@ = Eq +:::+Eg +::: + E¢.
exemplar coding to model the discrimination of exemplars f@xemplars for all kinds of sign in training dataset, we then
sign language recognition. haveE classi®ers trained according to mi-SVM, respectively.

8] 1Yy (Wi Ty +0)> 1 ;5 > 0
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Algorithm 1 Proposed DEC algorithm. We ®rst select candidate Based on the features of sign bags, the optimal threshold in
exemplars from all sign videos, then train mi-SVM for each candidafd) is determined and weak learners are trained and combined
to get sign bag description, and ®nally adapt boosting to select theget a strong classi®er for sign recognition.

discriminative exemplars and classify sign language videos. In addition, as each dimension of one feature vector cor-
1: Given: N labeled training examples/i{yi) with yi 2 responds to an exemplar, the discriminative exemplars can
fi L1gandvi = fly;1;:::51y;ng and initial distribution pe selected from the candidate frames during the AdaBoost

of weightsw; = ;i =1;:::;N. learning process.

2: SelectE candidate exemplars for all kinds of sign using The procedure of proposed DEC method can be summarized
the proposed method in Section Ill-A and train their cozs Algorithm 1.

responding classi®ers using mi-SVM to obt&dga(v;)ji =
1;:::;N;e = 1;:::;Eqg for sign bag description. The

Oe(Vi) can be viewed as they, feature of sign bag;. IV. Experimental Results

3 Fort=1;:::;T :, Do

1) Train: Find E hypotheseshe, by training the base
learner on each featuigy of the given training set, using
current weightingw;, and calculate the weighted trainin
error for each hypothesis,

In this section, we ®rst introduce our self-built sign language
dataset collected by Kinect sensor, then conduct recognition
on this dataset to validate the effectiveness of our proposed
Ymethod. In experiments, for the multiclass classi®cation prob-
™ lem, we deal with it as a series of two-class problems, for
"e= Wi l(yi 6 he(ge(vi))) which one-against-all strategy is adopted.

i=1
2) Slelect: hypothesib, with the lowest"e, seth; = hg

and", =".. A. Kinect Sign Language Dataset

3) Calculate: hypothesis coef®ciefit= %Iog(li..—t"‘). Currently, these is no public kinect sign language dataset.

4) Update: sample weights Wi = The existing public sign language datasets are totally based on
Z%Wt?i expi ®y; ht(vip, where Z; is a normalization 2-D camera, which lack the depth information and thus can

coef®cient such that (W) = 1. not be used to evaluate the proposed method. In this situation,

we built the Kinect sign language dataset by ourselves.

Our dataset includes 73 ASL signs, while each sign corre-
sponds to a vocabulary, as shown in Fig. 4. These sighs came
from a hundred basic ASL signs that are frequently used by
Eventually, each sign bag can be described &dimensional the beginners of signers. We discarded those look like too

P
4: Output: the DEC classi®ét (v) =sgn( ®&hy(v)).
t=1

features @1(vi);:::;ge(Vi);::: ;0e(v;))" based on thes& similar in vision, and ®nally selected 73 signs of them. We
classi®ers, which are then utilized to train Adaboost classi@eeruited nine participants, each of which stood in front of
for sign recognition. Kinect sensor and performed all the signs three times. A total

of 1971 phrases were collected, each of which includes a set

C. Sign-level AdaBoost Classi®er of color image, a set of depth map, and a set of skeleton
information.

Based on the obtained sign bag descriptions, we turn to learn
a sign-level classi®er. In our paper, we utilize the boosting [Zg]
method. Practically, boosting method is ideally suitable for’
combining diverse classi®ers into an overall classi®er. It com-T0 evaluate our discriminative exemplar coding method for
bines multiple weak learners into a single strong classi@d@n language recognition, we compare with several state-
to achieve a low overall error of classi®cation, while eadf-the-art coding methods, such as hard-assignment coding
of those weak learners may suffer from the high classifyirlfiC) [28], soft-assignment coding (LSC) [29], and locality-
error. In boosting, weak classi®ers are trained sequenti@ignstrained linear coding (LLC) [30]. Our sign language
with adjusting the weights of the training samples, which willnodel is based on exemplars, and ignores the temporal infor-
optimize the weight of the incorrectly classi®ed examples aftftion. To compensate this disadvantage, we make use of the

Baselines

improve the ®na| C|assifying performance_ baSiC idea Of .Spatia| pyramld matching (SPM) [31] to model
The discrete version of AdaBoost [27] de®nes a stroHee temporal information for representation. In our paper, the
binary classi®eH SPM with two levels £ 1 and 1£ 3 is adopted.
NG For these coding methods [28]£[30], the basic ideas are
N ' the following. Letb; (b 2 RY) denote a visual word or an
H(vi) = sgn(tzl @h(ge(vi))) (3) exemplar, wheral is the dimensionality of a local feature or

_ _ o _ a frame representation. The total number of exemplars is
using a weighted combination of weak learnersh; with A matrix B = [by; by; ¢ ¢ ¢b,] denotes a visual codebook or a

weights®. Each w?ak learner set of basis vectors. Leg (x; 2 RY) be theith local feature
/21 f g e(vi) > threshold in an image. Letz (z 2 R") be the coding coef®cient vector
hi(ge(vi)) = (4)  of x;, with z; being the coef®cient with respect to wdsxd

il otherwise ! . .
! ! Hard-assignment coding [28]: For a local featuyrethere is

may explore any featurge(v;) of the sign bagy;. one and only one nonzero coding coef®cient. It corresponds to
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Fig. 4. Some examples of collected images for sign language recognition. These show the cropped images based on the mask, and each example is one |
of sign language. In total, there are 73 classes.

the nearest visual word subject to a prede®ned distance. Wintiere ® is the smoothing factor controlling the softness of

Euclidean distance is used the assignment. Note that all timevisual words are used in
8 3 B °, computingz; .
S = <1 fj = afill min x;j by , Locality-constrained linear coding (LLC) [30]: Unlike the
ij - J=100n

sparse coding, LLC enforces locality instead of sparsity. This
leads to smaller coef®cient for the basis vectors farther away
from a local features;. The coding coef®cient is obtained by
solving the following optimization:

0 otherwise:

Soft-assignment coding [29]: Theth coding coef®cient
represents the degree of membership of a local featute
the j th visual word

. . zi =argminkx; | Bzk3+, kd; ~ zk2
Z__DeXP(i®Xii by ;) = arg mined | 20 2
PN exp( ®kx i bek) st1z =1 (5)




1424 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 43, NO. 5, OCTOBER 2013

Color Image Mask Image

Fig. 5. Skeleton joints' names.

TABLE |
Body pose features

Skeletan Image

Depth Image

3D Vectors Angles Distance Fig. 6. Four kinds of output from Kinect.
SR! ER (3) \' SC-SR-ER(1) | HR! HL(1)
ER! WR (3) \ SR-ER-WR (1)
WR! HR (3) \ ER-WR-HR (1) These histograms capture local shape properties but are also
SL! DEC (3) \ SC-SL-DEC (1) somewhat invariant to small deformations.
DEC! WL (3) \ SL-DEC-WL (1) The gradient at each pixel is discretized into one of nine
LVF'; I! ﬂl'_‘ ((:?)) \ DEC-WL-HL (1) orientation bins, and each pixel votes for the orientation of
' its gradient, with a strength that depends on the gradient
+ magnitude at that pixel. For color images, we compute the
where d = exp(@ist(xi;B) ¥ and dist(x;;B) = gradient of each color channel and pick the channel with

(dist(x;; ba); dist(x;; bo); <2 : ; dist(xi; by))", dist(x;;bj) the highest gradient magnitude at each pixel. Finally, the
denotes the Euclidean distance betwaemnd eachb;. +is histogram of each cell is normalized with respect to the
a parameter controlling the weighting vectdr. In [30], a gradient energy in a neighborhood around it. We look at the
smart approximation is proposed to improve its computatiorf@iur 2£ 2 blocks of cells that contain a particular cell and
ef®ciency in practice. Ignoring the second term in (5), ftormalize the histogram of the given cell with respect to the
directly selects thé nearest basis vectors &f to minimize total energy in each of these blocks. This leads to £1 9
the ®rst term by solving a much smaller linear system. Thigmensional vector representing the local gradient information
gives the coding coef®cient for the selectethasis vectors inside a cell. In our implementation, we resize each image to
and other coef®cient are simply set to zero. 256£ 128 and then extract HOGs inf88 cells. Our ®nal
After coding, Libnear SVM [32] is adopted for classi®catioffeature vector is the 2340-dimensional normalized HOG cell
as in [28]+[30]. vector. After PCA [34], the dimension of the feature is further
reduced to 750 to obtain compact description and ef®cient
C. Features and Sign Instance Description computation.

For sign language recognition, our algorithm was conductedKinéct Features: Kinect sensor has four kinds of output:
on the self-built dataset. We ®rst introduce features to descrifier image, depth image, mask image, and skeleton image,
sign instance. In this paper, we adopt two different featur8 Shown in Fig 6. The Kinect features include body pose,
including HOG features and Kinect features. The HOG featuf@nd shape, and hand motion features. The body pose features
can describe the appearance information. Based on the oufJ& €xtracted using skeleton information. By using Microsoft
of Kinect, we can know the position of hands, and obtaftin€CctSDK 1.5, we can obtain the positions of shoulder,
their shape information and motion features. In addition, w&POW. wrist and hand, both in right and left side of the body.
can also estimate body pose by using of Kinect features. The body pose features are the combination of three parts.

HOG Features: Based on the depth map from Kinect, it 1) The unit vectors of the elbows with respect to the
is easy to obtain the mask image and crop the foreground. shoulders, the wrists with respect to the elbows, the
Once the humans are centralized, we extract HOG descriptor hands with respect to the wrists, and the left hand with
for each detected area. In human detection, the HOG has been respect to the right hand.
shown to be successful [33]. We follow the construction in [33] 2) The joint angles of shoulders, elbows, and wrists.
to de®ne a dense representation of an image at a particular re8) The distance between the right hand and the left hand,
olution. The image is ®rst divided intE€8 non-overlapping normalized by being divided by twice shoulder width.
pixel regions, or cells. For each cell we accumulate a 1-D  In total, the body pose feature has 28 dimensions. Fig. 5
histogram of gradient orientations over pixels in that cell. and Table | show the details of body pose feature.
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Fig. 7. Comparison of different methods on each sign class.
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Fig. 8. Confuse matrix on the randomly selected 30 different kinds of signs.

To generate the hand shape feature, we ®rst cropfad®8 cluster number is manually set to 100 for each kind of sign.
pixels patch in the position of hand point on every color framé&hen, the frames closest to the cluster are viewed as exemplars.
Then we extract the HOG feature on every patch and treat thisr each exemplak, = 20 andk, = 2 are adopted to obtain
feature as hand shape feature. This hand shape feature hassp8® training samples for training an mi-SVM classi®er. After
dimensions. obtaining all mi-SVM classi®ers, each sign bag is described

For generating the hand motion feature, we re-use thead the discriminative exemplars are selected by AdaBoost
patch mentioned above. Optic ow (OP) feature is calculatadassi®er.
between one patch on a color frame and the patch in the same) Comparison of different method3:he recognition rates
position on the previous frame. This feature is treated as hafiod individual classes, as well as the average recognition rate,
motion feature and has 2304 dimensions. are shown in Fig. 7. Comparison results of different baselines

To obtain compact description and ef®cient computaticand our method are also shown in Table Il. From Fig. 7,
the combined 2592 dimensions feature is the reduced to abaut can see that the recognition rate of our method on each

300 dimensions using PCA [34]. class is much better than other state-of-the-art methods. In
] N addition, as shown in Table II, the average recognition rate is
D. Sign Language Recognition Results about 855% with all 73 classes when using HOG and Kinect

As the training dataset contains tens of thousands of cropgedtures without temporal information, which has about 15%
frames, we use K-means to cluster the cropped frames andithprovement compared with HC [28]. Even compared with the












