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ABSTRACT
Event detection is essential for the extensively studied video anal-
ysis and understanding area. Although various approaches have
been proposed for event detection, there is a lack of a generic event
detection framework that can be applied to various video domains
(e.g. sports, news, movies, surveillance). In this paper, we present
a generic event detection approach based on semi-supervised learn-
ing and Internet vision. Concretely, a Graph-based Semi-Supervised
Multiple Instance Learning (GSSMIL) algorithm is proposed to
jointly explore small-scale expert labeled videos and large-scale
unlabeled videos to train the event models to detect video event
boundaries. The expert labeled videos are obtained from the analy-
sis and alignment of well-structured video related text (e.g. movie
scripts, web-casting text, close caption). The unlabeled data are
obtained by querying related events from the video search engine
(e.g. YouTube) in order to give more distributive information for
event modeling. A critical issue of GSSMIL in constructing a
graph is the weight assignment, where the weight of an edge speci-
fies the similarity between two data points. To tackle this problem,
we propose a novel Multiple Instance Learning Induced Similar-
ity (MILIS) measure by learning instance sensitive classifiers. We
perform the thorough experiments in three popular video domains:
movies, sports and news. The results compared with the state-of-
the-arts are promising and demonstrate our proposed approach is
performance-effective.

Categories and Subject Descriptors
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1. INTRODUCTION
With the explosive growth of multimedia content on broadcast

and Internet, it is urgently required to make the unstructured mul-
timedia data accessible and searchable with great ease and flexibil-
ity. Event detection is particularly crucial to understanding video
semantic concepts for video summarization, indexing and retrieval
purposes. Therefore, extensive research efforts have been devoted
to event detection for video analysis [23, 26, 33].

Most of the existing event detection approaches rely on video
features and domain knowledge, and employ labeled samples to
train event models. The semantic gap between low-level features
and high-level events of different kinds of videos, the ambiguous
video cues, background clutter and variant changes of camera mo-
tion, etc., further complicate the video analysis and impede the
implementation of event detection systems. Moreover, due to the
diverse domain knowledge in different video genres and insuffi-
cient training data, it is difficult to build a generic framework to
unify event detection in different video domains (e.g. sports, news,
movies, surveillance) with a high accuracy.

To solve these issues, most of techniques for event detection cur-
rently rely on video content and supervised learning in the form
of labeled video clips for particular classes of events. It is neces-
sary to label a large amount of samples in the training process to
achieve good detection performance. In order to reduce the human
labor-intension, one can exploit the expert supervisory information
in text source [3, 15, 23], such as movie scripts, web-casting text
and closed captions, which can provide useful information to lo-
cate possible events in video sequences. However, it is very cost-
expensive and time-consuming to collect large-scale training data
by text analysis, and there are still many videos without the corre-
sponding text information for use. The Internet, nevertheless, is a
rich information source with many event videos taken under vari-
ous conditions and roughly annotated. For example, the surround-
ing text is an important clue used by search engines. Our intuition
is that it is convenient to obtain a large-scale collection of videos
as unlabeled data to improve the performance of event detection.
By doing this, we propose a semi-supervised learning framework
to exploit the expert labeled and unlabeled video data together.

However, the labeled data by text analysis only have the weakly
associated labels, which means we know the video’s label, but there
may be no precise information about the localization of event in
video. For the unlabeled data by Internet searching, we also do not
know the precise localization of event. To find the precise local-
ization of event, we temporally cut a video into multiple segments
and find the segments corresponding to the event. Thus event lo-
calization can be considered as a typical multiple instance learning
problem, where each segment is an instance and all segments of a
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video clip compose a bag. By this formulation, event boundaries
can be located with the selection of more better segments.

In this paper, we propose a generic framework to automatically
detect events from three realistic and challenging video datasets:
sports, movie and news. We try to aggregate two sources of video
data from text analysis and web video search together under a semi-
supervised learning framework. To gain the localization of event
in video data, multiple instance learning is adopted. Therefore,
we formulate event detection into a Graph-based Semi-Supervised
Multiple Instance Learning problem. Compared with the existing
approaches, the contributions of our work can be summarized as
follows.

• We present a generic framework for event detection in variant
video genres. By combination of multi-modality information
in video data, the generic event models are constructed based
on video content and suitable for various video event analy-
sis.

• To obtain the effective event models in variant video genres,
we design a Graph-based Semi-Supervised Multiple In-
stance Learning (GSSMIL) method to integrate expert la-
beled data obtained by text analysis and unlabeled data col-
lected from Internet, which improves the detection perfor-
mance and solves the insufficient training data problem by
resorting to Internet data source.

• To construct the discriminative graph for event model train-
ing, we introduce a Multiple Instance Learning Induced
Similarity (MILIS) measure. The learned similarity consid-
ers the class structure which is ignored by the existing simi-
larity measures [5, 7].

The rest of the paper is organized as follows. Section 2 reviews
the related work. The framework of the proposed approach is de-
scribed in Section 3. The technical details of video collection and
graph-based label propagation are presented in Section 4 and 5,
respectively. Experimental results are reported in Section 6. We
conclude the paper with future work in Section 7.

2. RELATED WORK
The most related work to our method is event detection, semi-

supervised learning and multiple instance learning, we review the
state-of-the-arts of these three topics, respectively.

2.1 Event Detection
Most of existing work in event detection focuses on one type

of video, such as movie, sports or news. For event detection in
movies, much work [23, 8, 12] incorporates visual information,
closed-captioned text, and movie scripts to automatically anno-
tate videos in movies for classification, retrieval and annotation
of videos. For event detection in sports video, most of the previ-
ous work is based on audio/visual/textual features directly extracted
from video content [27, 13, 35, 31]. These approaches heavily rely
on audio/visual/textual features directly extracted from the video
content itself. Some work uses text information [33, 26] such as
close caption and web text for event analysis. Similar to the event
detection in sports video, there is a lot of work for event analysis in
news video [22, 19, 16]. By exploiting the available audio, visual
and closed-caption cues, the semantically meaningful highlights in
a news video are located and event boundaries are extracted.

Analysis and modelling of abnormal event detection for video
surveillance has also been studied [36, 4, 24]. These methods can

be broadly categorized according to the type of scene represen-
tation. One very popular category is based on trajectory model-
ing [36, 4], and the other is based on motion and appearance repre-
sentations [24]. However, these approaches are unsuitable for mul-
tiple events detection in complex videos. Most of existing work
uses domain knowledge [23, 33], which is difficult to be used for
other video domains. For example, the methods used for event de-
tection in movie cannot be applied to other domains such as sports
videos that do not provide associated scripts; Event detection ap-
proaches in sports video using text analysis [33] cannot be applied
to many videos without text information.

Different from the precious work, we propose a generic frame-
work for event detection in different video domains. The proposed
method uses the videos with text information to learn model and
then propagate labels to those videos with or without text informa-
tion. Our learned model is based on video content. Therefore, it
can be used for more generic video event analysis.

2.2 Graph-based Semi-supervised Learning
In the past few years, the graph-based semi-supervised learning

approach has attracted a lot of attention due to its elegant math-
ematical formulation and effectiveness in combining labeled and
unlabeled data through label propagation [21, 28]. The weight of
the edge is the core component of a graph, which is crucial to the
performance of the semi-supervised learning. The popular meth-
ods for the weight assignment include K-Nearest Neighbor (KNN),
Gaussian Kernel Similarity (GKS) [5] and Sparsity Induced Simi-
larity measure (SIS) [7] based on sparse decomposition in L1 norm
sense. The main drawback with these approaches is that their per-
formance is sensitive to the parameter variation and they do not
take the label information into consideration. Different from the
previous methods, we propose a new approach to measure the sim-
ilarities based on class structure information.

2.3 Multiple Instance Learning
There is little work [18] to detect events with the multiple in-

stance representations [20, 30], which is most suitable for event
detection in the videos. For multiple instance representations, each
segment of a video clip is an instance and all segments of a video
clip is a bag. Labels (or events) are attached to the bags while the
labels of instances are hidden. The bag label is related to the hidden
labels of the instances as follows: the bag is labeled as positive if
any instance in it is positive, otherwise it is labeled as negative. For
our task, it is effective to distinguish a positive event instance (i.e.,
the particular event) from a negative instance (i.e, the background
frames) with the help of multiple instance representations.

3. FRAMEWORK OF OUR APPROACH
The framework of our proposed approach is illustrated in Fig.1.

It contains three primary parts: video collection, GSSMIL and
event detection. For video collection, it includes expert labeled
data collection, event-relevant data collection and de-noising. For
expert labeled data collection, text information of different kinds
of video is used to structure the video segment and detect the start
and end boundaries of the event to get a video event clip. Based
on overlapped segmentation and de-noising of these video clips,
a small-scale expert labeled database is collected. By querying
key words from the web, we obtain some raw videos. After seg-
mentation and de-noising, a large-scale event-relevant database is
constructed. In the processing of de-noising, a Bayesian rule to
efficiently remove some noise is adopted. For the GSSMIL mod-
ule, we try to combine the expert labeled data and unlabeled data
(from event-relevant data) for event detection. To effectively obtain
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Figure 1: The proposed framework. For better viewing, please see the original color pdf file.

the similarity measure for the graph construction, we present an
MILIS measure by considering the class structure. Finally, based
on the learned event model, event recognition and localization are
realized. The proposed approach is evaluated on highly challeng-
ing data from different video domains: movie, sports and news,
and the experimental results are encouraging. The technical detail
of each module in the framework will be described in the following
sections.

4. VIDEO COLLECTION
In this section, we introduce how to collect annotated video sam-

ples and construct three different video datasets. To avoid manually
labeling a large amount of video data, we design a smart strategy
to automatically collect videos from professional broadcast service
providers and Internet. The small part of labeled videos are ob-
tained by the analysis and alignment of well-structured video re-
lated text (e.g. movie scripts, web-casting text, close caption),
while the large part of event-relevant videos are collected from the
Internet by querying related events from the video search engine
(e.g. YouTube) and filtering noise.

4.1 Expert Labeled Data by Text Analysis
Here, we introduce an automatic procedure, as shown in Fig. 1(a.1),

for collecting videos from multiple video types (sports, movie and
news) supported by professional broadcast service providers. For
different data sources, there are different available text information.
For movie videos, we follow [14, 23, 12] using supervised text clas-
sification to detect events to automatically collect training samples.
The OpenNLP toolbox [17] for natural language processing and
part of speech (POS) tagging to identify instances of nouns, verbs
and particles are applied to avoid manual text annotation. In addi-
tion, we also use named entity recognition (NER) to identify peo-
ple’s names. Based on results of POS and NER, we search for pat-
terns corresponding to particular classes of events. Scripts describe
events and their order in video but usually do not provide time in-

formation. We find temporal localization of dialogues in scripts by
matching script text with the corresponding subtitles using dynamic
programming. Then we estimate temporal localizations of events
by transferring time information from subtitles to scripts. Using
this procedure, a set of short video clips (segmented by subtitle
timestamps) with corresponding script parts, i.e., textual descrip-
tions, are obtained. For sports videos, we use web-casting text,
which is usually available online and provided freely by almost all
broadcasters [33, 9]. Keywords by which events are labeled are
first predefined, then the time stamps where events happen are ex-
tracted from well defined syntax structure syntax web-casting texts
by using the keywords as input query key to a commercial software,
dtSearch [32]. This software is a sophisticated text search engine
that has the ability to look-up word features dealing with the ef-
fect of fuzzy, phonic, wildcard, stemming and thesaurus search op-
tions. Similar to sports videos, the methods [22, 16] are adopted
to find the temporal localizations of events with the closed-caption
for news videos.

4.2 Event-Relevant Data from Internet
By using text information, we can obtain expert labeled data,

however, it is still very difficult to handle text analysis and time-
alignment to collect enough labeled video data. Moreover, there
are many videos without their corresponding text information. The
Internet is a rich source of information, with many event videos
taken under various conditions, which are roughly annotated. It is
convenient to use such a collection of videos as event-relevant data
to improve the performance of event detection. By doing this, our
work tries to fuse two lines of research "Internet vision" and "event
detection" together and and improve event detection performance.

We query the event labels on a web video search engine like
YouTube or Google. Based on the assumption that the set of re-
trieved videos contains relevant videos of the queried event, we can
construct a large-scale video dataset, which includes videos taken
from multiple viewpoints in a range of environments. The chal-
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lenge is how to use these videos, because content in Internet is very
diverse, which leads to the retrieved videos with much noise. For
example, for a "Basketball Shot" query, a search engine is likely to
retrieve some introduction videos of basketball shot. Our method
must perform well in the presence of such noise. In this work,
we adopt multiple keywords search ("Basketball Shot NBA Kobe
Bryant") and propose an efficient method to remove some noise
from the dataset in Section 4.3. Compared with data obtained by
text analysis, we call this collection as event-relevant dataset. In
our semi-supervised learning algorithm, this dataset is used as un-
labeled data.

4.3 Segmentation and De-noising by Bayesian
Rule

By text analysis and Internet, we can get a small-scale expert la-
beled data and a large-scale event-relevant video data. However, the
labeled data only have the weakly associated labels, which means
we know the video’s label, but there is no precise information about
the localization of event in video. For the event-relevant data, we
also do not know the precise localization of event. To solve this
problem, we perform temporal segmentation of video clips and get
segments composed of contiguous frames. Our target is to jointly
segment video clips containing a particular event, that is, we aim
at separating what is shared within the video clips (i.e., the partic-
ular event) from what is different among these (i.e, the background
frames). Given a video clip vi containing the event of interest but
at unknown position within the clip, the clip vi is represented by
ni temporally overlapping segments centered at frames 1, . . . , ni

represented by histograms hi[1], . . . , hi[ni]. Each histogram cap-
tures the l1-normalized frequency counts of quantized space-time
interest points and audio features, as described in section 6.2.

Let v+i denote a positive video clip and v−i denote a negative
video clip. v+ij is the jth segment of a positive video clip v+i and v−ij
denotes the jth segment of a negative video clip v−i . Let {v+1 , v+2 ,
. . . , v+m, v−1 , v−2 , . . . v−n } denote the set of m positive and n nega-
tive training video clips obtained by text analysis. l(vi) ∈ {+1,−1}
is the bag label of vi and l(vij) ∈ {+1,−1} is the instance label
of vij . For the negative video clips, all their segments are nega-
tive. However, for the positive video clips, their all segments must
contain at least one true positive segment, and they may also con-
tain many negative segments due to much noise, and imprecise lo-
calizations. The goal of de-noising is to identify the true positive
segments in the positive video clips and remove some negative seg-
ments.

We assume that given a true positive segment s, the probability
that a segment vij is positive is calculated as follows:

Pr(l(vij) = +1|s) = exp(−∥s− vij∥2

δ2s
) (1)

where ∥•∥ represents L2-norm, and δs is a parameter learned from
the training data.

Given a true positive segment s, the probability that a video clip
vi is a positive video clip is defined as follows:

Pr(l(vi) = +1|s) = max
vij∈vi

Pr(l(vij) = +1|s)

= max
vij∈vi

exp(−∥s− vij∥2

δ2s
) = exp(−d2(s, vi)

δ2s
),

(2)

where d(s, vi) = min
vij∈vi

∥s− vij∥. In other words, the distance

d(s, vi) between a segment s and all segments of a video clip vi is
simply equal to the distance between s and the nearest segment of
vi. Then Pr(l(vi) = +1|s)−Pr(l(vi) = −1|s) = 2 exp(− d2(s,vi)

δ2s
)−

1. If Pr(l(vi) = +1|s) > Pr(l(vi) = −1|s), we get d(s, vi) 6
δs
√
ln 2. For a negative segment (i.e., false positive segment), how-

ever, its distances to the positive and negative video clips do not
exhibit the same distribution as those from s. Since some positive
video clips may also contain negative segments just like the nega-
tive video clips, the distances from the negative segment to the pos-
itive video clips may be as random as those to the negative video
clips. This distributional difference provides an informative hint
for identifying the true positive segments. Therefore, given a true
positive segment s , there exists a threshold θs which allows the de-
cision function defined in Eq.(3) to label the video clips according
to the Bayes decision rule.

hs
θs(vi) =

{
+1 if d(s, vi) 6 θs

−1 otherwise,
(3)

where θs = δs
√
ln 2 determined by training data as follows:

P (s) = max
θs

Ps(θs), (4)

where Ps(θs) is an empirical precision and defined as follows:

Ps(θs) =
1

m+ n

m+n∑
i=1

1 + hs
θs(vi)l(vi)

2
. (5)

In this way, for each segment from the labeled dataset, we can
obtain the Ps. Based on this value, we can remove some segments
of each video clip. Note that the exact number of true positive
segments for one specific positive video clip is unknown. To handle
this problem, we propose that for a video clip: if P (s) > th1, s
is selected, where th1 is a threshold and is manually set to be 0.5
in our experiments. Based on our experiments, this method is able
to well solve our problem. In this way, we can remove irrelevant
segments and video clips obtained by text analysis and construct an
expert labeled dataset.

For the data obtained by web video search, we can also de-noise
them by using the expert labeled data. Because data obtained from
web have more noise than data obtained by text analysis, we set
th1 as 0.8 to obtain much cleaner data. Moreover, we adopt an-
other strategy to confirm the reliability of the selected data from
the web by the classifier introduced in Section 5.3. We can get
segments for each video clip. Then, each segment s is classified
using all classifiers trained with labeled data and has mean score
Scs. If the score Scs > th2, this segment is selected and the video
clip is viewed as event-relevant data. If scores of all segments of
a video clip are below th2, the video clip is not selected. In our
experiments, the th2 is manually set to be 0.7. After de-noising by
the two strategies, we collect a large-scale of more cleaner event-
relevant data from web, and this data will be used as unlabeled data
to give distributive information.

5. GRAPH-BASED SEMI-SUPERVISED MUL-
TIPLE INSTANCE LEARNING (GSSMIL)

In this section, we introduce the GSSMIL algorithm which com-
bines labeled data (as introduced in Sec. 4.1) and unlabeled data (as
described in Sec. 4.2) and adopts multiple instance learning to de-
tect the positive event instances from the event bags, where we con-
sider event with precise localization in a video clip as positive event
instance and event with imprecise localization as negative event in-
stance, and the corresponding video clip is viewed as an event bag.
Next, we introduce the problem description in Section 5.1, and how
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to construct the graph and learn the similarity measure for the graph
are presented in Section 5.2 and Section 5.3, respectively. Finally,
we introduce how to solve the objective function in Section 5.4.

5.1 Problem Description
After video collection in Section 4, each segment of a video clip

is viewed as an instance (event instance), and all segments of the
video clip comprise of a bag (event bag). We use the following no-
tation throughout this paper. Let L = {(x1, y1), . . . , (x|L|, y|L|)}
be the labeled data and let U = {x|L|+1, . . . , x|L|+|U|} be the un-
labeled data. Each bag xb is a set of instances {xb,1, xb,2, . . . , xb,nb},
with its label denoted by yb ∈ {0,+1}, where +1 is used for pos-
itive bag and 0 for negative bag. b is the index of bag, and nb is
the number of all instances of bag xb. Each xb,j ∈ Rd is a d-
dimensional feature vector representing an instance. Without loss
of generality, we assume that the first L1 bags are positive and the
following L2 bags are negative (|L| = L1 + L2). To describe the
relationship between bags and instances, we use xb,j ∈ xb to repre-
sent that xb,j is an instance from bag xb and its label is represented
as yb,j .

Our task is to learn a soft label function f̂ : Rd → [0,+1] that
learns the label for each instance, we denote the predicted soft label
of instance j by fj = f̂ (xbj). Then, the labels of the bags can be
calculated. We define a bag xb’s label f∗

b to be determined by the
largest value of its corresponding instances’ soft labels:

f∗
b = max

j,xb,j∈xb

fj . (6)

5.2 Graph construction
In this section, we formulate the graph-based semi-supervised

multiple instance learning in an instance-level way and define the
cost criterion based on instance labels. Consider a graph G =
(V,E) with nodes corresponding to N feature vectors. There is
an edge for every pair of the nodes. We assume that there is an
N × N symmetric weight matrix W = [wij ] on the edges of the
graph, where N is the number of all instances. The weight for each
edge indicates the similarity between the two nodes that are con-
nected by the edge. Intuitively, similar unlabeled samples should
have similar labels. Thus, the label propagation can be formulated
as minimizing the quadratic energy function [37]:

E1(f) =
1

2

∑
i,j

wij(
fi√
di

− fj√
dj

)
2

, (7)

where di is the sum of the ith row of W and denote D = diag(d1,
. . . , dN ). fi is the label of instance i, and fi should be nonnegative.
Assume the instance i is the ith instance of event bag b, fi can be
denoted as fi =

[
f1
bi, · · · fc

bi, · · · fC
bi

]
. We can obtain some prior

knowledge from the labeled bag to its instance label, that is, fc
bi

must be 0 if the bag xb does not contain label c. In this way, bag
label information is applied.

The Eq.(7) just controls the complexity in the intrinsic geom-
etry of the data distribution and the smoothness of label over the
instance-level graph. For our problem, we need to consider the
constraints based on labeled bags, For a negative bag, it is straight-
forward to see that all instances in the bag are negative, i.e., fj = 0,
for all j : xb,j ∈ xb. Thus we have the penalty term:

E2(f) =

|L|∑
b=1+L1

∑
j:xb,j∈xb

fj . (8)

Meanwhile, for a positive bag, the case is more complex because

a positive bag may contain negative instances as well. Actually,
only one positive instance is necessary to determine a positive bag.
Thus, we define the penalty term for a positive bag to be only re-
lated to the instance with the largest soft label:

E3(f) =

L1∑
b=1

(
1− max

j:xb,j∈xb

fj

)
. (9)

By combing the three items, we have the following cost criterion:

E(f) =
1

2

∑
i,j

wij(
fi√
di

−
fj√
dj

)
2

+ α1

|L|∑
b=1+L1

∑
j:xb,j∈xb

fj

+ α2

L1∑
b=1

(
1− max

j:xb,j∈xb

fj

)
,

(10)

where α1 and α2 are two parameters used to balance the weight.
In our experiments, we set α1 = α2 = 10, and obtained a good
performance.

Once we have found the optimal labels of the instances by min-
imizing the cost criterion E(f), the bag-level label of any bag xb

can be calculated by taking the maximum value of its instances’
labels using Eq.(6). The only two problems left are how to ob-
tain efficient similarity measure W = [wij ] and how to solve the
optimization task in Eq.(10). For the first problem, we propose
a multiple instance learning based method to learn the similarity
measure W = [wij ] and introduce this in Section 5.3. Due to the
existence of the max(•) function in the loss function Eq.(10) for
positive bags, E(f) is generally non-convex, and cannot be directly
optimized. In section 5.4, we will derive a sub-optimum solution
to this problem.

5.3 Multiple Instance Learning Induced Sim-
ilarity (MILIS) Measure

One main drawback of most existing similarity measures, such as
the Euclidean distance and Gaussian Kernel Similarity measure, is
that the similarity measurement completely ignores the class struc-
ture. For example, in Fig. 2, given an event instance s belonging to
category c, it is possible that some event instances from the same
class to s are less similar than the ones from other classes when a
predefined and heuristic distance metric is adopted. To tackle this
problem, we attempt a discriminative solution to get truly similar-
ity by learning some classifiers. Here, we formulate the similar-
ity measure learning as a problem of Multiple Instance Learning
(MIL) [10] and mi-SVM [2] is employed to solve the problem.

Next, we will introduce how to train a classifier for an event in-
stance s from the category c. This training process can be repeated
for all classifiers of different kinds of event instances. For the event
instance s denoted as feature vector Is, its classifier is trained in the
hyper-sphere centered at Is with radius of rs in the feature space
(as showed in Fig. 2). The training samples are the samples in class
c denoted as positive bags and those in other categories denoted as
negative ones. This strategy filters out the instances that are very
different from s for each bag and enables the classifier to be learned
only in the local feature space. Therefore, it is very efficient to re-
duce the computational burden and learn a discriminative classifier.

Define the distance from event instance Is to event bag xb as
db,j,s = min

j
∥Is − xb,j∥, where ∥•∥ represents L2-norm. In prac-

tice, it is found quite robust and in majority cases the positive in-

stance in the positive bag xb is
{
xb,j∗ |j∗ = argmin

j
∥xb,j − Is∥

}
.

Based on this observation, rsis set as follows: rs = mean
b∈pos

(db,j,s)+
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Figure 2: Learning similar event instances to event instance s.
(a) event instance s, which is one instance of kissing event bag.
(b) Learning a classifier to describe the similarities of other
event instances to s. “• ”represents similar event instances from
the same kind of event with s, and “◦ ”represents unrelated
event instances.

β× std
b∈pos

(db,j,s), where β is a trade-off between efficiency and ac-

curacy. The larger β, the less probability that one positive instance
will be filtered out before training, and the more event bags will be
involved during solving the mi-SVM. In our experiments, the β is
manually set to be 2.5 by experience.

It is observed in experiments that there may be too many event
instances falling into the hyper-sphere. To be more efficient, within
the hyper-sphere, at most kp nearest event instances to Is are se-
lected for each positive event bag, and kn for each negative event
bag. In our experiments, kp = 5 and kn = 2 are used by experi-
ence. Experiments show that this strategy can significantly reduce
the computational burden.

Denote yb,j to be the instance label of event instance xb,j and
yb the label of event bag xb, where xb,j is the feature of the event
instance j in the event bag xb. mi-SVM is formulated as follows:

min
{yb,j}

min
w∗,b0,ξ

1

2
∥w∗∥2 + C

∑
xb,j

ξxb,j

s.t.
∑
j

yb,j + 1

2
> 1, ∀xb s.t. yb = 1

yb,j = −1, ∀xb s.t. yb = −1

∀j : yb,j(⟨w∗, xb,j⟩+ b0) > 1− ξxb,j , ξxb,j > 0,

yb,j ∈ {−1, 1}.

(11)

Denote mi − SVMs as the trained classifier corresponding to
event instance s. Based on this classifier, all event instances can be
projected to real value with a function. For simplicity, the project
function is defined as follows:

gs(xb,j) =

{
mi− SVMs(xb,j) ∃xb,j , s.t. ∥xb,j − Is∥ 6 rs
0 otherwise

,

(12)

where mi− SVMs(xb,j) ∈ R is the output of the classifier mi−
SVMs with the input xb,j . Based on this score, the similarity be-
tween instance s and xb,j can be simply defined as follows:

wsj =

{
gs(xb,j) if gs(xb,j) > 0

0 otherwise
(13)

Therefore, for each event instance s in labeled data set, we can get
its corresponding classifier and the similarities with other event in-
stances. Though there may be some instances in positive event bags
belonging to negative instances after de-noising. It is still efficient
to learn the similarity measure based on our experimental results.

Based on the L labeled data and U unlabeled data, the similarity
measure W can be splitted into labeled and unlabeled sub-matrices:

W =

(
WLL WLU

WUL WUU

)
, where WLU = WUL. WLL and WLU

can be obtained by Eq.(13) using learned classifiers. For the unla-
beled data, we adopt Euclidean distance to measure the similarity
WUU between data points.

5.4 Iterative Solution Using CCCP
Because E3(f) defined by Eq. (9) is non-convex, E(f) can be

viewed as that a convex function adds a concave function. There-
fore, we adopt the constrained concave convex procedure (CCCP)
to find the sub-optimum solution. CCCP is proposed in [29] as an
extension of [34], and is theoretically guaranteed to converge. It
works in an iterative way: at each iteration, the first order Taylor
expansion is used to approximate the non-convex functions, and
the problem is thus approximated by a convex optimization prob-
lem. The sub-optimum solution is given by iteratively optimizing
the convex subproblem until convergence.

Note that max (•) is not differentiable at all points. To use
CCCP, we have to replace the gradients by the subgradients. Let
l = [fc

b1, · · · , fc
bj , · · · , fc

bnb
]T , where fc

bj denotes the probability
that the jth instance in the bth bag belongs to the cth class and
c ∈ {1 · · ·C}, C is the total number of classes and nb is the num-
ber of instances in the bth bag. We pick the subgradient with ρ,
which is an nb × 1 vector and its jth element is given by

ρj =

{
1
τ

if lj
(t) = max (lb

(t))
0 otherwise

, (14)

where max(l
(t)
b ) represents the largest label value of bag b and τ is

the number of instances with the label value max(l
(t)
b ). At the (t+

1)th iteration, we estimate the current l based on l(t) and the cor-
responding ρj . As ρT l(t) =

∑
j ρj l

(t)
j = max l(t)

∑
ρj ̸=0 ρj =

max l(t), for the function max(l), its 1-st order Taylor expansion
is approximated as (max l)l(t) ≈ ρT l.

For the t-th iteration of CCCP, the objective function in Eq.(10)
is rewritten in matrix form as follows:

min
F

Tr(FTLF ) + α1

∑
b

∑
c

(1− Ybc)hcF
T qb+

α2

∑
b

∑
c

Ybc(1− hcβUbFhT
c )

s.t. F > 0, F e1 = e2

, (15)

where L is a Laplace matrix L = D −W , with D being the
degree matrix and Tr (·) represents matrix trace operator, F =
[f11, · · · , f1n1 , · · · , fBn1 , · · · , fBnB ]T and F ∈ RN×C . B is

the number of all bags and N =
B∑

b=1

nb is the number of all in-
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DriveCar KissRun
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S_FoulB_Shot S_Shoot

B_FreeThrowB_Foul B_Run

(b) Sports Video (c) News Video

Figure 3: Realistic samples for three different video types: movie video, sports video and news video and their corresponding events.
All samples have been automatically retrieved by text analysis.

stances. Each row of F corresponds to the posterior probability dis-
tribution of an instance, hence should be: (1) positive (2) l1 normal-
ized. Therefore, the constraint of Eq.(15) is necessary. Y = [Ybc],
Ybc = 1 if bag b belongs to the cth class, otherwise Ybc = 0.
hc is a 1 × C indicator vector, the cth element of which is one
and others are zero, and qb = [ 0, · · · , 0︸ ︷︷ ︸

1,··· ,b−1

, 1, · · · , 1︸ ︷︷ ︸
b

, 0, · · · , 0︸ ︷︷ ︸
b+1,··· ,B

]T is an

N × 1 vector whose all elements, except for those elements cor-
responding to the bth bag, are zeros. β is a C × N matrix, β =
[β1, · · · , βb, · · · , βB ], each βb = [βT

b1, · · · , βT
bc, · · · , βT

bC ]
T is a

C × nb matrix corresponding to bag b and βbc = ηT . e1 = 1C×1

and e2 = 1N×1 are both all-one vectors, α1 and α2 are two param-
eters used to balance the weight. Ub = diag (u1, · · · , ub, · · ·uB)
is an N × N diagonal block matrix, where uk = 0nk×nk for
k = 1, · · · , b − 1, b + 1, · · ·B and ub = Inb×nb , I represents
an identity matrix.

The subproblem in Eq. (15) is a standard quadratic program-
ming (QP) [6] problem and can be solved by any state-of-the-art QP
solvers. In our work, it is solved efficiently with global optimum
using existing convex optimization packages, such as Mosek [1].
Running CCCP iteratively until convergence, we can obtain the
sub-optimum solution for the instance labels. The label for each
bag is then calculated as the largest label of all its instances using
Eq. (6).

Out-of-sample Extension: For a new testing instance t, its label
is given as:

ft =
√
dt

∑
j

w(j, t)
fj√
dj

/∑
j

w(j, t), (16)

where w(j, t) represents the similarity between instance j and t.
dj and dt have the same meaning as in Eq.(7). dt is an unknown
constant for a particular testing instance t, and we can ignore it
when making decision. fj is the obtained instance label by Eq.(10).

When given a testing bag with multiple instances, we make use
of Eq.(16) to obtain instance label and then apply Eq.(6) to clas-
sify the bag. Because we can obtain a label for each instance of a
bag, the localization of event can be also obtained. Here, Gaussian
kernel based temporal filtering is conducted to smooth the event
instances from a video stream taking account of the temporal con-
sistency of events.

6. EXPERIMENTAL RESULTS
In this section, we present extensive experimental results on movie,

sports and news video datasets in order to validate the proposed ap-
proach.

6.1 Dataset Introduction
Because there is little work to handle different kinds of video,

no publicly generic dataset is avaliable. By using the method in-
troduced in Section 4, we obtain three different video datasets. For
movie videos, we select 6 different kinds of representative events:
AnswerPhone, DriveCar, Kissing, FightPerson, Run and Applaud-
ing. 981 unlabeled data are obtained from the web and 311 ex-
pert labeled data are obtained by text-video alignment. The dataset
is from about 60-hour videos. For sports videos, we select 6 dif-
ferent kinds of events: Basketball Foul (B_Foul), Basketball Free
Throw (B_FreeThrow), Basketball Run (B_Run), Basketball Shot
(B_Shot), Soccer Foul (S_Foul) and Soccer Shoot (S_Shoot). 913
unlabeled data are obtained from the web and 316 expert labeled
data are obtained by text-video alignment. There are about 25-hour
videos for this dataset. For news videos, we select 4 kinds of events:
Eating, PlayingInstrument, Demonstration and Dancing. 863 unla-
beled data are obtained from the web and 311 expert labeled data
are collected by text-video alignment from about 20-hour videos.
The number of test data is 253, 211 and 203 for the three datasets,
respectively. Note that the three different kinds of videos are very
challenging for video analysis due to its loose and dynamic struc-
ture as shown in Fig. 3.

6.2 Video Feature Extraction
Visual features and audio features are complimentary and im-

portant for video event detection. For example, Basketball Free
Throw and Basketball Shot are most similar just using visual fea-
tures, however, audio features, such as whistle of referee, are dis-
criminative. To the contrary, visual features are very important to
distinguish dancing and playing a guitar, because they both have
similar background music and different motion features. In the fol-
lowing subsections, we will introduce two features, respectively.

6.2.1 Spatio-temporal Features
Sparse space-time features have recently shown good performance

for video analysis [11]. They provide a compact video represen-
tation and tolerance to background clutter, occlusions and scale
changes. We detect interest points using a space-time extension of
the Harris operator. To characterize motion and appearance of local
features, we compute histogram descriptors of space-time volumes
in the neighborhood of detected points. For a 3D video patch in the
neighborhood of each detected space-time interest point (STIP), it
is partitioned into a grid with 3×3×2 spatio-temporal blocks; 4-bin
HOG descriptor and 5-bin HOF descriptor are then computed for
all blocks and are concatenated into a 72-element and 90-element
descriptors, respectively. The details can be found in [23]. For each
volume we compute coarse histograms of oriented gradient (HoG)
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(a) Movie Video Dataset (b) Sport Video Dataset (c) News Video Dataset

Figure 4: The accuracy of different similarity measures on the three datasets, respectively.

and optical flow (HoF). Normalized histograms are concatenated
into HoG and HoF descriptor vectors and are similar in spirit to the
well known SIFT descriptor. HoF is based on local histograms of
optical flow. It describes the motion in a local region. HoG is a
3D histogram of 2D (spatial) gradient orientations. It describes the
static appearance over space and time. Then the two descriptors are
concatenated into one 162-dimensional vector, which is reduced by
PCA to 60.

6.2.2 Audio Features
The mel-frequency cepstral coefficients (MFCCs) [25] are proved

more efficient [38] for audio recognition. Therefore, we adopt the
MFCCs to represent audio. The MFCCs are based on a short-term
spectrum, where Fourier basis audio signals are decomposed into
a superposition of a finite number of sinusoids. The power spec-
trum bins are grouped and smoothed according to the perceptually
motivated Mel-frequency scaling. Then the spectrum is segmented
by means of a filter bank that typically consists of overlapping tri-
angular filters. Finally, a discrete cosine transform applied to the
logarithm of the filter bank outputs results in vectors of decorre-
lated MFCC features. In our experiments, we use 13-dimensional
MFCC features.

6.2.3 Bag of Features
For the two different modality features, we build bag-of-features

(BoF) respectively. This requires the construction of visual vocab-
ulary. In our experiments we cluster a subset of 400k features sam-
pled from the training videos with the k-means algorithm for visual
features. The number of clusters is set to k = 400 for visual fea-
tures and k = 100 for audio features with a subset of 100k features
sampled from the training data, which have shown empirically to
give good results. The BoF representation then assigns each fea-
ture to the closest (we use Euclidean distance) vocabulary word and
computes the histogram of visual word occurrences over a space-
time volume corresponding to the segments obtained by over seg-
mentation of the entire video clip. Then, for each segment, the two
histograms are concatenated into one 500 dimensional vector and
then normalized.

Table 1: Comparison of the average accuracy of different simi-
larity measures on the three datasets, respectively.

Method

Dataset
KNN GKS SIS MILIS

Movie 39.76% 42.82% 44.23% 51.27%

News 47.48% 50.10% 55.79% 63.87%

Sports 43.35% 45.58% 49.41% 57.71%

6.3 Recognition Evaluation of Different Simi-
larity Measurements

This experiment compares the proposed MILIS measure with
three similarity measures, GKS, sparsity induced similarity mea-
sure(SIS) [7], and KNN on the three datasets. We compare our
approach with the three methods, because they are very popularly
and extensively used to measure similarity. For GKS, we use dij =

exp(−∥pi−pj∥2

δ2
) to measure similarity and the variance δ is set to

be 1.5, 1.5, 1.2 which achieved the best performance for the three
datasets, respectively. For KNN, we use inner product similarity to
find the K nearest neighbors while the number of nearest neighbors
K is tuned by cross-validation. We found that 30, 30,20 work bet-
ter for our experiments on the three datasets, respectively. Then, the
similarity values between a sample and its K nearest neighbors are
their correlation coefficients while those between the sample and
the rest are set to 0. As for SIS, we normalize all feature vectors so
that their L2 norms are 1 before computing the weight matrix.

Fig. 4 shows the propagation accuracies of four different similar-
ity measures: KNN, GKS, SIS, and MILIS. The x-axis is categories
of different events. The y-axis is label propagation accuracy for
individual classes and the mean accuracy for all of the categories
denoted as "ALL". We can see that GKS (labeled as ‘GKS’) works
better than KNN (labeled as ‘KNN’), SIS (labeled as ‘SIS’) works
better than GKS, and MILIS (labeled as ‘MILIS’) works the best.
From Fig. 4, we notice that the mean accuracies for all of concepts
of our method outperform the other methods on the three datasets
respectively. The average precision values of different similarity
measures on the three datasets are shown in Table 1. We can see
that our method has an improvement of at least 7%. Fig. 4 also
shows that there are some classes where our approach does not out-
perform the other approaches, such as AnswerPhone, Soccer Foul
(S_Foul) and Dancing. To explain the reason, we give an example
on news video dataset. We can see two similarity measures (GKS
and KNN) outperform our method (MILIS) for "Dancing" recog-
nition. This is because the four classes are very prone to be clas-
sified as "Dancing" using GKS and KNN with our video features,
which leads to a high performance for "Dancing" recognition with
a high false alarm rate. However, our proposed similarity measure
considers the class structure, which improves the discrimination of
the feature points and reduces the false alarm rate. Based on the
mean accuracies for all of the concepts on the three datasets, we
can confirm that our approach obtains the best performance com-
pared among the existing methods. The result is obvious, because
the existing similarity measures such as KNN, SIS and GKS com-
pletely ignore the class structure. However, our approach considers
the distribution of feature points in the feature space and adopts a
classifier to improve the similarity measure by using discriminative
class information.
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Table 2: Comparison of different learning strategy on the three
datasets.

Method

Dataset
SVM mi-SVM GSSMIL

Movie 44.99% 47.85% 51.27%

News 53.23% 58.51% 63.87%

Sports 51.30% 53.31% 57.71%

6.4 Recognition Evaluation of Different Learn-
ing Strategies

Three experiments with different learning strategies are performed
to validate the effectiveness of our method. First, we do not formu-
late the event detection into a multiple instance learning problem,
instead, we use the entire video as a training sample and train an
SVM classifier. The results are shown in Fig. 6 (labeled as ‘SVM’).
In the second experiment, we do not use the unlabeled data from
Internet, and only employ the expert labeled data, its results are
shown in Fig. 6 (labeled as ‘mi-SVM’). The last experiment is our
‘GSSMIL’ method which formulates the event detection as multi-
ple instance learning problem and combines labeled and unlabeled
data under a semi-supervised framework.

The average precisions of three different learning strategies on
the three datasets are shown in Table 2. From Table 2, we can
see that the mean accuracies for all of concepts of our approach
outperform the other methods on the three datasets, and have been
improved about 4%. Fig. 6 also shows that certain results are worse
for certain types of content, for example, AnswerPhone. This is be-
cause the five classes are very easy to be classified as this type of
event, which leads to a high false alarm rate using ‘SVM’. From
the results of mean accuracies for all of the concepts, we can see
that our GSSMIL performs better than the other methods. The rea-
sons can be summarized as follows: (1) The entire video contains
not only events of our interest, but also some clutter noises, which
harms the classifier training and results in the bad performance.
The increasing performance of GSSMIL clearly illustrates the im-
portance of temporal event localization in the training data. In addi-
tion, it is very suitable to formulate the event analysis as a multiple
instance learning problem. (2) By combining large-scale unlabeled
data, the GSSMIL algorithm is effective to mine useful informa-
tion.

6.5 Event Localization Evaluation in Video Se-
quence

In this section, we apply the GSSMIL algorithm described above
to temporally localize event boundaries on the three video datasets.
The quality of the segmentation is evaluated in terms of localization
accuracy. The GSSMIL algorithm is evaluated on a set of 117, 114
and 105 events for movie, news and sports videos, respectively.
Our testing and training videos do not share the same scenes or
actors. For both the training and test set, the ground truth event
boundaries were obtained manually.

The temporal localization accuracy is measured by the percent-
age of clips with relative temporal overlap to ground truth event
segments greater than 0.3. This relatively loose threshold of 0.3 is

Table 3: Comparison of the performance of localization on
news dataset.

Event Demonstration Dancing Eating PlayingInstrument

# Positive Sample 31 28 23 32

mi-SVM 51.6% 53.6% 60.8% 56.3%

GSSMIL 61.2% 60.7% 65.2% 59.3%

Table 4: Comparison of the average precision of localization on
the three datasets.

Dataset Movie News Sports

# Positive Sample 117 114 105

mi-SVM 43.6% 55.6% 47.6%

GSSMIL 46.2% 61.6% 53.3%

Figure 5: Some examples of temporally localizations of events
by the proposed algorithm on the three datasets. Each row
shows example frames from the entire video clip. Example
frames of automatically localized events within the clips are
shown in red. The four rows represent "Kissing" and "Ap-
plauding" on movie video dataset, "B_Shot" on sports video
dataset, and "Demonstration" on news video dataset, respec-
tively.

used in order to compensate for the fact that temporal boundaries of
events are somewhat ambiguous and not always accurately defined.
Using this performance measure, we conduct the experiments for
videos without text information alignment. For the news video
dataset, the results are shown in Table 3. For video without text
information, the GSSMIL correctly localizes 102 out of 114 clips,
which corresponds to an accuracy of 61.6% (labeled as ‘GSSMIL’).
However, if we use mi-SVM, the precision is only 55.6% (labeled
as ‘miSVM’). The result shows that the localization performance
is improved by using of unlabeled data. The average precision of
event localization is shown in Table 4, which shows our algorithm
can effectively localize event boundaries. Some automatically lo-
calized segments are shown in Fig. 5.

7. CONCLUSIONS
Video event detection is very important for content based video

indexing and retrieval. This paper provides an effective event de-
tection method using the GSSMIL strategy. To tackle the insuffi-
cient labeled data problem and alleviate human labeling effort, text
information is mined and served as labels to assist model training.
Besides the expert-level labels, Internet is also able to provide a
huge amount of event-relevant data (used as unlabeled data). Our
GSSMIL method can exploit both datasets together. To handle the
ambiguity of event boundary in our labeled and unlabeled datasets,
the GSSMIL algorithm incorporates a multiple instance learning
module. Moreover, the GSSMIL algorithm employs an effective
method to describe the sample affinity, which is proved to boost
the event recognition and localization performance significantly. In
the future, we will extend the generic method to more broad cat-
egories and more video domains. Moreover, we will combine the
three datasets together and research the performance of our pro-
posed method to detect all kinds of events.
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(a) Movie Video Dataset (b) Sports Video Dataset (c) News Video Dataset

Figure 6: Comparison of different learning strategies. The result of an entire video as a training sample without no segmentation
shown as ‘SVM’; The result of just using labeled training data without unlabeled data is denoted as ‘mi-SVM’; The result of our
method is labeled as ‘GSSMIL’.
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