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ABSTRACT
Cross-domain data analysis is one of the most important tasks in
social multimedia. It has a wide range of real-world applications,
including cross-platform event analysis, cross-domain multi-event
tracking, cross-domain video recommendation, etc. It is also very
challenging because the data have multi-modal and multi-domain
properties, and there are no explicit correlations to link different
domains. To deal with these issues, we propose a generic Cross-
Domain Collaborative Learning (CDCL) framework based on non-
parametric Bayesian dictionary learning model for cross-domain
data analysis. In the proposed CDCL model, it can make use of the
shared domain priors and modality priors to collaboratively learn
the data’s representations by considering the domain discrepancy
and the multi-modal property. As a result, our CDCL model can
effectively explore the virtues of different information sources to
complement and enhance each other for cross-domain data analy-
sis. To evaluate the proposed model, we apply it for two different
applications: cross-platform event recognition and cross-network
video recommendation. The extensive experimental evaluations
well demonstrate the effectiveness of the proposed algorithm for
cross-domain data analysis.

Categories and Subject Descriptors
H.3.5 [Online Information Services]: Web-based services

Keywords
social media, cross-domain collaborative learning, multi-modality

1. INTRODUCTION
With the rapid development of Internet, there are more and more

social media sites (e.g., Flickr, YouTube, Facebook, and Google
News), which make people be able to conveniently generate and
share rich social multimedia content online, including multimedia
documents, social links. As a result, a popular event topic that is
happening around us and around the world can spread very fast in
different media sites, and there are substantial amounts of media
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Figure 1: Two different cross-domain scenarios: (a) cross-
platform data association (b) cross-network user associa-
tion(All photos via Flickr under Creative Commons License).

data with multi-modality (e.g., images, videos, and text). For ex-
ample, as shown in Figure 1(a), a hot topic (e.g., United States Pres-
idential Election) emerges, there are many relevant documents (im-
ages and text) in different platforms, such as Goodle News, Flickr.
These documents have different perspectives, official on Google
News, and personal comments and interesting photos on Flickr. If
we aggregate the relevant data across different platforms, they can
complement and enhance each other, especially when the strengths
of one domain complement the weaknesses of the other. For ex-
ample, a lot of interesting comments and photos by Web users on
Flickr can complement few official reports on Google News. More-
over, the images of official reports generally captured by journal-
ists can focus on the targets of a specific event perfectly on Google
News, while most uploaded images which are typically captured by
users are not professional on Flickr. To better understand what hap-
pens across multiple platforms, it is better to make use of the virtues
of different information sources via collaborative learning algorith-
m. In social multimedia, the cross-domain collaborative learning
(CDCL) is an important task for knowledge mining as it aims at
discovering collective and subjective information, which may be
more beneficial to users than a single domain in many applications
such as cross-platform event analysis [1], cross-domain multi-event
tracking [2], cross-domain collaboration recommendation [3].

In real-world scenarios, different domains can bridge the domain
gap via the shared domain information, such as event topics, social
links. As shown in Figure 1, we illustrate a toy example and show
two different cross-domain scenarios including cross-platform data
association and cross-network user association. In Figure 1(a), we
show an example about the cross-platform data association. Here,
Google News and Flickr are regarded as two domains, and their
documents are associated via the shared event topic “United States
Presidential Election". In Figure 1(b), it shows an example about
the cross-network user association. In the two different network-
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Figure 2: Illustration of the key idea of our cross-domain collaborative learning. For simplicity, we only show an example for cross-
platform data association. Here, there are two domains (Google News and Flickr) with two modalities (Text and Image)(All photos
via Flickr under Creative Commons License).

s Twitter and YouTube, there are many social links by users. For
each user, he/she will have video-related behaviors on YouTube
and tweeting behaviors on Twitter, and we explore the overlapped
user account linkage between Twitter and YouTube to realize cross-
network user association. Even though the shared domain informa-
tion can help bridge the domain gap, it is still a challenging problem
to find the most effective way to explore the useful information, as
the data are inherently heterogeneous, noisy and ambiguous.

Recently, how to explore useful information via cross domain
collaborative learning in social multimedia has attracted much re-
search interest. Basically, there are two major research topics: (1)
cross-domain feature learning in multimedia by adopting a cross-
domain constraint to make different domains share a common fea-
ture space [1, 4, 5]. For example, Yang et al. [1] propose a cross-
domain feature learning algorithm based on stacked denoising auto-
encoders, and apply the learned features for three important appli-
cations: sentiment classification, spam filtering, and event classifi-
cation. (2) personalization recommendation in social links by mod-
eling cross-network user behaviors [6, 7]. For example, a cold-start
recommendation solution is proposed by aggregating user profiles
in Flickr, Twitter, and Delicious [6]. Yan et al. investigate into
cross-network social relation and behavior information to address
the cold-start friend recommendation problem [7]. These two top-
ics focus on feature learning and user modeling in cross domain
analysis by combining the virtues of different domains to comple-
ment each other. They are both challenges and benefits. (1) The
media data (e.g., event topics, social links) have multi-domain
property. As shown in Figure 1, the media data can come from
multiple domains (e.g., Flickr, Google News, YouTube, and Twit-
ter), and they can complement each other, but also have domain
discrepancy. (2) The media data have multi-modal property. As
shown in Figure 1(a), each data instance in social media sites can
be described with images and texts simultaneously, and the textual
and visual information can also complement each other. (3) The
media data have sparse property. For example, the social behav-
iors of the users in one social network are sparse. In particular,
most users have no chance to browse or review most images and
videos. When a new user registers on Youtube, the system knows
nothing about his/her interactions on videos and cannot conduct
video recommendation.

In this paper, motivated by the previous work, we propose a nov-
el generic Cross-Domain Collaborative Learning (CDCL) frame-
work based on non-parametric Bayesian dictionary learning model

for cross-domain data analysis. In our CDCL, the non-parametric
Bayesian dictionary learning model can explore the multi-domain,
multi-modality, and sparse properties jointly. (1) To deal with the
domain discrepancy, we adopt the shared domain priors across mul-
tiple domains to make them share a common feature space. (2) To
make use of the multi-modal property, we learn the sparse repre-
sentation of multi-modal data by introducing the shared modality
priors to infer the sparse structure shared among different modali-
ties of media data. (3) To deal with the sparsity of the media data,
we learn the shared dictionary space to bridge cross-domain infor-
mation. Due to the sparsity of user behavior in one social network,
we exploit social relations and behaviors of users in the auxiliary
social network to help estimate their preferences on other social
network by learning the shared dictionary space, which can per-
form the cold-start recommendation task. The details of our CDCL
algorithm is shown in Figure 2. For simplicity, we only show an ex-
ample for cross-platform data association. There are two domains
(Google News and Flickr) with two modalities (Text and Image)
related to the event “United States Presidential Election". In the
left panel of Figure 2, the related data associated with the event
include textual and visual information. Here, each social event in-
stance contains text and its corresponding images. Since the multi-
modal data among different domains have their own characteristics
but also have their commonalities, we can collaboratively learn the
shared feature representation by adopting the shared domain pri-
ors and modality priors across multiple domains as shown in Fig-
ure 2. As a result, the proposed CDCL can effectively combine the
virtues of different information sources to complement each other
for cross-domain multi-modal data analysis. The proposed generic
framework can be applied for many applications, such as cross-
platform event recognition and cross-network video recommenda-
tion. The cross-platform event recognition is to use multi-modal
data from multiple domains to conduct social event recognition.
And the cross-network video recommendation is to leverage users’
rich cross-network activity data to help estimate their preferences
on other social platforms. For example, by using the overlapped us-
er account linkage between Twitter and YouTube, and considering
both the Twitter tweeting activities and historical interactions with
YouTube videos, we design a cold-start recommendation task for
the new YouTube user by the proposed CDCL method. We evaluate
our method on these two applications and the results demonstrate
its effectiveness in social multimedia. Compared with the existing
methods, the contributions of this work are threefold.
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• We propose a generic cross-domain collaborative learning
framework based on non-parametric Bayesian dictionary learn-
ing model for cross-domain data analysis, and the proposed
CDCL can effectively make use of the virtues of different
information sources to complement and enhance each other.

• The proposed non-parametric Bayesian dictionary learning
model can effectively adopt the shared domain and modality
priors to collaboratively learn the shared feature representa-
tion to deal with the domain discrepancy with considering
the multi-modal property.

• We evaluate the proposed CDCL method on two differen-
t applications in social multimedia and demonstrate that it
achieves much better performance than existing methods. Be-
sides, we collect a large-scale dataset for research on multi-
modality cross-domain social event analysis, and will release
it for academic use.

The rest of the paper is organized as follows. In Section 2, the re-
lated work is reviewed. Section 3 introduces the formulation of the
CDCL. Two cross-domain applications are presented in Section 4.
In Section 5, we report and analyze extensive experimental results.
Finally, we conclude the paper with future work in Section 6.

2. RELATED WORK
In this Section, we briefly review previous methods which are

most related to our work including cross-domain feature learning
and cross-network collaborative learning in multimedia.

Cross-domain Feature Learning: In cross-domain feature learn-
ing, most of the existing methods aim to propagate the knowledge
from an auxiliary domain to a target domain, which can learn fea-
ture representation by using data from one domain space to enhance
the learning tasks of other domain spaces. In these methods, the
auxiliary domain can be considered as the prior knowledge and ex-
perience guidance to perform new learning task on target domain.
To achieve this goal, many methods adopt a cross-domain con-
straint to make different domains share a common feature space [1,
4, 5, 8]. Blitzer et al. [4] introduce structural correspondence learn-
ing to automatically induce correspondences among features from
different domains by modeling their relations with pivot features
that appear frequently in both domains. In [5], it reduces the dis-
tance across two domains by learning a latent feature space where
domain similarity is measured through maximum mean discrepan-
cy. With the explosive growth of multi-media data on the Web,
cross-media learning [9, 10, 11, 12, 13] also has drown much at-
tention in the past few years. Bian et al. [12] propose the CM-
LDA method to model the relations among different media types
by introducing a shared latent variable Z. Yang et al. [9] integrate
semi-supervised learning and transfer learning techniques to ex-
ploit manually-labeled images for video tagging.

Different from the existing methods, the proposed CDCL algo-
rithm adopts a shared dictionary space learning strategy to bridge
different domains. There are some existing dictionary learning ap-
proaches. In [14], a novel coupled dictionary training method is
proposed for single image super-resolution based on patch-wise s-
parse recovery, where the learned couple dictionaries can connect
the low with high-resolution image patch spaces. Semi-coupled
dictionary learning model is proposed to solve such cross-style im-
age synthesis problems [15]. In these dictionary learning methods,
the sparse coefficient is estimated by assuming the reconstructed
residual error or the sparsity level. However, we usually do not
know the residual error or sparsity level. If the settings do not a-
gree with the ground truth, the performance can significantly de-

grade. Instead, Zhou et al. [16] and Yuan et al. [17] introduce a non-
parametric Bayesian model to address these problems. In [16], the
dictionary learning method with the non-parametric beta process is
presented, where the beta process is employed as a prior for learn-
ing the dictionary, and this non-parametric method can naturally in-
fer an appropriate dictionary size. In [17], a novel multi-task sparse
learning model is proposed for human action recognition. In these
two methods, the non-parametric Bayesian methods perform well
in image denoising, image inpainting, compressive sensing, and
human action recognition. In this paper, motivated by the previ-
ous work, we propose a novel non-parametric Bayesian dictionary
learning model for cross-domain data analysis by using the shared
domain and modality priors in social multimedia. Different from
the proposed method, in [16], it mainly adopts beta process pri-
or to model the image’s sparse structure information and does not
consider the cross-domain information. While our goal is to mod-
el cross-domain information with the shared domain and modality
priors to complement and enhance each other.

Cross-network Collaborative Learning: The cross-network col-
laborative learning has recently attracted broad attentions. Most of
the existing methods are devoted to taking advantage of differen-
t social networks’ information towards collaborative applications.
Suman et al. [18] exploit the real-time and socialized characteristic-
s of the Twitter tweets to facilitate video applications on YouTube.
Abel et al. [19] investigate tag profiles for the same user on Flick-
r, Twitter and Delicious, and discover consistency and replication
characteristics in cross-platform user behavior.

The challenge in cross-network collaborative learning is how to
bridge the domain gap by the shared content information, which
is to make the strengths of one domain complement the weakness-
es of the others. In terms of cross-network collaborative learning
in social media, our work is related to [7] and [20]. In [7], the
cross-network social relation and behavior information are adopted
to address the cold-start friend recommendation problem. Differ-
ent from [7], our work focuses on applying cross-network collab-
orative learning method to a YouTube video recommendation ap-
plications to deal with the cold-start problem. This work is also
different from [20] which uses coupled dictionary learning method
to conduct the cross-network topic association to meet the YouTube
video promotion demand. Instead of the coupled dictionary learn-
ing method, we introduce the non-parametric Bayesian dictionary
learning model by using the shared domain priors to collaboratively
learn the shared dictionary space. Moreover, the proposed CDCL
method is a generic framework for cross-domain data analysis, and
the cross-network collaborative learning is only one of our applica-
tions in social multimedia.

3. OUR APPROACH
In this Section, we will first introduce the details of the proposed

cross-domain collaborative learning algorithm, and then show its
model inference.

3.1 Cross-Domain Collaborative Learning
The cross-domain collaborative learning is to explore the virtues

of different information sources to complement and enhance each
other for cross-domain data analysis. To achieve this goal, we pro-
pose a generic collaborative learning framework via non-parametric
Bayesian dictionary learning model. In the proposed model, it
can effectively explore the multi-domain property and the multi-
modality property of cross-domain data to collaboratively learn the
shared feature representation to deal with the domain discrepancy
and help bridge the domain gap. For cross-domain data analysis,
without loss of generality, we can assume that the data have J do-
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Figure 3: The graphical representation of our cross-domain
collaborative learning algorithm. The red circles represent the
shared priors to associate with the relevant information and
collaboratively learn the shared feature space in different do-
mains. For details, please refer to the corresponding text in
Section 3.1.

mains with M modalities. Let X = [x1, . . . ,xj, . . . ,xJ] denote
the data instances in J domains. Here, xj = [x1

j , · · ·,xM
j ] de-

note M modalities in the j-th domain, and xm
j ∈ Rnm

j . The nmj
is the dimensionality of the feature of the m-th modality in the j-
th domain. In this paper, these instances X can be either social
event data or user information, such as social events described by
images and texts or the user account linkages between Twitter and
YouTube.

To model these data, sparse representation has shown encourag-
ing performance in traditional methods [21]. Given an instance xm

j

in the j-th domain with the m-th modality, it can be represented as
a linear combination of elements in dictionary Dm

j with an error
term εmj as shown in Eq.(1).

xmj = Dm
j wm

j + εmj (1)

Here, the columns of the matrix Dm
j ∈ Rnm

j ×K represent the K
elements of the dictionary, the wm

j is the sparse feature coefficient,
and the εmj represents measurement noise with the m-th modality
in the j-th domain. The sparse representation in Eq.(1) only models
an instance with single modality in one domain. To improve it for
modeling instance with multi-modality in cross-domain, we should
take into account the following issues: (1) How to make use of the
multi-modality and multi-domain properties to learn cross-domain
data representations; (2) How to make the coefficient wm

j have a
sparse constraint; (3) How to learn a shared dictionary space Dm

j

to bridge the domain gap; To deal with the above issues, we pro-
pose an effective cross-domain collaborative learning algorithm by
introducing the non-parametric Bayesian dictionary learning mod-

el as shown in Figure 3. In the proposed model, (1) To deal with
the domain discrepancy, we add the the shared domain priors π, γs
to associate with the information across multiple domains. Mean-
while, the shared modality priors γj,ε, πj , γj,s are adopted to asso-
ciate with the multi-modality information in the j-th domain. (2)
The sparseness is achieved by introducing the Beta Process priors.
Since different domains may favor different sparse reconstruction
coefficients, the constraint of joint sparsity across different domains
is necessary, which is to enforce the robustness in the sparse coef-
ficient estimation. Due to the shared priors, our model can realize
joint sparsity across different domains. (3) The shared dictionary
space is learned by using the shared domain and modality priors,
and it can bridge the domain gap for cross-domain data analysis.

In the non-parametric Bayesian dictionary learning model, the
beta process is employed as a prior to learn the dictionary Dm

j , and
the number of dictionary elements across all domains and their rela-
tive importance can be inferred non-parametrically. As a result, the
sparseness of the coefficient can be achieved via the Beta process
priors rather than the computationally expensive ℓ1 norm penalty.
The Beta process (BP) is developed in [22], and the BP with pa-
rameters a0 > 0, b0 > 0, and base measure H0, is represented as
BP (a0, b0, H0). The stick-breaking construction of a beta process
H ∼ BP (a0, b0,H0) is represented as:

H(ψ) =

K∑
k=1

πkδψk (ψ) (2)

Here, πk ∼ Beta(a0/K, b0(K − 1)/K) and ψk ∼ H0. The
H(ψ) represents a vector of K probabilities, with each associat-
ed with a respective atom ψk, and ψk is the atom distributed ac-
cording to H0. When K → ∞, H(ψ) corresponds to an infinite-
dimensional vector of probabilities, and each probability has an
associated atom ψk drawn i.i.d. from H0. In the proposed mod-
el, we set the sparse feature coefficient wm

j = zmj ⊙ smj , where
⊙ represents the Hadamard (element-wise) multiplication of two
vectors, the binary vector zmj ∈ {0, 1}K denotes which of the K
columns of Dm

j are used to represent the instance xmj , and the
weights smj ∼ N(0, γ−1

s IK) are introduced to impose that the
reconstruction coefficients of the dictionary are not always bina-
ry, where γs is the precision or inverse variance. That is to say,
let the atoms ψk correspond to the candidate members of our dic-
tionary Dm

j , and the k-th component of the binary vector zmj is
drawn zmj,k ∼ Bernoulli(πk). As shown in Figure 3, the shared
priors π, γs, γε are utilized to learn the shared dictionary space
and the feature representation of instances across multiple domain-
s. The hierarchical form of the cross-domain collaborative learning
method can be described as:

xmj = Dm
j wm

j + εmj ,m = 1, . . . ,M, j = 1, . . . , J
Dm
j = [dmj,1, · · ·, dmj,K ]

wm
j =zmj ⊙ smj

εmj ∼ N(0, γ−1
j,ε Inm

j
),

(3)

where dmj,k ∼ N(0, n
m(−1)
j Inm

j
), zmj ∼

K∏
k=1

Bernoulli(πk), πk ∼

Beta(a0/K, b0(K−1)/K), smj ∼ N(0, γ−1
s IK), γs ∼ Γ(c0, d0),

and γj,ε ∼ Γ(e0, f0). The gamma hyper-priors placed on γs and
γj,ε are typically non-informative. Note that, for simplicity, inde-
pendent conjugacy Gaussian priors for dmj,k, smj , and εmj are adopt-
ed. As a result, the proposed CDCL method can effectively not
only make use of the information of each domain, but also com-
bine the virtues of other domains to complement and enhance each
other by the shared domain and modality priors.
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3.2 Model Inference
In the proposed CDCL method, the full likelihood probability

can be factorized as:

P (X,D,Z, S, π, γs, γε) =

J∏
j=1

M∏
m=1

N(xmj ;Dm
j (smj ⊙ zmj ), γ−1

j,ε Inm
j
)

J∏
j=1

M∏
m=1

K∏
k=1

N(dmj,k; 0, n
m(−1)
j Inm

j
)Bernoulli(zmj,k;πk)

K∏
k=1

Beta(πk; a0,b0)

J∏
j=1

Γ(γj,ε; e0,f0)Γ(γs; c0,d0). (4)

An exact model inference is often intractable in many non-parameter
Bayesian models, and some appropriate methods must be used,
such as variational inference [23] and Gibbs sampling [24]. To
estimate the latent variables conditioned on the observed variables,
namely D, Z, S, π, γs, γε, we employ Gibbs sampling method to
obtain samples of latent variables and estimate unknown parame-
ters in our model. In a Gibbs sampler, it iteratively samples new
assignments of latent variables by drawing from the distributions
conditioned on the previous state of the model. We list the update
rules for latent variables D, Z, S, π, γs, γε as follows:

We first sample the dictionary variable Dm
j = [dmj,1, · · ·, dmj,K ]

according to the posterior probability as shown in Eq.(5).

P (dmj,k|−) ∝N(xmj ;Dm
j (smj ⊙ zmj ), γ−1

j,ε Inm
j
)

N(dmj,k; 0, n
m(−1)
j Inm

j
) (5)

Here, the dmj,k can be drown from a normal distribution p(dmj,k|−) ∼
N(udm

j.k
,Σdm

j.k
).

Then, we sample the binary vector zmj = [zmj,1, · · ·, zmj,K ] accord-
ing to the following posterior probability,

P (zmj,k|−) ∝ N(xmj ;Dm
j (smj ⊙ zmj ), γ−1

j,ε Inm
j
)Bernoulli(zmj,k;πk)

(6)

Here, when zmj,k = 1, the P1 ∝N(xmj ;Dm
j (smj ⊙ zmj ), γ−1

j,ε Inm
j
)·

πk; when zmj,k = 0, the P0 = 1− πk. We can draw zmj,k according
to the Bernoulli distribution zmj,k ∼ Bernoulli( P1

P1+P2
).

Next, we sample the weight variable smj,k = [smj,1, · · ·, smj,K ] as
in Eq.(7).

P (smj,k|−) ∝ N(xmj ;Dm
j (smj ⊙ zmj ), γ−1

j,ε Inm
j
)N(smj ; 0, γ−1

s IK)

(7)

Here, as dmj,k, the smj,k can be drown from a normal distribution
p(smj,k|−) ∼ N(usm

j,k
,Σsm

j.k
).

Finally, we sample the shared priors π, γs, γε with the following
updating rules.

P (πk|−) ∝ Beta(πk; a0, b0)

J∏
j=1

M∏
m=1

Bernoulli(zmj,k;πk) (8)

P (γs|−) ∝ Γ(γs; c0, d0)

J∏
j=1

M∏
m=1

N(smj ; 0, γ−1
s IK) (9)

P (γj,ε|−) ∝Γ(γj,ε; e0, f0)

J∏
j=1

M∏
m=1

N(xmj ;Dm
j (smj ⊙ zmj ), γ−1

j,ε Inm
j
) (10)

Algorithm 1 The proposed CDCL method for cross-platform event
recognition.
Input: data in auxiliary domain Da; training and testing data in
target domain Dt; Iteration number Tgibbs;
Output: predict class labels for testing documents in Dt.

// Learn the shared domain priors in auxiliary domain Da.
1: Initialize the dictionary variable via the K-SVD
2: Initialize latent variables z, s, π, γs, γε
3: for t := 1 → Tgibbs do
4: Run Gibbs sampling strategy for all instances in the auxil-

iary domain Da according to Eq.(5) ∼ Eq.(10)
5: end for

// Predict class labels for testing samples in Dt
6: Initialize the domain priors with the learned values in Da
7: Learn the sparse representation w for all instances in Dt
8: Predict class labels of testing data using Linear SVM.

Note that, the priors π, γs are shared across multiple domains,
while the prior γε is only shared across multiple modalities in a
single domain.

4. APPLICATIONS
In this Section, we introduce how to leverage our generic model

for two cross-domain applications: cross-platform event recogni-
tion and cross-network video recommendation.

4.1 Cross-platform Event Recognition
The cross-platform event recognition is to make use of the virtues

of different domains to learn the shared feature representation for
social event recognition. A popular social event that is happening
around us can spread very fast. As a result, there are a large amount
of social events with multi-modality (e.g., images, videos, and text)
in many different domains (e.g., Flickr and Google News). There-
fore, it is important to automatically identify and recognize the in-
teresting social events from massive social media data. The critical
challenge is how to make use of the cross-domain multi-modality
social event data. The social event recognition is normally stud-
ied with textual features. In addition to textual information, social
events also have rich visual information. For an event in differen-
t sites, it may have different textual descriptions (comments, tags,
etc.) due to different users. However, it may have very similar vi-
sual information, such as images or videos, which are useful for
social event recognition across time and sites. For example, the
event "United States Presidential Election", its stories with the pic-
ture of Obama are highly related. Therefore, multi-modality fusion
is useful for social event recognition. In addition, different plat-
forms can complement and enhance each other. For example, most
events on Google News are from the official, but they have a lot of
comments by web users on Flickr. The images on Google News are
generally captured by professional journalists while the images on
Flickr are typically captured by common users, who may upload
images which do not focus on the targets of a specific event per-
fectly. Therefore, social events in different domains can help each
other, especially when the strengths of one domain complement the
weaknesses of the other.

Next, we will introduce how to apply the proposed CDCL algo-
rithm for the cross-platform event recognition by considering two
domains (Google News and Flickr) with two modalities (text and
image). Here, each social event has many documents, and each
document is an event instance (event sample) including text and im-
ages. Our goal is to classify each document by using the informa-
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tion from Google News and Flickr. In general, these two domains
can be viewed as auxiliary domain and target domain, respectively.
The auxiliary domain can be modeled as the prior knowledge and
experience to perform new learning task on target domain, which
can be facilitated to improve the classification accuracies, especial-
ly when the size of available labeled training samples on target do-
main is not large enough. The overall procedure for cross-domain
social event recognition is depicted in Algorithm 1. We first learn
the shared domain priors of the proposed CDCL model by alter-
nately sampling instances from the auxiliary domain. Here, the
data from the auxiliary domain are used to infer the shared domain
and modality priors π, γs, γε. Then, we use the learned priors to
train the proposed CDCL model and learn the sparse feature rep-
resentation w for all instances in the target domain Dt. Then, the
Linear SVM [25] is trained and used to predict class labels of the
testing data inDt. Here, a half of instances in the target domain are
randomly sampled to train the SVM classifiers, and the other half
of the instances are used for testing.

4.2 Cross-network Video Recommendation
The cross-network video recommendation is to leverage users’

rich cross-network activity data to help estimate their preferences
on other social network, especially for a new user or the users with
few records. In this paper, we exploit social relations and behav-
iors of users in the auxiliary social platform, and apply our CDCL
method to help another platform conduct the cold-start recommen-
dation task. Specifically, we employ Twitter and YouTube as the
two platforms, which are connected due to the overlapped user ac-
count linkage between Twitter and YouTube. When a new user
registers on Youtube, the system knows nothing about his/her inter-
actions on the videos and cannot conduct video recommendation.
By considering both the Twitter tweeting activities and historical
interactions with YouTube videos, the proposed CDCL algorithm
can present a YouTube video recommendation application to deal
with the cold-start problem.

In cross-network video recommendation, each user u ∈ U can
be represented as a 2-dimensional tuple< uT ,uY > when given a
set of overlapped users U , where the user u is considered as an in-
stance, the uT represents the user’ tweet information in Twitter, and
the uY represents that the user u has interacted with the videos in
Youtube. Here, we consider each user’s tweet history information
as one document and employ the standard Latent Dirichlet Alloca-
tion to the corpus composed by all the Twitter users. Feature de-
scription of uT can be represented as uT = {uT1 , · · ·, uTKT

}, where
KT is the number of topics in the latent Twitter topic space. Sim-
ilarly, YouTube user’s feature representation uY can be obtained
with his/her interested video set. We consider all the video set as
the feature items of the YouTube users and take the commonly used
vector space model to represent the YouTube user. The uY can be
represented as uY = {uY1 , · · ·, uYKY

}, where KY is the number
of YouTube videos in our dataset, and uYn = 1 denotes that the
YouTube user u has been interested in the n-th YouTube video and
uYn = 0 otherwise. The task of cross-network video recommenda-
tion is, for a given new user u ∈ U on YouTube, to recommend a
ranking list of videos Vu according to the user’ interest by consid-
ering the user’ tweet activities uT on Twitter.

The proposed cross-network video recommendation solution con-
sists of two steps, i.e., cross-network dictionary learning and video
recommendation for the new YouTube users, as shown in Algo-
rithm 2. At the first step, with the obtained Twitter and YouTube
user feature representation uT ,uY , we utilize the proposed CD-
CL method to discover the shared latent structure among differ-
ent networks. Specifically, given the user feature representation

Algorithm 2 The proposed CDCL method for cross-network video
recommendation.
Input: User representation uT ∈ U on Twitter; User representa-
tion uY ∈ U on YouTube; Candidate YouTube videos vt ∈ V ; A
test user ut ∈ Ut on YouTube.
Output: A ranked list of videos Vu for ut.

// Do the cross-network dictionary learning
1: Learn the shared dictionary space DT = {dT1 , · · ·, dTK} on

Twitter according to Eq.(5) ∼ Eq.(10)
2: Learn the shared dictionary space DY = {dY1 , · · ·, dYK} on

YouTube according to Eq.(5) ∼ Eq.(10)
//Recommend videos for a new YouTube user ut

3: Obtain uT ∈ RKT×1 by the user’s tweet history information
4: Estimate the corresponding sparse coefficient w by Eq.(11)
5: Obtain the feature representation uY via Eq.(12)
6: Recommend a ranked list of videos Vu for ut by Eq.(13)

uT = {uT1 , · · ·, uTKT
} and uY = {uY1 , · · ·, uYKY

}, we can learn
the shared dictionary space for the users across different domain-
s and obtain the dictionary variables DT = {dT1 , · · ·, dTK} and
DY = {dY1 , · · ·, dYK} on Twitter and YouTube, respectively. With
the derived shared dictionary spaces DT and DY , we are able to
realize the transfer of user’s feature distribution between different
networks. Therefore, we can conduct video recommendation for
new user on YouTube by his/her tweet history information in Twit-
ter. The second step is to recommend a ranking list of videos Vu
for a given new user in YouTube based on the learned DT and
DY . Specifically, given a new user on YouTube, we can obtain the
user’s feature representation uT ∈ RKT×1 on Twitter by his/her
tweet history information. Then, we can estimate the user’s sparse
feature coefficient w via Eq.(11) for uT .

uT = DTw + εj (11)

Since the unique user across different domains has the shared dic-
tionary space (DT and DY ) and sparse feature coefficient (w),
we can adopt these learned parameters to help conduct the trans-
fer of user’s feature distribution between the Twitter and YouTube.
Therefore, the new user’s YouTube feature representation can be
defined as:

uY = DYw (12)

As a result, given the new user uY and candidate YouTube videos
vt ∈ V represented in the same feature space, the recommended
videos from YouTube are ranked by Eq.(13).

sim(uY ,vt) =< uY ,vt >=

KT∑
k=1

uTk · vk,t (13)

5. EXPERIMENTS
In this Section, we evaluate the performance of the proposed CD-

CL algorithm on two different applications: cross-platform event
recognition and cross-network video recommendation. The exten-
sive results demonstrate the effectiveness of our CDCL algorithm
for cross-domain collaborative learning in social multimedia.

5.1 Cross-platform Event Recognition

5.1.1 Dataset Collection
For social event recognition, the evaluation dataset is construct-

ed from online social platforms. Nowadays, there are already some
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Table 1: Illustration of the event name, duration time, and number of documents for each event in our collected social event dataset.

Event ID Event Name Start Time End Time Google News Flickr
#Images #Text #Images #Text

1 Senkaku Islands dispute 2008.06 2012.12 3743 2495 6617 6617
2 Occupy Wall Street 2011.09 2012.09 5601 3108 7151 7151
3 United States Presidential Election 2009.10 2013.01 5169 3446 7352 7352
4 War in Afghanistan 2001.10 2012.08 5373 2915 7172 7172
5 North Korea nuclear program 2000.01 2012.04 3969 2640 8635 8635
6 Greek protests 2011.05 2012.04 3900 2630 7385 7385
7 Mars Reconnaissance Orbiter 2005.04 2012.08 3901 2600 7188 7188
8 Syrian civil war 2011.01 2013.01 4899 3266 7426 7426

Table 2: The event classification accuracy of different methods.

Methods Accuracy
#Google News #Fickr

BOW 0.797 0.857
CCA 0.758 0.861
SRC-L1 0.820 0.857
SRC-L1-DL 0.843 0.862
CDCL-s 0.834 0.861
CDCL-c 0.848 0.877
CDCL 0.876 0.885

public event datasets, such as the MediaEval social event detec-
tion(SED) [26]. However, the existing MediaEval SED dataset in-
clude only social media content created by people and do not have
current hot social events. Besides, the existing MediaEval SED
dataset do not have multi-modality cross-domain information. To
analyze event data with the multi-modal and multi-domain proper-
ties, we mainly focus on 8 complex and public social events hap-
pened in the past few years, and collect the dataset by ourselves
from Google News and Flcikr. For these 8 events, we manually
create the introduction page of each event or download it from the
Wikipedia page1, which contains the whole stories of each even-
t. We then search and download related text and its corresponding
images from Google News and Flickr based on the keywords in the
whole timeline of each social event. The detail of our collected
dataset is shown in Table 2. The collected 8 social events cover a
wide range of topics including politics, economics, military, soci-
ety, and so on. For each social event, there are about 2000 to 9000
documents including text and its corresponding images.

5.1.2 Feature Extraction
For textual description, we use stemming method and stop word-

s elimination and remove words with a corpus frequency less than
15 in the whole stories of the event, and take the commonly used
vector space model to represent the textual information. For visual
description, we adopt the popular sparse coding method [27]. In
our implementation, we densely sample SIFT points from images,
and adopt K-means to build a codebook. For each SIFT point, the
Localized Soft-assigment Coding (LSC) is adopted to obtain its de-
scriptor. Then, the max pooling and the Spatial Pyramid Matching
(SPM) strategy are adopted to obtain image representation.

5.1.3 Results and Analysis
In our experiment setting, theK is set to 100. Note that not allK

dictionary elements are used in the model. The number of shared

1http://www.wikipedia.org

Figure 4: The classification accuracy for each event on Google
News.

Figure 5: The classification accuracy for each event on Flickr.

dictionary elements will be determined by the shared domain pri-
ors. The hyperparameters within the gamma distributions are set as
c0 = d0 = e0 = f0 = 10−6 as in [16]. Since the data overwhelms
these prior values when calculating posterior distributions, our al-
gorithm is robust to the initial values. We set Tgibbs = 100 and use
the results of the last iteration.

To demonstrate the effectiveness of the proposed CDCL mod-
el for cross-domain event analysis, we compare it with the most
related baseline methods (BOW, CCA, SRC-L1, SRC-L1-DL):

• BOW: It is to concatenate the textual and visual features as
discussed in Section 5.1.2 to represent each event document.

• Canonical Correlation Analysis (CCA) [28]: The CCA is a
classical method in cross modal retrieval by learning a com-
mon space across multi-modal data. The text and image fea-
tures are obtained by the maximally correlated subspace.

• SRC-L1: It is to adopt the sparse representation based on
traditional ℓ1 regularization and the dictionary is learned via
the traditional K-SVD method.

• SRC-L1-DL: It is to adopt the sparse representation based on
traditional ℓ1 regularization and the dictionary is learned by
the proposed non-parametric Bayesian model with the auxil-
iary domain as in Algorithm 1.
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(a) Dictionary weights πk (Flickr)

(b) Dictionary weights πk (Google News)

(c) Statistics of binary vector z (Flickr)

(d) Statistics of binary vector z(Google News)

Figure 6: The shared dictionary learning results by CDCL-s
and CDCL. (a-b) the comparison of dictionary weights πk on
Flickr and Google News, respectively. (c-d) the statistics results
of binary vector z on Flickr and Google News, respectively.

For the cross-platform event analysis, our goal is to classify the
event instances on Google News/Flickr domain with the help of the
auxiliary domain Flickr/Google News, respectively. With different
experimental settings, we have 3 methods CDCL-s, CDCL-c, and
CDCL. The CDCL-s is only trained in the single domain without
the help of the auxiliary domain, and the shared priors is initial-
ized with random values. The CDCL-c is trained with the help of
the auxiliary domain, but ignores the multi-modal constraint by di-
rectly concatenating the textual and visual features. The CDCL is
trained by using the auxiliary domain with multi-modal property to
obtain the shared domain priors and modality priors. After learning
the representations, the Linear SVM is utilized as the classifier.

The classification results of different methods are shown in Ta-
ble 2, and the accuracy comparison of each event class is given in
Figure 4 and Figure 5. Based on these results, we have the follow-
ing observations. (1) The BOW model shows inferior classification
performance. This is because the BOW models textual and visual
words obscurely and cannot differentiate the associations between
multi-modal data. (2) The CCA and our CDCL achieve better per-
formance than the BOW, which shows that it is useful to model
and fuse the textual and visual information. (3) The SRC-L1-DL
achieves better average classification accuracy than the SRC-L1,
which shows that the dictionary learning method by adopting the
auxiliary domain can obtain a more compact and representative dic-

(a) On Flickr

(b) On Google News

Figure 7: The classification accuracy with the iteration of Gibbs
sampling on Flickr data and Google News data, respectively.

Figure 8: The visualization of the 100 learned dictionary ele-
ments. Each row corresponds to one element. The red color
indicates the highest statistics results of binary vector z in each
event set, and the corresponding dictionary element is shown
with the image and text(All photos via Flickr under Creative
Commons License).

tionary to improve the average performance. (4) Overall, the pro-
posed CDCL method consistently outperforms other existing meth-
ods based on the average classification accuracy. The major reason
is that the proposed non-parametric Bayesian dictionary learning
model can adopt the shared domain priors and modality priors to
collaboratively learn the feature representation by considering the
domain discrepancy and the multi-modal property. We also ob-
serve that our CDCL method is much worse than the SRC-L1 for
the event 1 in Figure 4 and the event 2 in Figure 5, respectively.
This is may be because the superposition of cross-domain informa-
tion has no effect on the event 1 and event 2. As a result, it can
effectively combine the virtues of different information sources to
complement and enhance each other.

In Figure 6, we give a detailed analysis about the proposed mod-
el. In Figure 6(a) and Figure 6(b), we show the comparison of the
dictionary weights πk (ordered in the probability) to be used by
CDCL-s and CDCL on Flickr and Google News, respectively. We
observe that most dictionary elements are used with a low proba-
bility in our CDCL, especially after the eighth dictionary element
on Flickr. While the probability values of most dictionary elements
used in CDCL-s are greater than 0.2. As a result, the learned fea-
ture representation of our CDCL is much more sparse. This shows
that our model can effectively utilize the prior knowledge and expe-
rience of the auxiliary domain to learn a compact shared dictionary
space and obtain the sparse representation. In Figure 6(c) and Fig-
ure 6(d), we show the statistics results of binary vector z by calcu-
lating the expected number of binary factors on Flickr and Google
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News, respectively. We can see that the statistics results of bina-
ry vector z are consistent with the dictionary weights πk, which
shows that our model is reasonable. In Figure 7, we show the clas-
sification accuracies with the iteration of Gibbs sampling on Flickr
and Google News, respectively. We can see that our CDCL can
achieve accessible results after 20 iterations. As shown in Figure 8,
we analyze the statistics results of binary vector z in each event and
show the corresponding dictionary element (images and text) with
the highest confidence score.

5.2 Cross-network Video Recommendation

5.2.1 Dataset Collection
For the cross-network video recommendation, we use the cross-

network dataset [20]. This is a cross-network dataset with us-
er account linkage between YouTube and Twitter, which contain-
s 143,259 Google+ users, among which 38,540 users provide Y-
ouTube account, 39,400 users provide Twitter account, and 11,850
users provide both accounts. However, the dataset do not have the
behavioral information of these users on Twitter. Therefore, we
download the most recent 1, 000 tweets generated by each user via
the official APIs according to the users ID provided by [20]. In or-
der to better evaluate the recommendation results, we only use the
users providing both the YouTube and Twitter accounts, and keep
only the cross-network users who interacted with at least 8 differ-
ent videos on YouTube. As a result, we obtain 1655 cross-network
users and 5105 videos in total for this experiment evaluation.

In our experiment setting, the proposed video recommendation
solution is expected to facilitate cold-start recommendation for the
new YouTube user. In the first stage of our cross-network video
recommendation, we randomly select 900 active users to construct
the training dataset, which is to learn the shared dictionary space.
The remaining 755 users are considered as the cold-start users on
YouTube, denoted asUnew. For the testing user ut ∈ Unew, all the
observed video-related interactions are hidden in the second stage
and taken as ground truth for evaluation.

5.2.2 Evaluation Metrics
In practical video recommender system, users are basically on-

ly concerned about the top-ranked recommendation results and the
available space to present the results on YouTube is also limited.
The aim of the personalized video recommendation is to provide
each user a ranking list of videos. Similar to traditional infor-
mation retrieval task, we use Precision@K, Mean Average Preci-
sion (MAP@K) to measure the quality of the ranking list of rec-
ommended videos. For each new user u ∈ Unew in the test set,

Precision@K is defined as Precision@K =
K∑
k=1

rk/K, and the

MAP@K is the mean of average precision scores over test users
Unew and is defined as:

MAP@K =
1

Unew

Unew∑
u=1

K∑
k=1

Precision@uk ∗ ru,k

Lu
, (14)

where rk is the relevance level at position k, which is 0 for "Not
Relevant" and 1 for "Relevant" in our experiment. The ru,k is the
relevance level at position k for user u. The Precision@uk is the
precision at position k for user u, and K is the truncation level.
Lu is the number of relevant data in the recommended set. The
evaluation result is obtained by checking whether the recommend-
ed videos are truly in u’s interested video set. In our study, we set
K ∈ 10, 20, 30, 40, 50, 60, 70, 80, 90, 100.

(a) Precision@K

(b) MAP@K

Figure 9: The Precision and MAP of cross-network video rec-
ommendation for new YouTube users.

5.2.3 Results and Analysis
We compare the proposed model with three baseline methods:

• Popularity(POP): This approach provides the same recom-
mendation list of the videos to all new users according to
this video’s popularity. Here, we consider the view counts of
the video as its popularity.

• KNN: For a new YouTube user, the KNN uses his/her Twitter
information to obtain the most related Twitter users. Then the
relevant videos can be obtained by the most related users.

• Cross-network Association (CNAS) [20]: The CNAS uses a
coupled dictionary learning method to learn a pair of dictio-
nary spaces by the same users across different networks.

The evaluation results of different methods are shown in Fig-
ure 9. From the results, we have the following conclusions: (1)
The POP method shows inferior performance. This is due to its
incapability of learning user’s personalized needs and considering
cross-network user behaviors. (2) The KNN and CNAS methods
achieve better results. This shows that it is useful to adopt the aux-
iliary domain and consider the cross-network collaboration for the
cold start recommendation task. (3) The proposed CDCL method
outperforms the CNAS and the KNN, and achieves the best recom-
mendation performance in terms of precision and MAP under all
values of K computed. This is because the proposed model can
collaboratively learn the shared dictionary space with the shared
domain priors, which can better leverage users’ cross-network ac-
tivity data to address the user cold-start recommendation problem.

In Figure 10, we show four new YouTube users with their twitter
history information on Twitter and the corresponding recommend-
ed video list from YouTube. Take the test user "Daniel Rodriguez"
as an example, we can see that this new user is a software engi-
neer and likes music and science. The corresponding recommended
video list from YouTube includes some science technology, game
design, and popular music, which better satisfies the interest of the
new YouTube user. These results demonstrate the effectiveness of
the proposed cross-domain collacross-network video recommenda-
tion method.
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Figure 10: Four examples on cross-network video recommendation from Twitter to YouTube users(All photos via Flickr under
Creative Commons License).

6. CONCLUSION
In this paper, we propose a generic cross-domain collaborative

learning framework based on non-parametric Bayesian dictionary
learning model for cross-domain data analysis. The proposed mod-
el can effectively adopt the shared domain priors and modality pri-
ors to collaboratively learn the feature representation by consid-
ering the domain discrepancy and the multi-modal property. The
extensive experimental results on two different applications (cross-
platform event recognition and cross-network video recommenda-
tion) demonstrate the effectiveness of the proposed model. In the
future, we will investigate more applications with the proposed
generic framework, such as cross-domain event summarization and
cross-domain attribute mining.
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