
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

Learning Multi-task Correlation Particle Filters
for Visual Tracking

Tianzhu Zhang, Changsheng Xu, and Ming-Hsuan Yang

F

In the supplementary material, we present the details of
optimization, more results, and source code.

1 OPTIMIZATION

In this section, we describe how to solve (1) efficiently by
using the accelerated proximal gradient (APG) method, which
has been widely applied to solve convex optimization problems
with non-smooth terms [1], [2]. Compared to conventional
subgradient based methods that converge at the sublinear
rate, the APG can obtain globally optimal solution at the
quadratic convergence rate and achieves O( 1

t2 ) residual from
the optimal solution after t iterations [2]. At each iteration, the
gradient mapping and aggregation steps are involved to solve
the optimization problems.

min
{zpk}

∑
p,k

1

4
z>pkGpkzpk +
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4
λz>pkzpk − λz>pky + γ‖Z‖2,1, (1)

where γ is a tradeoff parameter between reliable reconstruction
and joint sparsity regularization. Z = [Z1, · · · ,Zp, · · · ,ZP ] ∈
RMN×PK . Here, for the p-th part, the corresponding fil-
ters of the K different features form a matrix Zp =
[zp1, · · · , zpk, · · · , zpK ] ∈ RMN×K . The definition of the `p,q

mixed norm is ‖Z‖p,q =

(∑
i

(∑
j |[Z]ij |p

) q
p

) 1
q

and [Z]ij

denotes the entry at the i-th row and j-th column of Z. To
solve (1),we first denote f (Z) and g (Z) as in [1]:

f (Z) =
∑
p,k

1

4
z>pkGpkzpk +

1

4
λz>pkzpk − λzpk>y,

g (Z) = γ‖Z‖2,1, (2)

where f (Z) is the loss function and g (Z) is the regularization
term. We note that the objective function in (1) is a composite
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function of a differential term f (Z) and a non-differential term
g (Z). We define

Φ
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Z,R(t)

)
= f
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R(t)

)
+
〈
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R(t)

)
,Z−R(t)

〉
+
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2

∥∥Z−R(t)

∥∥2
F

+ g (Z) , (3)

with the regularization term g (Z) and the approximation of
f (Z) by the first order Taylor expansion at point R(t) with
the squared Euclidean distance between Z and R(t) as the
regularization term. Here, 〈A,B〉 = Tr

(
A>B

)
denotes the

matrix inner product, η is a parameter controlling the step
penalty, ∇f

(
R(t)

)
denotes the partial derivative of f (Z) with

respect to Z at point R. The derivative computed by:

∇f (Z) =
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GpkZIpkI

>
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ZIpkI

>
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(4)
where Ipk = [0, . . . ,1, . . . ,0]> ∈ RPK×1 includes PK
elements and the pk-th element is 1 and the others are zero.

The solution of (1) at the t-th iteration (t ≥ 1) can be
computed by the following proximal operator:

Z(t) = arg min
Z

Φ
(
Z;R(t)

)
. (5)

Here, R(1) = Z(0). Given the current estimate R(t), we can
rewrite (5) and obtain Z at the t-th iteration Z(t) by solving (6),

Z(t) = arg min
Z

1

2
‖Z−H‖2F +

γ

η
‖Z‖2,1 (6)

= arg min
Z1,··· ,Zm

m∑
i=1
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+
γ
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2

)
, (7)

where H = R(t)− 1
η∇f

(
R(t)

)
, and Zi as well as Hi denote

the i-th row of the matrix Z, H, respectively. According to [1],
for each row of Zi in the subproblem (7), an efficient closed-
form solution can be computed:

Zi(t) = max(0, 1− γ

η‖Hi‖2
)Hi. (8)

After obtaining the representation matrix Z(t), we update the
aggregation matrix R(t) as a linear combination of Z(t) and
Z(t−1) to store the aggregation of Z in the previous iterations.
As suggested in [1], we update R(t) as in (9), where αt is set
to 2

t+3 for t ≥ 1 and α0 = 1 for t = 0 by

R(t+1) = Z(t) + αt(
1

αt−1
− 1)

(
Z(t) − Z(t−1)

)
. (9)
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Algorithm 1: Proposed APG optimization to solve (1)
Input : Gk, y, k = 1, · · · ,K, λ, γ, and η
Output: Z

1 Initialize t← 1, Z(0) = 0, R(1) = 0, α0 = 1
2 while not converged do
3 Compute H = R(t) − 1

η∇f
(
R(t)

)
4 Update Z(t) via (6)
5 αt = 2

t+3

6 Update R(t+1) via (9)
7 t← t+ 1
8 end

The main steps of our APG approach for computing the
optimization problem (1) is summarized in Algorithm 1. The
proposed algorithm stops when the relative change in the so-
lution or objective function falls below a predefined threshold.
It is time-consuming to compute the partial derivative (4)
because of Gpk = XpkX

>
pk. However, it can be calculated

very efficiently in the Fourier domain by considering the
circulant structure property of Xpk.

In (4), we denote spk = Gpkzpk = XpkX
>
pkzpk. Assume

xpk is the base sample of Xpk, the spk can be updated with
only the base sample as (10).

ŝpk = x̂∗pk � x̂pk � ẑpk. (10)

Here, x∗ is the complex-conjugate of x, x̂ denotes the Discrete
Fourier Transform (DFT) of the generating vector x̂ = F(x),
and � denotes the element-wise product. Finally, the spk can
be obtained via spk = F−1(ŝpk). Here, for a 1D signal x,
the F and F−1 are the 1D DFT and its inverse. When x is
2D, F and F−1 are the 2D DFT and its inverse. As such, the
optimization in the Fourier domain is efficient for 2D image
patches with multiple channels. After optimization, we can
obtain the multi-task correlation filter zpk for the p-th part
with the k-th feature.

2 RESULTS AND SOURCE CODE
The video results and the source code of our conference
paper [3] are available on the web site: http://nlpr-web.ia.ac.
cn/mmc/homepage/tzzhang/lmcpf.html. In the source code, the
variances of affine parameters for particle sampling are set
to (0.01, 0.0001, 0.0001, 0.01, 2, 2), and the particle number
is set to 50. The code can be run under the visual tracking
evaluation protocol [4]. To run the code, please download
the VGG-Net-19 model. The details are introduced in the
readme.txt in the model folder.

To generate the parts, we use the spatial layout as shown in
Figure 1 to sample 3 parts based on the targets height-width
ratio. If the ratio of height and width for a target object is
greater than 1, we use 2/3 of the height from the top and
bottom as well as in the center to obtain the parts. Similarly,
we can represent objects if the ratio of height and width is less
than 1 (i.e., 2/3 of the width from left, right and center). We
note that this simple representation performs well in practice,
and other part-based methods can also be adopted.

Fig. 1. The sampled 3 parts based on the targets ratio.

For more details, please refer to our other papers [3], [5],
[6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17],
[18].

REFERENCES
[1] X. Chen, W. Pan, J. Kwok, and J. Carbonell, “Accelerated gradient

method for multi-task sparse learning problem,” in ICDM, 2009. 1
[2] Y. Nesterov, “Gradient methods for minimizing composite objective

function,” in Center for Operations Research and Econometrics (CORE),
Universit catholique de Louvain,76, 2007. 1

[3] T. Zhang, C. Xu, and M.-H. Yang, “Multi-task correlation particle filter
for robust object tracking,” in Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, 2017, pp. 1–9. 2

[4] Y. Wu, J. Lim, and M.-H. Yang, “Online object tracking: A benchmark,”
in CVPR, 2013. 2

[5] S. Liu, T. Zhang, X. Cao, and C. Xu, “Structural correlation filter for
robust visual tracking,” in Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition, 2016. 2

[6] T. Zhang, B. Ghanem, S. Liu, and N. Ahuja, “Robust visual tracking via
structured multi-task sparse learning,” International Journal of Computer
Vision, vol. 101, no. 2, pp. 367–383, 2013. 2

[7] T. Zhang, S. Liu, N. Ahuja, M.-H. Yang, and B. Ghanem, “Robust Visual
Tracking via Consistent Low-Rank Sparse Learning,” International
Journal of Computer Vision, vol. 111, no. 2, pp. 171–190, 2015. 2

[8] T. Zhang, B. Ghanem, S. Liu, and N. Ahuja, “Robust visual tracking
via multi-task sparse learning,” in Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, 2012. 2

[9] T. Zhang, A. Bibi, and B. Ghanem, “In defense of sparse tracking: Cir-
culant sparse tracker,” in Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition, 2016. 2

[10] T. Zhang, C. Jia, C. Xu, Y. Ma, and N. Ahuja, “Partial occlusion handling
for visual tracking via robust part matching,” in Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition, 2014. 2

[11] T. Zhang, S. Liu, C. Xu, S. Yan, B. Ghanem, N. Ahuja, and M.-H.
Yang, “Structural sparse tracking,” in Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition, 2015. 2

[12] T. Zhang, B. Ghanem, S. Liu, and N. Ahuja, “Low-rank sparse learning
for robust visual tracking,” in Proceedings of European Conference on
Computer Vision, 2012. 2

[13] T. Zhang, B. Ghanem, S. Liu, C. Xu, and N. Ahuja, “Robust Visual
Tracking via Exclusive Context Modeling,” IEEE transactions on cy-
bernetics, vol. 46, no. 1, pp. 51–63, 2016. 2

[14] T. Zhang, C. Xu, and M.-H. Yang, “Robust structural sparse tracking,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. P-
P, no. 99, pp. 1–14, 2018. 2

[15] T. Zhang, S. Liu, C. Xu, B. Liu, and M.-H. Yang, “Correlation particle
filter for visual tracking,” IEEE Transactions on Image Processing,
vol. 27, no. 6, pp. 2676–2687, 2018. 2

[16] J. Gao, T. Zhang, X. Yang, and C. Xu, “Deep relative tracking,” IEEE
Transactions on Image Processing, vol. 26, no. 4, pp. 1845–1858, 2017.
2

[17] T. Zhang, C. Xu, and M.-H. Yang, “Learning multi-task correlation par-
ticle filters for visual tracking,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. PP, no. 99, pp. 1–14, 2018. 2

[18] J. Gao, T. Zhang, X. Yang, and C. Xu, “P2t: Part-to-target tracking
via deep regression learning,” IEEE Transactions on Image Processing,
vol. PP, no. 99, pp. 1–1, 2018. 2

http://nlpr-web.ia.ac.cn/mmc/homepage/tzzhang/lmcpf.html
http://nlpr-web.ia.ac.cn/mmc/homepage/tzzhang/lmcpf.html

