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Abstract

In this paper, we propose a multi-task correlation parti-
cle filter (MCPF) for robust visual tracking. We first present
the multi-task correlation filter (MCF) that takes the inter-
dependencies among different features into account to learn
correlation filters jointly. The proposed MCPF is designed
to exploit and complement the strength of a MCF and a
particle filter. Compared with existing tracking methods
based on correlation filters and particle filters, the proposed
tracker has several advantages. First, it can shepherd the
sampled particles toward the modes of the target state dis-
tribution via the MCF, thereby resulting in robust tracking
performance. Second, it can effectively handle large-scale
variation via a particle sampling strategy. Third, it can
effectively maintain multiple modes in the posterior densi-
ty using fewer particles than conventional particle filters,
thereby lowering the computational cost. Extensive exper-
imental results on three benchmark datasets demonstrate
that the proposed MCPF performs favorably against the
state-of-the-art methods.

1. Introduction
Visual tracking is one of the most important tasks in

computer vision that finds numerous applications such as
video surveillance, motion analysis, and autonomous driv-
ing, to name a few [38, 13, 36, 46, 35, 31, 14]. The main
challenge for robust visual tracking is to account for large
appearance changes of target objects over time. Despite sig-
nificant progress in recent years, it remains a difficult task to
develop robust algorithms to estimate object states in track-
ing scenarios with challenging factors such as illumination
changes, fast motions, pose variations, partial occlusions
and background clutters.

Correlation filters have recently been introduced into vi-
sual tracking and shown to achieve high speed as well as ro-
bust performance [4, 9, 16, 15, 18, 26, 24, 21, 25, 29]. Rec-
ognizing the success of deep convolutional neural networks
(CNNs) on a wide range of visual recognition tasks, several
tracking methods based on deep features and correlation fil-

Figure 1. Comparisons of the proposed MCPF tracker with the
state-of-the-art correlation filter trackers (DSST [9], KCF [16],
CF2 [25], and HDT [29]) on the motorRolling, KiteSurf, and car4
sequences [36]. These trackers perform differently as various fea-
tures and scale handling strategies are used. The proposed algo-
rithm performs favorably against these trackers.

ters have been developed [25, 29]. Empirical studies using
large object tracking benchmark datasets show that these C-
NN based trackers [25, 29] perform favorably against meth-
ods based on hand-crafted features. Figure 1 shows some
tracking results where the CF2 [25] and HDT [29] perfor-
m well against the DSST [9] and KCF [16] schemes which
achieve the state-of-the-art results in the VOT challenge.

Despite achieving the state-of-the-art performance, ex-
isting CNN based correlation filter trackers [25, 29] have
several limitations. (1) These trackers learn correlation fil-
ter for each layer independently without considering their
relationship. In [25, 29], adaptive linear correlation filters
rather than the outputs of each convolutional layer are used.
Since features from different layers can enhance and com-
plement each other, existing CNN based correlation trackers
(CF2 [25] and HDT [29]) perform well. Nevertheless, these
methods assume that correlation filters of different features
are independent. Ignoring the relationships between corre-
lation filters tends to make the tracker more prone to drift
away from target objects in cases of significant changes in
appearance. To deal with this issue, we propose a multi-task
correlation filter (MCF) to exploit interdependencies among
different features to obtain their correlation filters jointly.
Here, learning the correlation filter of each type of feature
is viewed as an individual task. As shown in Figure 1, the
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MCF achieves better performance than the CF2 and HDT
in the KiteSurf sequence. (2) These trackers [25, 29] do not
handle scale variation well. Recently Danelljan et al. pro-
pose the DSST method [9] with adaptive multi-scale corre-
lation filters using HOG features to handle the scale vari-
ation of target objects. However, the adaptive multi-scale
strategy does not facilitate the tracking methods based on
CNN features and correlation filters [25, 29] well (see Sec-
tion 4). To overcome this issue, we resort to particle filter-
s [1, 19] to handle large-scale variation. In a particle-based
tracking method, the state space for target objects under-
going large-scale variation can be covered with dense sam-
pling. As shown in Figure 1, the HDT and CF2 methods do
not track the target object with scale variation in the car4 se-
quence well, but the proposed algorithm performs well by
using particle filter.

In general, when more particles are sampled and a robust
object appearance model is constructed, particle filter based
tracking algorithms are likely to perform reliably in clut-
tered and noisy scenes. However, the computational cost of
particle filter based trackers usually increases significantly
with the number of particles. Furthermore, particle filter
based trackers determine each target object state based on
the sampled particle separately. If the sampled particles do
not cover target object states well as shown in Figure 2(a),
the predicted target state may be not correct. To overcome
this problem, it is better to shepherd the sampled particles
toward the modes of the target state distribution. In this
work, we exploit the strength of the MCF and particle fil-
ter, and complement each other: (1) Particle filters provide
a probabilistic framework for tracking objects by propagat-
ing the posterior density over time based on a factored sam-
pling technique. With dense sampling, the states for target
objects undergoing large-scale variations can be covered.
Therefore, particle filters can effectively help the MCF han-
dle scale variation problem. (2) For each sampled particle,
the MCF can be applied such that particles are shepherded
toward the modes of the target state distribution as shown
in Figure 2(b). Here, each particle is used as a base sam-
ple to construct a block-circulant circulant matrix, of which
each block denotes a shifted sample [15]. Then, the MCF
evaluates the similarity by computing the inner product for
each shifted sample relative to the learned filter. Finally,
the response map is obtained, and the maximum response is
used to shepherd this particle. It is clear that each particle
can densely cover a state subspace with the MCF, and we
do not need to draw particles densely to maintain multiple
possible states. As a result, we can maintain multiple modes
using fewer particles in comparison to the conventional par-
ticle filter. Since the computational load of a particle-based
tracking method depends heavily on the number of drawn
particles, the multi-task correlation filter can be used in
these methods for efficient and effective visual tracking.

(a) Sampled particles (b) Particles after shepherding

Figure 2. The multi-task correlation filter can be used to shepherd
the sampled particles toward the modes of the target state distribu-
tion. The numbers in (b) are the scores of correlation filter for the
particles. Different colored boxes indicate the respective locations
and scores.

In this work, we propose a Multi-task Correlation Parti-
cle Filter (MCPF) for robust visual tracking, which enjoys
the merits of both particle filters and correlation filters, e.g.,
robustness to scale variation, and computational efficiency.
The contributions of the proposed MCPF tracking method
are as follows. (1) Different from existing methods that
learn correlation filters for different features independent-
ly, the proposed MCPF model can exploit interdependen-
cies among different features to learn their correlation filters
jointly to improve tracking performance. (2) The proposed
MCPF tracker can effectively overcome the scale variation
problem via a particle sampling strategy as in traditional
particle filter. In particular, our MCPF tracker can cover
multiple modes in the posterior density using fewer parti-
cles than conventional particle filters do, resulting in low
computational cost. (3) The proposed MCPF tracker can
shepherd the sampled particles toward the modes of the tar-
get state distribution using the proposed MCF, resulting in
robust tracking performance. During tracking, a target ob-
ject state is estimated as a weighted average of all particles.
Here, the weights are based on the outputs of the proposed
MCF. We evaluate the proposed tracking algorithm on three
tracking benchmark datasets [36, 37, 22]. Extensive exper-
imental results on three benchmark datasets show that the
proposed MCPF tracking algorithm performs favorably a-
gainst the state-of-the-art methods regarding accuracy, effi-
ciency, and robustness.

2. Related Work
A comprehensive review of the tracking methods is be-

yond the scope of the paper, and surveys of this field can be
found in [38, 36, 31]. In this section, we discuss the method-
s closely related to this work, mainly regarding correlation
and particle filters.

Correlation Filters. Correlation filters have recently at-
tracted considerable attention in visual tracking due to com-
putational efficiency and robustness. Bolme et al. model
target appearance by learning an adaptive correlation fil-
ter which is optimized by minimizing the output sum of



squared error (MOSSE) [4]. Henriques et al. exploit the
circulant structure of shifted image patches in a kernel s-
pace and propose the CSK method based on intensity fea-
tures [15], and extend it to the KCF approach [16] with
the HOG descriptors. Danelljan et al. propose the DSST
method [9] with adaptive multi-scale correlation filters us-
ing HOG features to handle the scale change of target ob-
ject. In [40], Zhang et al. incorporate circulant property
of target template to improve sparse based trackers. Hong
et al. [18] propose a biology-inspired framework (MUSTer)
where short-term processing and long-term processing are
cooperated with each other. In [26], Ma et al. introduce an
online random fern classifier as a re-detection component
for long-term tracking. Recently, Danelljan et al. propose a
continuous convolution filters for tracking with multi-scale
deep features to account for appearance variation caused by
large scale change [11].

Correlation filters based on local patches or parts have
also been developed [24, 23]. In [24], a part-based method
is proposed where object parts are independently tracked by
the KCF tracker [16]. Liu et al. [23] propose a part based
structural correlation filter to preserve target object structure
for visual tracking. In [21], Li et al. introduce reliable lo-
cal patches to exploit the use of local contexts and treat the
KCF as the base tracker. Recently, in [25, 29], correlation
filters are learned independently for each type of feature.
Different from existing tracking methods based on corre-
lation filters, we propose a multi-task correlation filter to
exploit interdependencies among different features to learn
their correlation filters jointly.

Particle Filters. In visual tracking, particle filters or Se-
quential Monte Carlo (SMC) methods [19, 45, 47] have
been widely adopted. For robust performance, the number
of drawn samples must be sufficient to cover the possible
states. However, the dense sampling of particles general-
ly results in high computation load for visual tracking as
each one needs to be evaluated. Consequently, numerous
techniques have been presented to improve the sampling ef-
ficiency of particle filtering [19, 6, 20, 48]. Importance sam-
pling [19] is introduced to obtain better proposal by combin-
ing prediction based on the previous configuration with ad-
ditional knowledge from auxiliary measurements. In [20],
subspace representations are used with the Rao-Blackwell
particle filtering for visual tracking. On the other hand, the
number of particle samples can be adjusted according to an
adaptive noise component [48]. In [6], the observation like-
lihood is computed in a coarse-to-fine manner, which allows
efficient focus on more promising particles. Different from
the above methods, we adopt a multi-task correlation fil-
ter to shepherd particles toward the modes of a target state
distribution and thereby reduce the number of particles and
computational cost.

3. Proposed Algorithm
In this section, we present the multi-task correlation par-

ticle filter for visual tracking. Different from existing meth-
ods [16, 15] that learn correlation filter independently, the
proposed MCF considers the interdependencies among dif-
ferent features and parts, and learns the correlation filters
jointly. Furthermore, our tracker can effectively handle s-
cale variation via particle sampling strategy.

3.1. Multi-task Correlation Filter

The key idea of tracking methods based on correlation
filters [9, 16, 25, 29] is that numerous negative samples
are used to enhance the discriminability of the tracking-by-
detection scheme while exploring the circulant matrix for
computational efficiency. In visual tracking, object appear-
ance is modeled via a correlation filter w trained on an im-
age patch x of M × N pixels, where all the circular shifts
of xm,n, (m,n) ∈ {0, 1, . . . ,M − 1} × {0, 1, . . . , N − 1},
are generated as training samples with Gaussian function la-
bel ym,n. Given K different features (HOG, color, or CNN
features), we use Xk = [x0,0, . . . ,xm,n, . . .xM−1,N−1]>

to denote all training samples of the k-th type of feature
(k = 1, . . . ,K). The goal is to find the optimal weights wk

for K different features,

arg min
{wk}Kk=1

∑
k

‖Xkwk − y‖2F + λ‖wk‖2F , (1)

where ‖·‖F denotes the Frobenius norm, y =
[y0,0, . . . ,ym,n, . . . ,yM−1,N−1]>, and λ is a regu-
larization parameter. The objective function (1) can
equivalently be expressed in its dual form,

min
{zk}Kk=1

∑
k

1

4λ
z>kGkzk +

1

4
zk
>zk − zk

>y. (2)

Here, the vector zk containsM ×N dual optimization vari-
ables zm,nk , and Gk = XkXk

>. These two solutions are
related by wk = Xk

>zk

2λ . The learned zm,nk selects dis-
criminative training samples xm,nk to distinguish the target
object from the background. Here, the training samples
xm,nk , (m,n) ∈ {0, 1, . . . ,M − 1} × {0, 1, . . . , N − 1}
are the all possible circular shifts, which represent the pos-
sible locations of the target object. Putting the learned
zk of the K different features together, we obtain Z =
[z1, z2, · · · , zK ] ∈ RMN×K .

For Z, we have the following observations: (1) For each
feature k, only a few possible locations xm,nk need to be se-
lected to localize where the target object is in the next frame.
Ideally, only one possible location corresponds to the tar-
get object. (2) Among K different features, the learned zk
should select similar circular shifts such that they have sim-
ilar motion. As a result, the learned zk should be similar.



Based on the above observation, it is clear that different fea-
tures should have similar zk to make them have consistent
localization of the target object, and their correlation filters
should be learned jointly to distinguish the target from the
background. In this work, we use the convex `p,q mixed
norm, especially, `2,1 to model the underlying structure in-
formation of Z and obtain the multi-task correlation filter
for object tracking as

min
{zk}Kk=1

∑
k

1

4λ
z>kGkzk +

1

4
zk
>zk − zk

>y + γ‖Z‖2,1, (3)

where γ is a tradeoff parameter between reliable reconstruc-
tion and joint sparsity regularization. The definition of the

`p,q mixed norm is ‖Z‖p,q =

(∑
i

(∑
j |[Z]ij |p

) q
p

) 1
q

and

[Z]ij denotes the entry at the i-th row and j-th column of Z.
To solve (3), we use the Accelerated Proximal Gra-

dient method, which has been widely used to efficient-
ly solve convex optimization problems with non-smooth
terms [42, 43]. Although it is time-consuming to compute
Gk directly, it can be computed efficiently in the Fourier
domain by considering the circulant structure property of
Gk. More details can be found in the supplementary mate-
rial. After solving this optimization problem, we obtain the
multi-task correlation filter zk for each type of feature.

3.2. Multi-task Correlation Particle Filter

The proposed multi-task correlation particle filter is
based on Bayesian sequential importance sampling. which
recursively approximates the posterior distribution using a
finite set of weighted samples for estimating the posterior
distribution of state variables. Let st and yt denote the state
variable (e.g., location and scale) of an object at time t and
its observation respectively. The posterior density function
p(st|y1:t−1) at each time instant t can be obtained recur-
sively in two steps, namely prediction and update. The pre-
diction stage uses the probabilistic system transition model
p(st|st−1) to predict the posterior distribution of st given
all available observations y1:t−1 = {y1,y2, · · · ,yt−1} up
to time t− 1, and is recursively computed by

p(st|y1:t−1) =

∫
p(st|st−1)p(st−1|y1:t−1)dst−1, (4)

where p(st−1|y1:t−1) is known at time t−1, and p(st|st−1)
is the state prediction. When the observation yt is available,
the state is predicted by

p(st|y1:t) =
p(yt|st)p(st|y1:t−1)

p(yt|y1:t−1)
, (5)

where p(yt|st) denotes the likelihood function. The poste-
rior p(st|y1:t) is approximated by n particles

{
sit
}n
i=1

,

p(st|y1:t) ≈
n∑
i=1

witδ(st − sit), (6)

where δ(·) is the Dirac delta measure, and wit is the weight
associated to the particle i. Each particle weight is comput-
ed by

wit ∝ wit−1
p(yt|sit)p(sit|sit−1)

q(sit|sit−1,yt)
, (7)

where q(·) is the importance density function which is cho-
sen to be p(sit|sit−1) and this leads to wit ∝ wit−1p(yt|sit).
Then, a re-sampling algorithm is applied to avoid the de-
generacy problem [1]. In this case, the weights are set to
wit−1 = 1/n ∀i. Therefore, we can rewrite the impor-
tance weights in (8), which are proportional to the likeli-
hood function p(yt|sit),

wit ∝ p(yt|sit). (8)

The above re-sampling step derives the particles based on
the weights of the previous step, and all the new particles
are updated by the next frame likelihood function.

Given the learned MCF zk and target appearance model
x̄, each particle can be shepherded toward the modes of the
target state distribution by using its circular shifts. For par-
ticle iwith the search window sizeM×N , we can compute
its response map by

r =
∑
k

F−1(F(zk)�F(
〈
yit, x̄

〉
). (9)

Here, yit is the observation of particle i, � is the Hadamard
product, and F and F−1 denote the Fourier transform and
its inverse, respectively. Then, the particle i is shepherded
by searching for the location of the maximal value of r. For
simplicity, we define the above process as a MCF operator
for state calculation Smcf : Rd → Rd, where d is the state
space dimensionality, and the state of each particle is shifted
sit → Smcf (sit). We define the response of the MCF for
particle sit as the maximal value of r, which is denoted as
Rmcf (sit). Then we set p(yt|sit) = Rmcf (sit). As a result,
the particle weights are proportional to the response of the
MCF and defined by

wit ∝ Rmcf (sit). (10)

Finally, the state of target object is estimated as

E[st|y1:t] ≈
n∑
i=1

witSmcf (sit). (11)

3.3. MCPF Tracker

Based on the multi-task correlation particle filter, we
propose a MCPF tracker. The first step generates particles
using the transition model p(st|st−1) and re-samples them.
The second step applies the proposed MCF to each particle
such that it is shifted to a stable location. The third step up-
dates the weights using the responses of the MCF. Finally,



Figure 3. The MCPF can cover object state space well with a few
particles. Each particle corresponds to an image region enclosed
by a bounding box. (a) The MCPF can cover object state space
well by using few particles with the search region where each par-
ticle covers the state subspace corresponding to all shifted region
of the target object. (b) The MCPF can shepherd the sampled par-
ticles toward the modes of the target state distribution, which cor-
respond to the target locations in the image.

the optimal state is obtained using (11). To update the MCF
for visual tracking, we adopt an incremental strategy simi-
lar to that in [9, 16, 25, 29], which only uses new samples
xk in the current frame to update models by

F(x̄k)t = (1− η)F(x̄k)t−1 + ηF(xk)t,

F(zk)t = (1− η)F(zk)t−1 + ηF(zk)t, (12)

where η is the learning rate parameter.

3.4. Discussion

We discuss how the MCPF tracker performs with parti-
cles, correlation filters and circular shifts of target objects
for visual tracking using an example.

First, tracking methods based on conventional particle
filters need to draw samples densely to cover the possible
states and thus entail a high computational cost. The MCF
can refine particles to cover target states and effectively re-
duce the number of particles required for accurate tracking.
As shown in Figure 3(a), for a particle j (denoted in a green
bounding box), its search region (denoted in a green bound-
ing box with dashed line) is twice the size of the possible
object translations, which determines the total number of
possible circulant shifts of a correlation filter. Although this
particle is not drawn at the location where the target object
is, its search region (with possible circulant shifts) covers
the state of the target object. For each particle with a search
region of M ×N pixels, it contains M ×N circular shift-
s, which are all shifts of this particle. Here, each particle
can be viewed as a base particle, and its circular shifts are
all virtual particles with the same scale. With the proposed
MCF, each particle can be shepherded toward the modes of
the target object distribution (where the target object is) as
shown in Figure 3(b). Therefore, we do not need to draw
particles densely as each particle can cover a local search

region including many possible states of a target object, and
reduce computational load.

Second, the proposed MCPF can handle scale variation
well via a particle sampling strategy. Particle filters can use
dense sampling techniques to cover the state space of target
object undergoing large-scale variation. Thus, particle fil-
ters can effectively help the MCF handle scale variation, as
demonstrated in the attribute-based experiments with large-
scale variation as shown in Figure 5.

4. Experimental Results
We evaluate the proposed MCPF algorithm with the

state-of-the-art trackers on benchmark datasets. The source
code is available at http://nlpr-web.ia.ac.cn/
mmc/homepage/tzzhang/mcpf.html and more re-
sults can be found in the supplementary material.

4.1. Experimental Setups

Implementation Details. We use the same experimental
protocols in the CF2 method [25] for fair comparisons in
which the VGG-Net-19 [30] is used for feature extraction.
We first remove the fully-connected layers and use the out-
puts of the conv3-4, conv4-4 and conv5-4 convolutional lay-
ers as our features. Note that, a variety of features can be
adopted, such as HOG, other layers of CNN features as in
the HDT [29]. We set the regularization parameters of (3) to
λ = 10−4 and γ = 10−2, and use a kernel width of 0.1 for
generating the Gaussian function labels. The learning rate
η in (12) is set to 0.01. To remove the boundary disconti-
nuities, the extracted feature channels of each convolutional
layer are weighted by a cosine window [16]. We implement
our tracker in MATLAB on an Intel 3.10 GHz CPU with
256 GB RAM and use the MatConvNet toolbox [33] where
the computation of forward propagation on CNNs is car-
ried out on a GeForce GTX Titan X GPU. We use the same
parameter values for all the experiments. Furthermore, al-
l the parameter settings are available in the source code.
As in [41, 44], the variances of affine parameters for par-
ticle sampling are set to (0.01, 0.0001, 0.0001, 0.01, 2, 2),
and the particle number is set to 100.

Datasets. Our method is evaluated on three benchmark
datasets: OTB-2013 [36], OTB-2015 [37], and Temple Col-
or [22]. The first two datasets are composed of 50 and
100 sequences, respectively. The images are annotated with
ground truth bounding boxes and various visual attributes.
The Temple Color dataset [22] contains 128 videos.

Evaluation Metrics. We compare the proposed algorith-
m with the state-of-the-art tracking methods using evalua-
tion metrics and code provided by the respective benchmark
dataset. For the OTB-2013, OTB-2015, and Temple Col-
or datasets, we employ the one-pass evaluation (OPE) and

http://nlpr-web.ia.ac.cn/mmc/homepage/tzzhang/mcpf.html
http://nlpr-web.ia.ac.cn/mmc/homepage/tzzhang/mcpf.html


Table 1. Model analysis by comparing MCPF, MCF, CPF, CF2,
and CF2S. The AUC and PS are reported on the OTB-2013 and
OTB-2015 datasets (AUC/PS) corresponding to the OPE.

Dataset MCPF MCF CPF CF2 CF2S
OTB-2013 67.7/91.6 60.7/89.3 65.7/89.3 60.5/89.1 63.4/89.1
OTB-2015 62.8/87.3 56.6/84.7 61.2/86.3 56.2/83.7 59.1/84.0

use two metrics: precision and success plots. The precision
metric computes the rate of frames whose center location is
within some certain distance with the ground truth location.
The success metric computes the overlap ratio between the
tracked and ground truth bounding boxes. In the legend, we
report the area under curve (AUC) of success plot and pre-
cision score at 20 pixels threshold (PS) corresponding to the
one-pass evaluation for each tracking method.

4.2. Model Analysis

In the proposed MCPF tracker, we adopt the MCF to ex-
ploit interdependencies among different features and parti-
cle filters to handle scale variation. With different experi-
mental settings, we have six different trackers including M-
CPF, MCF, CPF, CF2 [25], and CF2S. Here, MCF is our M-
CPF without using particle filters, CPF is the MCPF using
traditional correlation filter instead of the multi-task corre-
lation filter, and CF2S is the CF2 [25] using the adaptive
multi-scale strategy as the DSST [9].

Table 1 shows that both the multi-task correlation fil-
ter and particle filters can improve object tracking perfor-
mance. We have the following observations from the exper-
imental results. First, multi-task correlation filter can im-
prove tracking performance. Compared with CPF, MCPF
achieves about 2.0%/2.3% and 1.6%/1.0% improvement
with AUC and PS metrics on the OTB-2013 and OTB-2015
datasets. Furthermore, compared with CF2, MCF achieves
about 0.4% and 1.0% improvement with AUC and PS on
the OTB-2015 dataset.

Second, particle filters can handle scale variation well.
Compared with MCF, MCPF achieves much better perfor-
mance with about 7.0%/2.3% and 6.2%/2.6% improve-
ment on the OTB-2013 and OTB-2015 datasets. These re-
sults show that particle filters can complement multi-task
correlation filter and significantly improve tracking perfor-
mance. Furthermore, both CPF and CF2S perform much
better than CF2 [25], and CPF achieves better performance
than CF2S. These results show both particle filter and the
adaptive multi-scale strategy [9] can improve tracking per-
formance. However, our tracker with a particle filter can
deal with scale variation better, which is also demonstrated
in Figure 5 for scale variation attribute evaluation.

4.3. Effect of Particle Sampling on Visual Tracking

In this section, we evaluate the effects of particle number
and scale on visual tracking performance in terms of effec-

Table 2. Effect of particle numbers on visual tracking performance.
For different particle numbers, we report frame per second, AUC,
and PS. Increasing particle numbers can improve visual tracking
performance. However, the tracker becomes slower.

# Particles 10 30 50 100

AUC/PS OTB-2013 65.1/90.8 65.9/90.4 66.1/89.4 67.7/91.6
OTB-2015 61.0/86.7 62.7/87.6 62.1/86.7 62.8/87.3

FPS OTB-2013 1.96 1.29 0.85 0.58
OTB-2015 1.80 1.27 0.87 0.54

Table 3. Effect of particle scales (s) on visual tracking perfor-
mance on the AUC and PS metrics corresponding to the OPE.

Scale 0.005 0.01 0.02 0.05
OTB-2013 65.2/90.9 67.7/91.6 66.1/89.4 64.1/89.6
OTB-2015 60.2/86.0 62.8/87.3 62.1/86.7 61.0/86.3

tiveness and efficiency. As shown in Table 2, the proposed
MCPF tracker is evaluated with different particle number-
s on the OTB-2013 and OTB-2015 datasets, and the AUC
and PS corresponding to the OPE are reported for each ex-
periment. Furthermore, the run-timer performance in terms
of frame-per-second (FPS) is also provided for analyzing
the trade-off between accuracy and efficiency in Table 2.
Based on the results, it is clear that increasing the number of
particles can improve tracking performance. However, the
tracker becomes slower. Note that, the MCPF tracker with
10 particles achieves comparable results to the one with 50
particles. These results show that the multi-task correlation
filter can enhance and complement particle filters, and help
cover the target state space well with a few number of par-
ticles. Even with a fewer number of particles, the proposed
MCPF method can achieve comparable performance with
much higher efficiency.

Compared with the SCM method, which is one of the
top performing trackers based on particle filters [36], the
proposed MCPF method has about 17.8%/26.7% improve-
ment with AUC and PS metrics. Moreover, the proposed
tracker is faster than the SCM (about 0.4 FPS). In Table 3,
we show the results of the proposed MCPF with different
particle scales s. Here, the variances of affine parameters
for particle sampling are set to (s, 0.0001, 0.0001, s, 2, 2).
Overall, the proposed MCPF performs robustly within a
wide range of scale change.

4.4. OTB-2013 Dataset

We evaluate our MCPF algorithm with 29 tracker-
s in [36] and other 22 state-of-the-art trackers using the
source codes including MEEM [39], TGPR [12], KCF [16],
RPT [21], MUSTer [18], DSST [9], LCT [26], CF2 [25],
SCF [23], HDT [29], Staple [2], SRDCF [10], DeepSRD-
CF [7], SRDCFdecon [8], CNN-SVM [17], C-COT [11],
SINT [32], SiamFC [3], DAT [28], FCNT [34], and SC-
T [5]. We show the results in OPE using the distance preci-
sion and overlap success rate in Figure 4. For presentation
clarity, we only show the top 10 trackers. In the figure leg-



Figure 5. Success and precision plots on 11 tracking challenges of scale variation, out of view, out-of-plane rotation, low resolution,
in-plane rotation, illumination, motion blur, background clutter, occlusion, deformation, and fast motion. The legend contains the AUC
and PS scores for each tracker. Our MCPF method performs favorably against the state-of-the-art trackers.

Figure 4. Precision and success plots over all the 50 sequences
using one-pass evaluation on the OTB-2013 Dataset. The legend
contains the area-under-the-curve score and the average distance
precision score at 20 pixels for each tracker. Our MCPF method
performs favorably against the state-of-the-art trackers.

end, we report the AUC score and average distance preci-
sion score at 20 pixels for each tracker.

Among all the trackers, the proposed MCPF method per-
forms well on the distance precision and overlap success
rate. Compared with other correlation filter based trackers,
the proposed MCPF algorithm performs favorably against
the C-COT method. In Figure 4, we do not show the results
by the MDNet [27] method, because it uses many external
videos for training. The MDNet method achieves 94.8%

and 70.8% on the area-under-the-curve score and the preci-
sion at a threshold of 20 pixels, which are comparable to the
proposed tracker. Overall, the precision and success plot-
s demonstrate that our approach performs well against the
state-of-the-art methods.

In Figure 5, we analyze the tracking performance based
on attributes of image sequences [36] in terms of 11 chal-
lenging factors, e.g., scale variation, out of view, occlusion,
and deformation. These attributes are useful for analyzing
the performance of trackers in different aspects. For pre-
sentation clarity, we present the top 10 methods in each
plot. We note that the proposed tracking method perform-
s well in dealing with challenging factors including scale
variation, in-plane rotation, out-of-plane rotation, low res-
olution, and background clutter. For the sequences with
large-scale variations, our MCPF algorithm performs well
among all the state-of-the-art trackers (e.g., CF2 and HDT),
which demonstrates that the proposed MCPF can handle s-
cale variation by integrating the MCF and a particle filter.

4.5. OTB-2015 Dataset

We carry out experiments on the OTB-2015 dataset with
comparisons to 29 trackers in [36] and other 14 state-of-the-



Figure 6. Precision and success plots over all 100 sequences using
one-pass evaluation on the OTB-2015 dataset. The legend contains
the area-under-the-curve score and the average distance precision
score at 20 pixels for each tracker. Our MCPF method performs
favorably against the state-of-the-art trackers.

art tracking methods including MEEM [39], TGPR [12],
KCF [16], MUSTer [18], DSST [9], LCT [26], CF2 [25],
HDT [29], Staple [2], SRDCF [10], DeepSRDCF [7], S-
RDCFdecon [8], CNN-SVM [17], and C-COT [11]. We
show the results in one-pass evaluation using the distance
precision and overlap success rate in Figure 6. The pro-
posed MCPF algorithm achieves the AUC score of 62.8%
and PS of 87.3%. Compared with the CF2 and HDT meth-
ods based on deep features as well as correlation filters, the
performance gain is 6.6%/3.6% and 6.4%/2.5% in terms
of AUC and PS, respectively. Overall, the C-COT method
performs well but at a lower speed (0.22 FPS), and the pro-
posed MCPF as well as DeepSRDCF algorithms achieve
comparable results.

4.6. Temple Color Dataset

We evaluate the proposed MCPF algorithm on the Tem-
ple Color dataset [22] with 16 trackers in [22] and other 9
state-of-the-art tracking methods using their shared source
codes, including MUSTer [18], SRDCF [10], CF2 [25],
HDT [29], DSST [9], Staple [2], DeepSRDCF [7], SRD-
CFdecon [8], and C-COT [11]. For fair comparisons, RGB
color features are used for all trackers and the same evalu-
ation metrics with the OTB-2013 and OTB-2015 datasets,
i.e. AUC and PS, are adopted.

Figure 7 shows that our algorithm performs favorably
against the state-of-the-art methods. Among the evalu-
ated trackers, the CF2, HDT, Staple, and SRDCF meth-
ods achieve the AUC and PS scores of (48.4%, 70.3%),
(48.0%, 68.6%), (49.8%, 66.5%), and (51.0%, 69.4%), re-
spectively. Our MCPF algorithm achieves the AUC and PS
scores of (54.5%, 77.4%). In both precision and success
plots, our method obtains performance gain of 6.1% and
7.1% on the AUC and PS scores against the CF2 method.
Overall, the proposed MCPF method shows comparable re-
sults compared to the C-COT and significantly outperforms
other correlation filter based trackers (DSST and KCF).

Figure 7. Precision and success plots over the 128 sequences
using one-pass evaluation on the Temple Color dataset. The legend
contains the area-under-the-curve score and the average distance
precision score at 20 pixels for each tracker. Our MCPF method
performs favorably against the state-of-the-art trackers.

5. Conclusion

In this paper, we propose a multi-task correlation particle
filter for robust visual tracking. The proposed tracking al-
gorithm can effectively handle scale variation via a particle
sampling strategy, and exploit interdependencies among d-
ifferent features to learn their correlation filters jointly. Fur-
thermore, it can shepherd the sampled particles toward the
modes of the target state distribution to obtain robust track-
ing performance. Extensive experimental results on bench-
mark datasets demonstrate the effectiveness and robustness
of the proposed algorithm against the state-of-the-art track-
ing methods.

Acknowledgments

This work is supported by National Natural Science
Foundation of China (No.61432019, 61532009, 61572498,
61572296), Beijing Natural Science Foundation (4172062),
and US National Science Foundation CAREER grant
1149783.

References
[1] M. S. Arulampalam, S. Maskell, and N. Gordon. A tutorial

on particle filters for online nonlinear/non-gaussian bayesian
tracking. TSP, 50:174–188, 2002. 2, 4

[2] L. Bertinetto, J. Valmadre, S. Golodetz, O. Miksik, and
P. H. S. Torr. Staple: Complementary learners for real-time
tracking. In CVPR, 2016. 6, 8

[3] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and
P. Torr. Fully-convolutional siamese networks for objec-
t tracking. ECCV Workshop, 2016. 6

[4] D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui.
Visual object tracking using adaptive correlation filters. In
CVPR, pages 2544–2550, 2010. 1, 3

[5] J. Choi, H. J. Chang, J. Jeong, Y. Demiris, and J. Y. Choi.
Visual tracking using attention-modulated disintegration and
integration. In CVPR, June 2016. 6

[6] C.Yang, R. Duraiswami, and L. Davis. Fast multiple object
tracking via a hierarchical particle filter. In ICCV, 2005. 3



[7] M. Danelljan, G. Hager, F. Khan, and M. Felsberg. Convolu-
tional features for correlation filter based visual tracking. In
ICCV workshop, 2015. 6, 8

[8] M. Danelljan, G. Hager, F. Khan, and M. Felsberg. Adaptive
decontamination of the training set: A unified formulation
for discriminative visual tracking. In CVPR, 2016. 6, 8

[9] M. Danelljan, G. Hager, F. S. Khan, and M. Felsberg. Ac-
curate scale estimation for robust visual tracking. In BMVC,
2014. 1, 2, 3, 5, 6, 8

[10] M. Danelljan, G. Hager, F. Shahbaz Khan, and M. Felsberg.
Learning spatially regularized correlation filters for visual
tracking. In ICCV, pages 4310–4318, 2015. 6, 8

[11] M. Danelljan, A. Robinson, F. Khan, and M. Felsberg. Be-
yond correlation filters: Learning continuous convolution
operators for visual tracking. In ECCV, 2016. 3, 6, 8

[12] J. Gao, H. Ling, W. Hu, and J. Xing. Transfer learning based
visual tracking with gaussian process regression. In ECCV,
2014. 6, 8

[13] J. Gao, T. Zhang, X. Yang, and C. Xu. Deep relative tracking.
TIP, 26(4):1845–1858, 2017. 1

[14] W. Guo, L. Cao, T. X. Han, S. Yan, and C. Xu. Max-
Confidence Boosting With Uncertainty for Visual Tracking.
IEEE Trans. Image Processing, 24(5):1650–1659, 2015. 1

[15] J. Henriques, R. Caseiro, P. Martins, and J. Batista. Exploit-
ing the circulant structure of tracking-by-detection with ker-
nels. In ECCV, 2012. 1, 2, 3

[16] J. F. Henriques, R. Caseiro, P. M. 0004, and J. Batista. High-
speed tracking with kernelized correlation filters. TPAMI,
37(3):583–596, 2015. 1, 3, 5, 6, 8

[17] S. Hong, T. You, S. Kwak, and B. Han. Online tracking
by learning discriminative saliency map with convolutional
neural network. In ICML, 2015. 6, 8

[18] Z. Hong, Z. Chen, C. Wang, X. Mei, D. Prokhorov, and
D. Tao. Multi-store tracker (muster): A cognitive psychol-
ogy inspired approach to object tracking. In CVPR, pages
749–758, 2015. 1, 3, 6, 8

[19] M. Isard and A. Blake. Condensation - conditional density
propagation for visual tracking. IJCV, 29:5–28, 1998. 2, 3

[20] Z. Khan, T. Balch, and F. Dellaert. A rao-blackwellized par-
ticle filter for eigentracking. In CVPR, 2004. 3

[21] Y. Li, J. Zhu, and S. C. H. Hoi. Reliable patch trackers: Ro-
bust visual tracking by exploiting reliable patches. In CVPR,
pages 353–361, 2015. 1, 3, 6

[22] P. Liang, E. Blasch, and H. Ling. Encoding color informa-
tion for visual tracking: Algorithms and benchmark. TIP,
24(12):5630–5644, 2015. 2, 5, 8

[23] S. Liu, T. Zhang, X. Chao, and C. Xu. Structural correlation
filter for robust visual tracking. In CVPR, pages 5388–5396,
2016. 3, 6

[24] T. Liu, G. Wang, and Q. Yang. Real-time part-based visu-
al tracking via adaptive correlation filters. In CVPR, pages
4902–4912, 2015. 1, 3

[25] C. Ma, J.-B. Huang, X. Yang, and M.-H. Yang. Hierarchical
convolutional features for visual tracking. In ICCV, 2015. 1,
2, 3, 5, 6, 8

[26] C. Ma, X. Yang, C. Zhang, and M.-H. Yang. Long-term
correlation tracking. In CVPR, pages 5388–5396, 2015. 1,
3, 6, 8

[27] H. Nam and B. Han. Learning multi-domain convolutional
neural networks for visual tracking. In CVPR, June 2016. 7

[28] H. Possegger, T. Mauthner, and H. Bischof. In defense of
color-based model-free tracking. In CVPR, 2015. 6

[29] Y. Qi, S. Zhang, L. Qin, H. Yao, Q. Huang, J. Lim, and M.-
H. Yang. Hedged deep tracking. In CVPR, 2016. 1, 2, 3, 5,
6, 8

[30] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. In ICLR, 2015.
5

[31] A. Smeulders, D. Chu, R. Cucchiara, S. Calderara,
A. Deghan, and M. Shah. Visual tracking: an experimen-
tal survey. TPAMI, 36(7):1442–1468, 2013. 1, 2

[32] R. Tao, E. Gavves, and A. W. M. Smeulders. Siamese in-
stance search for tracking. In CVPR, 2016. 6

[33] A. Vedaldi and K. Lenc. Matconvne: convolutional neural
networks for matlab. In CoRR, page abs/1412.4564, 2014. 5

[34] L. Wang, W. Ouyang, X. Wang, and H. Lu. Visual tracking
with fully convolutional networks. In ICCV, 2015. 6

[35] B. Wu, S. Lyu, B.-G. Hu, and Q. Ji. Simultaneous cluster-
ing and tracklet linking for multi-face tracking in videos. In
ICCV, pages 2856–2863, 2013. 1

[36] Y. Wu, J. Lim, and M.-H. Yang. Online object tracking: A
benchmark. In CVPR, 2013. 1, 2, 5, 6, 7

[37] Y. Wu, J. Lim, and M. Yang. Object tracking benchmark.
TPAMI, 37(9):1834–1848, 2015. 2, 5

[38] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A sur-
vey. ACM Comput. Surv., 38(4):13, 2006. 1, 2

[39] J. Zhang, S. Ma, and S. Sclaroff. MEEM: Robust tracking
via multiple experts using entropy minimization. In ECCV,
2014. 6, 8

[40] T. Zhang, A. Bibi, and B. Ghanem. In defense of sparse
tracking: Circulant sparse tracker. In CVPR, 2016. 3

[41] T. Zhang, B. Ghanem, S. Liu, and N. Ahuja. Low-rank sparse
learning for robust visual tracking. In ECCV, 2012. 5

[42] T. Zhang, B. Ghanem, S. Liu, and N. Ahuja. Robust visual
tracking via multi-task sparse learning. In CVPR, 2012. 4

[43] T. Zhang, B. Ghanem, S. Liu, and N. Ahuja. Robust visual
tracking via structured multi-task sparse learning. Interna-
tional Journal of Computer Vision, 101(2):367–383, 2013.
4

[44] T. Zhang, B. Ghanem, S. Liu, C. Xu, and N. Ahuja. Ro-
bust Visual Tracking via Exclusive Context Modeling. IEEE
transactions on cybernetics, 46(1):51–63, 2016. 5

[45] T. Zhang, C. Jia, C. Xu, Y. Ma, and N. Ahuja. Partial occlu-
sion handling for visual tracking via robust part matching. In
CVPR, 2014. 3

[46] T. Zhang, S. Liu, N. Ahuja, M.-H. Yang, and B. Ghanem.
Robust Visual Tracking via Consistent Low-Rank Sparse
Learning. International Journal of Computer Vision,
111(2):171–190, 2015. 1

[47] T. Zhang, S. Liu, C. Xu, S. Yan, B. Ghanem, N. Ahuja, and
M.-H. Yang. Structural sparse tracking. In CVPR, 2015. 3

[48] S. K. Zhou, R. Chellappa, and B. Moghaddam. Visual track-
ing and recognition using appearance-adaptive models in
particle filters. TIP, 11(1):1491–1506, 2004. 3


