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Abstract—Large-scale user contributed images with tags are
easily available on photo sharing websites. However, the gy or
incomplete correspondence between the images and tags pibits
them from being leveraged for precise image retrieval and
effective management. To tackle the problem of tag refinemen
we propose a method ofRanking based Multi-correlation Tensor
Factorization (RMTF), to jointly model the ternary relations
among user, image and tag, and further to precisely reconstruct
the user-aware image-tag associations as a result. Sinceeth
user interest or background can be explored to eliminate the
ambiguity of image tags, the proposed RMTF is believed to
be superior to the traditional solutions, which only focus m
the binary image-tag relations. During the model estimatio, we
employ a ranking based optimization scheme to interpret theag-
ging data, in which the pair-wise qualitative difference béween
positive and negative examples is used, instead of the poinise
0/1 confidence. Specifically, the positive examples are datty
decided by the observed user-image-tag interrelations, wie the
negative ones are collected with respect to the most semacily
and contextually irrelevant tags. Extensive experiments m a
benchmark Flickr dataset demonstrate the effectiveness ofthe
proposed solution for tag refinement. We also show attractie
performances on two potential applications as the by-prodaots
of the ternary relation analysis.

Index Terms—tag refinement, factor analysis, tensor factoriza-
tion, social media

|. INTRODUCTION

With the popularity of Web 2.0 technologies, there are
explosive photo sharing websites with large-scale imade cg

lections available online, such as FlickPicas& Zooomp

and Pinterest. These Web 2.0 websites allow users as owne

taggers, or commenters for their contributed images toaste

and collaborate with each other in a social media dialogse.

typical structure (Flickr as example) is illustrated in Rig

in which three types of interrelated entities are involve
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Fig. 1. An integrated structure of social tagging in Flickr

i.e., image tag and user From this view, we can deem the
user contributed tagging data as the products of the ternary
interactions among images, tags and users.

Obviously, given such a large-scale web dataset, noisy and
missing tags are inevitable, which limits the performante o
social tag-based retrieval system [1], [2]. Therefore, tidug
refinement to denoise and enrich tags for images is desired to
tackle this problem. Existing efforts on tag refinement [3],

[5], [6], [7], [8], [9], [10] exploited the semantic corrdlan
between tags and visual similarity of images to address the
noisy and missing issues, while the user interaction as éne o
important entities in the social tagging data is neglected.
As above mentioned, users are the originator of the tagging
activity and they are involved with images and tags in many
aspects. We believe that the incorporatiorusérinformation

IS

contributes to a better understanding and description ef th

}agging data. We take two simple examples to explain this

observation. As shown in Fig.2(a), both images are tagged
ith “jaguar” by the two users (indicated by user tPput

hey have different visual content, i.e., a luxury car and an

animal respectively. Due to the well-known “semantic gap”,

traditional work on image content understanding cannotesol

must be obtained from the IEEE by sending a request to pulire problem well. In this case, users’ interest and backugtou
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information can be leveraged to specify the image semantics
That is, a car fan will possibly use “jaguar” to tag a ‘car’
image, while an animal specialist will use “jaguar” to tag a
‘wild cat’. Fig.2(b) shows three images from the FIFA 2010
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1 http://www.flickr.com

2 http://picasa.google.com

3 http://www.zooomr.com

4 http://pinterest.com

jare annotated to the visually similar images. Considering

the tagger information, we can easily understand this phe-
nomenon: users have different tagging patterns. Maybe user
88077630@N0@s a Spanish fan while usdr4915523@N05

5 The user ID of the taggers can be acquired from the Flickr API:
http://www.flickr.com/services/api
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and43175983@N0@re Americans. These two examples can
be considered as the reinforcement of tag understanding by
introducing theuserinformation. Note that it is not necessary
to explicitly know the users’ interests or profiles. What we
are interested in is the fact that the tags are annotated by
different users and there are variations in individual sser
perspective and vocabulary. Incorporationusfer may bring
similar benefits to the image understanding. On top of visuz
appearance, the fact that images from the same user or tag¢
by similar users can capture more semantic correlations.
The goal of our work is to improve the underlying asso-
ciations between the images and tags provided with the raw (b)
tagging data from photo sharing websites. To this end, & thi
paper, we solve it from a factor analysis perspective andshimFig- 2. Example images from Flickr and their associated tays taggers
building the user-aware image and tag factor representdtio
With the user factor incorporated, the image and tag factors ) ) )
will be free to focus on their own semantics and we can obtat RMTF provides an entrance to other potential applica-
more semantics-specified image and tag representations. Atloqs in tht_e social rrlledla.and information retrieval fields,
novel method nameBanking based Multi-correlation Tensor ~ Which is discussed iSectionV.D.

Factorization(RMTF) is proposed to tackle the tag refinement The rest of the paper is organized as follows. Related work
task. The framework is illustrated in Fig.3. It containset#r s priefly reviewed irfSectionil. In Sectionll we formulate the
primary parts: data collection, RMTF and tag refinement. Fgkoblem and explain our basic idea. The detail of the progose
data collection, three types of data including users, imagRMTF is addressed iSectionlV. We report and discuss the

and tags as well as their ternary interrelations and intraxperimental results as well as the applicationSéctionV.
relations are collectetlin the RMTF module, we utilize tensor Fina”y, the conclusion and future work are gi\/en_

factorization to jointly model the multiple factors. To neaull

use of the observed tagging data and partial use of unolzserve
data, we present a novel ranking scheme for model estimation
which is based on the pair-wise qualitative difference leetv ~ In this section, we briefly review some of the research
positive examples (i.e., observed tagging data) and negafiteratures related to ternary analysis and image tag mafme.
ones (i.e., partial unobserved data). The collection ofitieg
examples is carried out by analyzing user tagging behavi
The issue of noisy tags and missing tags are considered i
conservative filtering strategy by exploiting the tag ctatien Tensor is a mathematical representation of a multi-way
on context and semantics. Besides, the multiple intraiozla  array. The order of a tensor is the number of modes. A second-
are employed as the smoothness constraints and then atger tensor is a matrix, and a higher-order tensor has three
factors inference is cast as a regularized tensor factaiza or more modes. The most important tensor operation is tensor
problem. Finally, based on the learnt factor representatio factorization. Many tensor factorization methods havenbee
which encode the compact users, images and tags represeam@posed, among which, CANDECOMP/PARAFAC (CP) and
tion over their latent subspaces, tag refinement is perférmeucker Decomposition are the most popular ones. A good

football
by 88077630@N00

soccer

by 14915523@N05 § soccer

. by 43175983@N00

II. RELATED WORK

r. : _—
%.aTernary Analysis and Applications

by computing the cross-spageagetag associations. survey for tensor factorization is provided in [11].
The main contributions of this paper are summarized asThe advantage of ternary analysis is that we can use higher-
follows. order tensor to capture the multi-dimension relationah cattd

employ tensor factorization to analyze their correlationshe
last decade, interest in ternary analysis has expandednyg ma
fields, such as signal processing, numerical analysis,hgrap
analysis, and so on. We do not intend to cover all the related
e We propose the RMTF model to extract the latent facteyork and only focus on examples from the communities of
representations. A convergence provable learning algoricomputer vision and data mining.
m is also presented. In [12], the authors presented a dimensionality reduction
e To make full use of the tagging data, a ranking optimizalgorithm based on tensor decomposition of N-mode SVD.
tion scheme is proposed to leverage the incomplete ahtiey demonstrated the power of multilinear subspace aisalys
ambiguous characteristics of user-generated tagging dafathe context of facial image ensembles. Idé al. [13]
also applied ternary analysis to the face recognition bl
6 These can be viewed as the feature matrices on the latergamgiss which  Li et al. [14] introduced an online tensor subspace learning

gre spanned by the images and tags. We detail factor matt@@stion in algorithm to the visual tracking problem. Considering the
ection3

7 We show a running example consisting of three users, fiveaaggour INfluence of the enVironm_ent cha_ngi_ng_in the traCki_ng preces
images in Fig.3(a). Wen [15] extended the biased discriminant analysis (BDA) to

e We introduceuser information into the social tag pro-
cessing and jointly model the multiple factors o$er,
imageandtag by 3-order tensor.
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Fig. 3. The proposed framework.

the tensor biased discriminant analysis (TBDA) for appeega factorization and provided a good probabilistic interptiein.
modeling and foreground extraction. While in [24], the authors embeded a factorized represemtat

With the popularity of large-scale social media, massivef relations in a nonparametric Bayesian clustering fraoré&y
amounts of data with multiple aspects and high dimensiongich achieves a tradeoff between the good predictive per-
are generated. Tensor provides a natural representation flomance and interpretable representations. In this paper
such data. In [16], tensor factorization is utilized for tiul sparsity issue is addressed in two ways:

aspect data mining on the network data flow. Fraatzal. . . .
e The intra-relations among users, images and tags are

[17] modeled the Semantic Web by a 3-dimensional tensor loved i lati h . .
that enables the seamless representation of arbitraryngiema employed as mu_tl—c_orre ation smoothness constraints int
the tensor factorization model.

links. Under the rich media social network scenario, such as
Diggs, Flickr, Last.fm, multi-relational data, user, itdpost, We leverage the characteristics of user tagging activitly an
photo), keyword, comment, contact are involved. In [18f th introduce a novel ranking optimization scheme.
authors utilized 3-order tensor to model altogether usags
and items in music sharing websites, and tackled persaualiB- 'mage Tag Refinement
music recommendation based on latent semantic analysisThe literatures [10], [2] provide good surveys for the
Beyond ternary relationship modeling, recently, reseanzlof research work on image tag refinement. Along the structure
[19] modeled the quaternary relationship among users siterof the tagging data illustrated in Fig.1, we characterize th
tags and ratings as a 4-order tensor and conducted muigilated work according to the resources they leveraged.
way latent semantic analysis. Lat al. [20] introduced tensor  As a pioneer work, Jiret.al [3] employed WordNet to esti-
factorization into photo sharing websites. The motivatisn mate the semantic correlations among the annotated tags and
to extract meaningful communities by modeling the multremove weakly correlated ones. The work of [25] performed
relational social media contexts and interactions. As $awa belief propagation among tags within the random walk with
know, little work has focused on incorporating user intéat  restart framework to refine the imprecise original annotegi
to enhance the analysis of the correlation between imagés am [6], Xu et al. proposed to jointly model the tag similarity
tags. Our work is the first to incorporate user informaticie in and tag relevance and perform tag refinement from the topic
the task of image tag refinement. modeling view. These work is typically based on ttaer

One major challenge for ternary analysis is how to deal withg analysis. In [26], the authors explicitly considered the
the sparse and large-scale data. Standard tensor fatitumizatag-image and tag-tag relations and proposed a dual cross-
methods do not account for the sparsity of the data. Theredia relevance model for image annotation. kiual. [5]
have been substantial developments on variations of CP pwoposed to rank the image tags according to their relevance
Tucker Decomposition to account for the sparsity probleon. Fw.r.t. the associated images by modeling tag similarity and
example, Koldaet al. [22] developed a greedy CP for sparsénage similarity. In [9], the improved tag assignments are
tensors that computes on triad at a time via an alternatiearnt by maximizing the consistency between visual sirtyla
least square (ALS) method. Recently, several works tackladd semantic similarity while minimizing the deviation ifino
the sparsity issue and avoided overfit by incorporatingrprioinitially user-provided tags. An interesting work is dong b
and combining with other schema. Céii al. [23] employed Xie et al[27], in which several important issues in building an
the external information as smoothness priors into theoten®nd-to-end image tagging application are addressed,dimgu
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tagging vocabulary design, taxonomy-based tag refinemenhich is defined as:
classifier score calibration_ for tag ranking, and selgctixbn 1 if (u,i,t) €D
valuable tags. Recently, Liat al[28] proposed a multi-edge Yuyit = (1)
graph based unified framework to solve the image annotation,
tag-to-region and tag refinement probleffagtag, image where|U|, |I|, |T| are the number of distinct users, images
imageandimagetag relationships are explored in these workand tags respectively. Fig.5(a) shows the tensor constiuct
The most related work to this paper is [7], [10], whicrom the running example base on Eq.1.
solves the tag refinement problem through low-rank matrix To jointly model the three factors afser imageandtag,
approximation. Zhuet al. [10] considered the tagging charWe employ the general tensor factorization model, Tucker
acteristics from the view of low-rank, error Sparsity, it Decomposition for the latent factor inference. In Tucker De
consistency and tag correlation. In [7], a factor analysfg®mposition, the tagging da® are estimated by three low
model is proposed and the tag refinement problem is c&gbk matrices and one core tensor (see Fig.4):

as estimating the image-tag correlations. While these work YV:i=Cx,Ux; I x;T (2)

simultaneously modeled thag-tag, imageimageandimage  here s the tensor product of multiplying a matrix on
tag relationships, they aggregated images’ tags over all HSelS de . TILEach low rank matrixf € RIVIX™o, [ e RIx"
thereby losing important information about individual iSe " R|Tixrr) corresponds to one factor, "The core tensor
variation in tag usage. In this paper, we exploit the social

f the oh hari bsi q derf 8! ¢ Rruxrixrr contains the interactions between the dif-
?‘Spe"t of the P oto sharing websites and consiser actor ferent factors. The ranks of decomposed factors are denoted
into the tag refinement problem. We believe that incorporati

. X ) - o ) by ry,rr,rr and Eq.2 is calledrank-(ry, 77, rr) Tucker

of userinformation WI|! facilitate .explalnlng the tagging datadecomposition. An intuitive interpretation of Eq.2 is thke

and lead to better estimates of image and tag factors.  54ing data depend not only on how similar an image's visual

features and tag’s semantics are, but on how much these

features/semantics match with the users’ preferences.
Typically, the latent factord/, I, T" can be inferred by
The low dimensionalser, image and tag factor matrices directly approximating/ and the tensor factorization problem

can be viewed as compact representations in the corresgpnds$ reduced to minimizing an point-wise loss 9n

Iatept subspaces. The Iatent subgpaces capture the ttelevap min Z @aﬁ_ ya,z,z)Q 3)

attributes, e.g., the user dimensions are related to users U,I,T,.C

preferences or social interests, the image dimensionsateli ) ) o

visual themes and the tag dimensions are related to H{B€'€¥a i = CXuuaXii; X t;. As this optimization scheme

semantic topics of tags. The basic intuition behind thiskigr  11€s to fit to the numerical values of 1 and 0, we refer it as the

The incorporation of user information will help extract reor 0/1 SchemeTo alleviate the sparse problem and better utilize

compact and informative image and tag representationsén tf1€ {@9ging data, in this paper, we propose RMTF for factor

semantic subspaces. The task of image tag refinement is thgrence, which is detailed isectionlV.

solved by computing the cross-space image-tag associatiog_ Tag Refinement

In this section we first introduce the idea of jointly modglin h . ¢ sub | . he derived
the user image and tag factors into a tensor factorization, ' 1O0M the perspective of subspace learning, the derive

framework, then explain how to employ the derived factorfél(’ttor matriced/, I, T can be viewed as the feature represen-
for tag refinement. tations on the latentiser, image tag subspaces, respectively.
In the following, we denote tensors by calligraphic u Asrrlllustrr?éedt mnFlg.tI)S.(c)i eac? irrgw of :f:e fa(1:_tr(])r m?trrltcis
percase letters (e.g)), matrices by uppercase letters (e.ggod ?‘isnpo Smolt(ijli(relo rjec (:Jstlen r?(?e ot e:g)'th eir::to © ?i S
U,1,T), vectors by bold lowercase letters (e.g.,z), scalars elines a mulli-inear operation and captures thé€ Inteyas

by lowercase letters (e.qu, i) and sets by blackboard bolg@mong different subspaces. Therefore, multiplying a facto
letters (e.g.U, T, T) ’ matrix to the core tensor is related to a change of basis. We

define

0 otherwise

Ill. PROBLEM FORMULATION

(@,3,8)€|U|x |T|x|T|

TV .= Cx, T (4)

A. Tensor Factorization then7V! ¢ R"v*7*ITl can be explained as the tags’ feature

representations on theser x image subspace. Eachy; x ry

There are three types of entities in the photo sharin . .

. , : . ce of matrix corresponds to one tag feature representati

websites. The tagging data can be viewed as a set of triplels. : Ul . . .
tsummmgT over theuser dimensions, we can obtain

Let U, I, T denote the sets of users, images, tags and the & , . )
of observed tagging data is denoted By c U x I x T, ﬁﬁe tags’ representations on theiage subspace. Therefore,

- i - iati [TIx|T|
i.e., each triple{u, i,t) € O means that uset has annotated the cross-space image-tag association matiX € R

. O i I can be calculated &s:
image: with tag t. For example, the left image in Fig.2(a)
corresponds to three triplets i sharing the same image and XM =1 (T x,1]) (5)
user. The ternary interrelations can be viewed as a thredemo , _ _ _ -

b here the modes are r imageandtaa. Therefore In practice, for new images not in the training dataset, we @japrox-
cube, w_e e - nh&e_ d g g »imate their positions in the learnt image subspace by uspmyoaimated
we can induce a three dimensional ten3be RI!VIXIIXITI  ejgenfunctions based on the kernel trick [29].
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In the experiment, we fixs = 10.
Fig. 5. Tagging data interpretation. (a) 0/1 scheme (b)irenkcheme

IV. RANKING BASED MULTI-CORRELATION TENSOR

FACTORIZATION and optimizes for correct ranking. For exampjéy, i, t*) >
In this section, we detail the proposed RMTF model. We(u,i,t~) indicates that useu considers tag™ is better to
first introduce a novel ranking based optimization scheme fdescribe imagé than tagt™.
better interpretation of the tagging data. Then the mutipl We provide some notations for easy explanation. Each user-
intra-relations among users, images and tags are utilizedimage combination(u,:) is defined as gost The set of
the smoothness constraints for the latent factors and yinafibserved posts is denoted Bs):
we present a convergence provable learning algorithm. Po = {(u,8)|3t € T, yuis = 1} )

A. Ranking based Optimization Scheme The neutral triplets constitute a Sbf:

Traditional factorization models [7], [10] approximateeth M = {(u,i,?)[(u, 1) € Po} (8)
tagging data based on ti%1 schemeUnder the situation of ¢ s arpitrary to treat the neutral triplets as either pigsitor

social image tagging data, the semantics of encoding all {g441ive and we remove all the tripletslifi from the learning
unobserved data & are incorrect, which is illustrated with process (filled by bold question marks in Fig.5(b)).

the running example of Fig.3(a): For the training pair determination, we consider two char-

e Firstly, the fact thauser3has not given any tag image2 acteristics of the user tagging behaviors. On one hand, some
andimage4does not mean thaiser3considered all the tags concepts maybe missing in the user-generated tags. We assum
are bad for describing the imag&#laybe he/she does notthat the tags co-occurring frequently are likely to appaahe
want to annotate the image or has no chance to see §&ne image (we call icontextrelevan). On the other hand,
image. users will not bother to use all the relevant tags to describe

the image. The tagsemantierelevant with the observed

e Secondly,userl annotatesmagelwith only tag3 It is . o s
Y g Y 1ad are also the potential good descriptions for the image.

also unreasonable to assume that other tags should not ; i ble. Looki t th ;
annotated to the image, as some concepts may be miss WO assumplions are reasonablé. L.ooking at the running

in the user-generated tags and individual user may not H& mgle,u;grlEnnotatedma%e:%]\:vlm ta\?VS (we assum:f ag:;
familiar to all the relevant tags in the large tag set. Is to describe Nemo, e.giag ish”). We can see that the

tags “water”, “sea”, “coral” which arecontext-relevantand

According to the optimization function in Eq.3, the leamin “animal”, “seafish” “clownfish” which aresemantic-relevant
process tries to predict for both cases, which is apparentlywith the tag “fish” are all good descriptions fimagel To
unreasonable. To address the above problems, we presepedorm the idea, we build a tag affinity grapti’” based on
ranking optimization scheme which intuitively considen® t tag semantic and context intra-relatidisThe tags with the
user tagging behaviors and addresses the issues of misgjrigghest affinity values are considered semantic-relevant
tags and noisy tags. context-relevant.

We note that only the qualitative difference is important Regarding the possible noises in the user-generated tags, i
and fitting to the numerical values afand0 is unnecessary. is risky to enrich the semantic or context relevant tags into
Therefore, instead of solving an point-wise classificat@sk, the positive set. Therefore, we choose a conservativeegirat
we formulate it as a ranking problem which uses tag paivge keep the unobserved tags semaittiglevant and context-
within each user-image combinatidn, i) as the training data irrelevant with any of the observed tags, to form the negative

9 We call triplets like(us, iz, :) and (us, i, :) as the neutral triplets. 10 Detail of W7 construction is introduced in next subsection.
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tag set. Note that the ranking optimization is performedrove :

each post and within each past, ) a positive tag se‘ﬂPL. T_ | Cxeuaxitx (T-017 —THe1T, )
and a negative tag sét; . are desired to construct the trainind” ' CEA e L]
pairs. Given a postu,i) € P, the observed tags constitute

a positive tag set (the corresponding triplets are filled log p

signs in Fig.5(b)): p is a long row vector of lengt} ;7 cp |T:{;| T -]
Therefore, with our novel ranking optimization scheme, the
tucker decomposition model amounts to minimizing:

The negative tag set is constituted as:
9 9 FpT) x 1y (13)

Toi= {t|(u’z) €Po Ayuie # 1N E NTL} (10) Note that the work in [30], [31] provided similar ranking
whereN..+ indicates the set of tags relevant to the annotat§ghemes for recommender systems, while the main difference
ui is that we explicitly consider the incomplete and ambiguous
characteristics of the user-generated tagging data art filt
"But the guasi-positive tags. In their formulation, givenastp

i /) € IPp, all the tags that not annotated byer uto image i
corresponding to tags € N+ are also removed from the (u,9) € Po 9 5 g

_ ) wi _ _ will be treated as negative tags, and the correspondingimega
learning process and filled by plain question marks. The minyq; is.

signs indicate the filtered negative triplets.
Any tagt € T is considered a better description for

Ty: = {tl(u,i) € Po Ayuie = 1} ©9)

tags in posﬁ(u,z‘). Thenty, t5 € T, , , presumablyagl and
tag?2 are relevant téag3. The final tagging data representatio
for the running example is illustrated in Fig.5(b). The leigs

T;z - {t|(ua Z) €Pop A Yu,it 7& 1} (14)

image i than all the tags € T, ;. The pairwise ranking apparently, this formulation ignores the issues of missamgs
relationships can be denoted as: and noisy tags, which cannot be directly applied to the $ocia
tagging problems. In addition, Rendle employed I-1 norm for
regularization, while in the proposed RMTF, additional mul
The optimization criterion is to minimize the violation dfe tiple intra-relations are utilized as the smoothness caimgs,
pairwise ranking relationships in the reconstructed tengo Which is detailed in the following subsection.

which leads to the following objective:

Guyists > Yuyits < t1 € T:,i Ntp e, (11)

i O« —q- = B. Multi-correlation Smoothness Constraints
UI?I]I}C Z ( Z Z f(yu,z,t* o z,t+>> (12)

(@,1)€Po t+€T] t-€T_ . In addition to the ternary interrelations, we also collect

h . . . ing . multiple intra-relations among users, images and tagssé he
w eref '_]R 7 [0’_1] IS @ monotonic Increasing function (€-0-intra-relations constitute the user, image, tag affinitgpdns
the logistic sigmoid function or Heaviside function). Thgh WU € RVXIUL Wl ¢ RIUXI agnd wT € RITIXITI re-

necessary algebra manipulation, we derive the matrix farm Qpectively. Two objects with high affinities should be mappe

the objective function: close to each other in the learnt subspaces. Therefore, the
: intra-relations are employed as the smoothness con&raint
min f| € Xuta xid; % (T ® T T;r; ©1l, ) [preserve the affipity structure in th(_a I0\_N dimensional facto
U,IT.C ’ @i ' a7 Jsubspaces. In this subsection, we first introduce how to con-
: struct the affinity graphs, and then incorporate them int® th
tensor factorization framework.

x 1 N
ZW”G%‘T;;“‘T;;‘ User affinity graph WY. Generally speaking, the activity of
where® is the cross product. switches to a component-wisel®iNiNg in interesting groups indicates the users’ inteyesd
function and1, € R!*P is 1-vector with all the elements backgrounds. Also, the group statistic is more easy to obtai

1, =1. TT- is the positive tag set for the poki, i): compa_red vyith other privacy concerning information, e.g.,
ust searching history, the query log, etc. Therefore, we measur

N (@i* @it the affinity relationship between user, andw, using the
Ta,% =1h P ’f'|’]I‘f7| co-occurrence of their joined groups:
o — M 1
Tt € R s the tag vector matrix composed by the Wonn (U ) + 12(tn,) (15)
’ T
positive tags inT!.: 7. = <tT,~ BORTERY T - > _ where n(u,_”) is the number of groups uset,, j(_)ir_led and
(f"jﬁ it (@) (@9 7:Tg 5] n(tm, un) is the number of groups,, andw,, co-joined.
Heret; 7, ; is ;""" -th row vector of the tag factor matrix. image affinity graph W!. To measure the visual similarities

Note that the number of positive and negative tags petween images, each image is extractet&dimensional
the post(a, i), |T;.| and|T_ .|, are constant once the tagfeature vectod as the visual representation [10], [9], including
relevances are determined. For simplicity, we denSte= 225-d blockwise color moment features, 128-d wavelet textu
2 (@HePo |T;;| -|T7 ;| and further define features and 75-d edge distribution histogram featureg. Th
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image affinity graphi? is defined based on the followingAlgorithm 1 Alternating Learning Algorithm
Gaussian RBF kernel:

Input;
User tagging tensay € R/VI*ITXITI: affinity graph adjacency
matricesW? € RIVXIVL wi ¢ REXIT wT ¢ RITIXITI

. . rank of the factor matrices'y, rr, rr; and the weighting
whereo; is set as the median value of the element§¥in. parametersy, 5.

Tag affinity graph W7. To serve the ranking based optimiza©utput:

tion scheme, we build the tag affinity graph based on the tag User. imageandtag factor matriced/ € RIVbrv, 1 e R,
context and semantic relevance. The context relevancegof ta 7 € R'™*"” and the core tensaf € R"*"/*"7.

t., andt,, is simply encoded by their weighted co-occurrencet: initialize random dense matrices® e RIVI*"v, 1O ¢

erln — o lldm—dn|*/o] (16)

in the image collection: RIX7r, 7@ ¢ RITIXTT: ¢ 0.
n(tm tn) 2: repeat
o, = ———— @ar s CUY = argming(UW, 1V, T® )
m,n t (t
o) + (1) P A i AT 0
. . . fH1) . 1 f41
For tag semantic relevance, we follow Létial.[9]'s approach 5 I(;M)) = argmin g(U(::rl))7 L(tTJr(i;’ c (t)+1)
and estimate the semantic relevance between,tagnd t, s: tT% L ming(U™, 0, T, ¢ )
based on their WordNet distance: g until converge
2 1C(les(tm, tn)) 9 return U =U%"Y =10 17=7tDc_clt-D

by =
e IC(ty) + IC(t,)
whereIC(-) is the information content of tag, arids(¢;, ;)

is their least common subsumer in the WordNet taxonomy.
The tag affinity graph is constructed as:

(18)

[
I

-
N
T

=
1S)
T

=)
T

)
T

Objective Function value

where A\, + Ay = 1, A, and )\, are the weights of context T S o
relevance and semantic relevaiéeNote that we have no O A«
requirements on how to build the affinity graphs and othle_lrg
intra-relation measurements can also be explored.

The affinity graphs are utilizgd as the regularization terms Learning Algorithm
to impose smoothness constraints for the latent factotghAl _ o
affinity graphs are normalized. Take the image affinity graph Néxt we present an algorithm to solve the optimization
W1 as an example, the regularization term is: problem. Obviously, directly optimizing Eq.21 is infedsib
and we use an iterative optimization algorithm. To begirhwit

we first provide the following theorem:

WL Mim — inl)? 2 o
Z_:l ; mnll? inll ( Theorem 1 g is strictly convex w.r.tU, I, T' andC, respec-
e tively.
5 . . .

wherek|| ' |r|] (ljenotes the Frobt_amus r;orm. _The basic |?ea We propose an alternating learning algorithm (ALA) to learn
to make the latent representations of two images as closeys ¢y .(org by iteratively optimizing each subproblemsicith
#'shown in Algorithm 1. According to Theorein each sub-
problem in Algorithm 1 has a unique solution. In practiseg as

is convex w.r.t., it is also convex w.r.t. each,,.}? Therefore,

I

. 6. The convergence curve of Algorithm 1.

L

possible if there exists strong affinity between them. We ¢
achieve this by minimizingr(I " L;I), wheretr(-) denotes
the trace of a matrix and.; is the Laplacian matrix for the
image affinity matrix}¥’ 7. Similar regularization terms can beW en performing optimization o, we optimize one row
added for the user and tag factors. In this way, the extracted ., - e with other rowsi i i)
data characteristics are consistent with such prior knigde . Lt b et L T

: ; . fixed. We prove that the learning algorithm has a good
which alleviate the sparsity problem as well as control Ov%ronvergence property.
the outcomes. '

Combining with Eq.13, we obtain the overall objectivérheorem 2 The alternating learning algorithm converges to

function: a local optimum.
. The proof of Theorem 1 directly follows the regularized matr
U??}%fcg = f ") x 1y + BUIUIP + [T + I TI) factorization [32] and is omitted here. We provide the proof
+a(tr(UT LyU) + tr(IT LiI) + tr(T T LyT)) of Theorem 2 inAppendixA. With the learnt factors, tag
(21) refinement is performed by computing the cross-spaege
tag associations as discussedSectionlll.B.

where |[U]||* + [|T||* 4 ||T[[* is I-1 regularization term to |n the experiments, we observed that the proposed ALA
penalize large parameters, and 3 are weights controlling converges to the minimum after about 20 iterations. Fig.6
the strength of corresponding constraints.

12 The user factof/ and tag factdF are the same cases as the image factor
11 |n the experiment, we choose. = 0.9 and \s = 0.1. I.
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TABLE |

THE STATISTICS OFNUS-WIDE-USER15 v; € RITXIVITE and vp e RITXTITL n this way, ry,
r; and rp are chosen by preserving a certain percentage
Users|U| | Images|T| | Tags|T| |O| of singular values in the unfolded matrices. By fixing small
USER15 3,372 124,099 5,018 | 1,223,254 values ofa = 0.001 and 3 = 0.001, we investigated the

average F-score of tag refinement on NUS-WIDE-USER50
by tuning the percentage of the preserved energy from 50% to
shows the change of objective function values in the convey594. The result in Fig.7(a) indicates that 80% performs well
gence process. We perform our experiments on MATLAB ingn NUS-WIDE-USER50. By preserving 80% energy of the
PC with 2.13GHz CPU and 16 GB memory. The convergengggular valuesyy = 25, r; = 105 andry = 18.
time on the experimental dataset is about 6 hours. Actually,The regularization terms. and 3 control how much the
in the proposed learning algorithm, each factor veéigris tensor decomposition incorporates the information of &gfin
updated independently of other vectors, which gives riggto intra-relations. We keepy = 25, r; = 105 andrp = 18.
tentially massive parallelization (e.g. parallel MATLABJhe-  Fig.7(b) shows the impacts af and3 on the average F-score.
oretically, the algorithm achieves a linear converge sppedn = 0.01 and 8 = 0.001 achieves the best result. From the
which is proportion to the number of used processors [33ksults, we can see that the performance is more sensitive to
Distributed storing also provides a convenient way to storghe regularization weights than to the rank numbers. The poo
very large matrices. The largef;, 7, andry are, the more performances whea = 0 or 8 = 0 confirm with the intuition
obviously the speedup is. that purely affinity constraints drl norm constraints cannot
Note that the user, image and tag factor matrices are iitiglenerate good latent factors. For the remaining experiment
ized randomly in the proposed learning algorithm. Likewise selectr; = 25, r; = 105, rp = 18, o = 0.01 and 3 = 0.001.
other non-convex learning problems, the initializationtlo
factor matrices is very important to our learning algoritiive

: . X o T C. Performance Comparison
will be working towards investigating a proper initializat ) .
scheme in the future. To compare the performances, five algorithms as well as the

original tags are employed as the baselines:

V. EXPERIMENTS e Original tagging (OT): the original user-generated tags.
A. Data Set e Random walk with restart (RWR): the tag refinement

We perform the experiments of social tag refinement on the algorithm based on random walk [25].
large-scale web image dataset, NUS-WIDE [1]. It containe Tag refinement based on visual and semantic consistency
269,648 images with 5,018 unique tags collected from Flickr (TRVSC, [9]).
We crawled the owner information according to the image 1Q
and obtained the owner user ID of 247,849 imatfe$he
collected images belong to 50,120 unique users, with each o ]
user owning about 5 images. We select the users owniflg -OW-Rank approximation (LR): tag refinement based on
no less than 15 images and keep their images to obtain Iow-ra}nk approximation with content-tag prior and error
our experimental dataset, which is referred as NUS-WIDE- SParsity [10].
USER15. Table | summarizes the collected dataget.is e  Multiple correlation Probabilistic Matrix Factorization
the number of observed triplets. The NUS-WIDE provides (MPMF): the tag refinement algorithm by simultaneously
ground-truth for 81 tags of the images. In the experiments, modeling image-tag, tag-tag and image-image correlations
we evaluate the performance of tag refinement by the F-score into a factor analysis framework. [7].
metric:

Multi-Edge graph (M-E Graph): a unified multi-edge
graph framework for tag processing proposed in [28].

Fscore — 2 X Precision X Recall (22) In addition, we compared the performances of the proposed
Precision + Recall approach with four different settings: 1) TF without smgoth
ness constraints, optimization under /& schem&TF_0/1),
B. Impact of Parameters 2) TF with multi-correlation smoothness constraints, ma-

The proposed approach, RMTF, has five parameters, fiff under thed/1 schemgMTF_0/1), 3) TF without smooth-
rank of factor matrices', r7, v+ and the regularization N€SS constraints, optimization under tagking schemevith
weightsa, 3. We explore the influence of different parametef€9ative set constructed as Eq.14 (f@nk) and 4) TF with
settings on a smaller but representative dataset, NUS-wiDBUlti-correlation smoothness constraints, optimizatiorder
USERS0, which has 588 users and 55,141 images by filteriﬁng_l"i‘E;“”g schemewith negative set constructed as Eq.10

out the users with less than 50 images. ) _
Choosing the rank of factor matrices;, ; and r¢ in Table Il lists the average performances for different tag

Tucker Decomposition model is not trivial. A practical apti refinement algorithms_. Itis shown t_hat RWR fails on the noisy
is to use ranks indicated by SVD on the unfolded matrices #eP data. One possible reason is that the model does not

each mode [34]. The tensgt can be unfolded along differentfully explore the image-image intra-relations. Both TRVSC
modes, leading to three new matricdy < RIUIX/TIT] and M-E Graph suffer from the high computation problem

and the performances are limited on large-scale applitgtio
13 Due to link failures, the owner ID of some images is unavédab As their methods are difficult to implement, the results of
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Fig. 7. Impact of parameters (a) rank numbers d¢band 3

TABLE Il
AVERAGE PERFORMANCES OF DIFFERENT ALGORITHMS FOR TAG REFINENT

oT RWR | TRVSC | M-E Graph LR MPMF | TF_0/1 | MTF_0/1 | TF_rank | RMTF
F-score || 0.477 | 0.475 0.490 0.530 0.523 | 0.521 0.515 0.542 0.531 0.571

uOT
RWR
HLR

= MPMF
uTF_0NM
= MTF_0N
BTF_rank
u RMTF

F score

Fig. 8. F-score of a subset of the 81 tags for different algors

TRVSC and M-E Graph are taken from [28], which conducteslower convergence speed than MDOFL and RMTF.
tag refinement on a selected subset of NUS-WIDE. Their
results on the whole NUS-WIDE dataset tend to decrease.
Using factor analysis methods, MPMF and LR perform well on
sparse dataset, which coincides with the authors’ demmns 1 tags are provided in Fig.8. We can see that, for simple

tion. For different settings of the proposed approach, RMTConcepts like “airport”, “beach”, “bear” and “birds”, oureth-

and MTF_0/1 are superior than other algorithms, showing thé ; . .
. . . . . ods achieve a comparable, if not worse performance with the
advantage of incorporatingser information. Interpreting the

. . . baselines. The reason is that images containing these isnce
tagging data based on the proposadking scheménstead of . ; : ; :
. ) describe feasible and tangible objects, where image under-
the conventional 0/scheme RMTF is generally better than standing can be effectively conducted by propadating Visua
MTF_0/1. Without smoothness priors, T0/1 fails to preserve 9 y y propagating

the affinity structures and achieves inferior results. similarities and only exploiting thenage-tagela_tloni. Wh'le’ .y
for more abstract and complex concepts like “cityscape”,

We note that TFrank follows the same spirits as Rendle’searthquake”, “military”, “protest”, existing methodsdasing
works [30], [31] and was implemented to perform performanan utilizing image appearances and tag semantics fail and
comparison with the proposed RMTF method. Consistent wittur methods show remarkable improvement thanks to the
the discussion isectionlV.A that Rendle’s works cannot fully incorporation ofuserinformation. In addition, we also found
account for the issues of missing tags and noisy tagstarik that for those uncommon concepts like “elk” and “glacier”,
obtains less improvement than the proposed RMTF. Actuallypth the proposed methods and the baselines obtained no
without consideration on the utilization of smoothness-coimprovement and failed to perform image refinement. The
straints, TErank is even inferior to MTEO/1. In addition, failure of our methods may be due to the severe sparse user
according to the negative set selection strategy ofr@ik, the distribution on these concepts. Those uncommon concepts
optimization algorithm needs to consider redundant pdirs focalize to small groups, which make it difficult to propagat
training samples. It turns out that generally_Té&nk achieves information between users.

The detailed performances for a representative subsetof th
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Original Tags:
outdoor 2006
abandoned

Refined Tags:
building nature
outdoor dark
mosaic

Original Tags:
Null

Original Tags:
airport 737
virginblue

Refined Tags:
plane roadart
airport airplane

Refined Tags:
face black jaguar
cat pet

(b)
Original Tags:
pet feline cat

chat Original Tags: Original Tags:
=t eyl i california views tongue walking
Refm.ed Tags. T e antigua 24h
cat white fish Refined Tags: [N —tISuuSNNNER = - —------
water macro sculpture water Refined Tags:
california light walking tree
bravo road man river
(d) ®
Fig. 9. Example of tag refinement results. For each imagetaé annotations are shown.
. TABLE Il
D. Case Studies FIVE NEAREST TAGS IN THE LEARNED TAG SUBSPACE FOR EACH OF THE

. . . . FOUR SELECTED TAGS
We show some case studies in this subsection to demonstrate

the effectiveness of RMTF. Fig.9 further illustrates thg ta Selected Tag Five Nearest Tags
refinement results for some exemplary images by the proposed cat grass, animal, pet, dog, vacation
RMTF framework. For examples of Fig.9(c) and Fig.9(e), it is flower blooms, butterfly, nature, spring, blossoms
very hard to restore the relations between tags and imadgs on airplane aircraft, travel, planes, photographer, airport
from the visual appearance, since the images are very cample buddhist buddha, religion, buddhism, thailand, ancient

With the aid ofuserinformation, it is observed that the tagger

of Fig.9(c) also tagged “mosaic” and “building” to images TABLE IV

FIVE NEAREST IMAGES IN THE LEARNED IMAGE SUBSPACE FOR EACH OF

and the tagger of Fig.9(d) is a “sculpture” fan. Therefohe, t THE FOUR SELECTED IMAGES
exploited semantic is propagated into the refined resulthé
original tag set of Fig.9(a), only the tag “airport” is reddtto Image Five Nearest Images

the image content. After tag refinement, the subjective tag
are removed and the context-relevant tags, “airport”, dfpa
and semantic-relevant tags “plane” are enriched through th
proposed ranking-based optimization scheme. Fig.9(&)(f)
ther show this advantage. Moreover, Fig.9(b) demonstrate
the capacity of the proposed framework on automatic imagse
annotation. It can be seen that the experimental resulis v
date our intuition that incorporation afserinformation with :
appropriate optimization scheme and smoothness cortstrain;
contributes to a better modeling of the tagging data andréeri
compactimageandtag factor representations.

We have employed smoothness constraints into the op
timization function to preserve the affinity structure ireth
low dimensional factor subspace. To show the effectiveness
of smoothness ConStraintS, we show in Table Il and Tab&]titiesiuser; imageandtag' we can app'y the model to many
IV the five nearest tags and images for the selected tag a&fifler real-world tasks.
image, respectively. It is shown that RMTF succeeds to minel) Personalized image searchin personalized image
the semantic correlations among tags and images from i&ch, the returned image results depend on not only their
observed tagging data. Context and semantic relevant tegs @jevances with the query keywords, but the relevances with
close in the derived tag subspace, while in the image subspage searchers. For our case, the associations betweeransers
visual and sematic similar images are clustered together. images can be estimated by measuring uker-imagecross-
space distances in the same spirits as Eq.5, which reflect the
users’ preferences and can be leveraged to re-rank theeeltur
images.

In the tag refinement task, we employed the derived factorAn experiment is conducted. Following [35]'s evaluation
matrices to analyze thenagetag associations. As we modelframework, in the context of Flickr, the photos markea-
the social tagging data by taking into account all essentiabrites by the searcher are treated as the ground-truth. We

@ Y~
LR
‘ =

E. Applications
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this paper is image tag refinement, we did not fully adapt
RMTF to other applications. For example, typical methods
of personalized tag recommendation (e.g., FolkRank) will

W tagrevelance

W timeline

mview number consider the user and item bias, while in our implementation

mcF we did not explicitly consider this. With careful adaptiam t

il these applications, the performance of RMTF has the patenti
to improve.

The proposed RMTF can also be applied to other appli-
cations, e.g.,user profile construction and user recom-
mendation. It is believed that users express their individual
06 interests through tags [39], thus the latent user interesmts
05 be understood by estimating thisertag association. Besides
& Popular_| exploring the interrelations, we can directly evaluateitiiea-
= Popular_U relations among users, images and tags in the corresponding
H A-PageRank subspaces. Users with similar feature representationdean
= Folkfank recommended to each other to connect people with common

interests and encourage people to contribute and share more
content.

NDCG@1 NDCG@5 NDCG@12

Fig. 10. Evaluation results for the personalized imagecbear

0.3

F-score

0.2

0.1 W RMTF

Topl Top3 Top5 Top10

Fig. 11. Evaluation results for the personalized tag recemdmation VI. CONCLUSIONS

o We have presented a ranking based multi-correlation factor
chose 30 users who have the largest numbéawbritesin the  551ysis method that jointly models theser image and tag

image collection as the searchers. 58 tags frequently apgeas,ciors. We argued that by exploiting the underlying stitet

in their favorite images are selected as the queries. Theameps the photo sharing websites, our model is able to learn
of NDCG@k is utilized to evaluate the performance. For eaghore semantics-specified image and tag descriptions from a
query, we re-rank the top 50 (if there are) results by the taggrpus of social tagging data. The experimental results on
relevance, and average the evaluated scores over quedes @ections from the photo sharing site Flickr show that our
searchers. The average results are demonstrated in Figi8qel performs well on the tag refinement task.

where we compare with two personalized methods, user—rne potential applications and two simple experiments are
based collaborative filtering (CF, [36]) and user interé&tsed 556 presented in the paper. It is an interesting issue tptada
preference prediction (UI-PP, [35]) and three non-perbped e proposed RMTF to more related applications in the future
rules depending on relevance, view number and timelings. 5qgition, there exist different forms of metadata, sush a
We can see that the three personalization methods OUIerQ{escriptions, comments, and ratings. While we focus on tags
the non-personalized rules and RMTF achieves comparap|eihis paper, how to model other metadata for a overall

performance with state-of-the-art. understanding is also our future work.
2) Personalized tag recommendatioithe goal of a per-

sonalized tag recommender is to predict tags for each user
on a given web item (image, music, URL or publication).
The reconstructed tensgt captures the ternary relationships
between users, images and tags, where the valug, of Proof: For easier explanation, we rewrite the optimization
indicates the likelihood of usew; using tagt; to annotate function of Eq.21 into a general form:

imagei;. Therefore, the tags with the highegt ;. can be .

recommended to user as the potential tags for itetn Inin 9(0) (23)

We conducted the experiment on a small benchmark data\%tere@ are the model parameters bt I, 7, C and denoted
from Bibsonomy:* which consists of 116 users, 412 tag SO = (01,0, 050,), X is a Cartesian [;roduct of closed

and 361 items (publications). For each user, one post | )
randomly removeg for evaluation. We averaged the F?scor%gsnvex setsXy, Xy, Xy, Ko
in top-N recommended tags over users. Four personalized X =X; x Xy x X3 x Xy (24)
tag recommendation algorithms are performed as baselines:
most popular tags by item (Popul#); most popular tags We assume thakt,, X,, X3, X, are closed convex subsets of
by user (PopulaiU), Adapted PageRank [37] and FolkRank® ™" "™, RIVPre, Rl RITXrr, respectively. Then
[38]. Fig.11 illustrates the results. It is shown that with ath€ subproblems in Algorithm 1 can be formulated into a
increasing number of recommended tags, the F-score desre&&lique form:
less steeper for RMTF than other algorithms. g+ _ arg min g(e(tJrl) D g ) H(t))

Note that we provide these two experiments to demonstrate’ gex,” L Tk Tl 4(25)

the potentials of the proposed framework. As the focus of i o i ) \
According to Theoreml, the minimum in Eq.25 is uniquely

14 http:/Aww.bibsonomy.org/ attained. In the following, we first prove the algorithm will

APPENDIX
PROOF OFTHEOREM 2
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converges to a limit point, and then show the limit point is g8]
local optimum.
An auxiliary vector is introduced:

t t+1 t4+1 t
20 = (0D D g

Bl

0%") [10]

By Eq.25, we obtain

9(0") = g(z}") = (26)
Let © = (61,---,64) be a limit point the sequencgO"}.
SinceX is closed O € X. Eq.26 implies sequendg(0*))}
converges tg(0).

Let {0®)|j = 0, 1,---} be a subsequence ¢B")}. We
first show that{ Z"7) — ©(t:)} converges to zero ag— oo.
Assuming the contrary tha{tZ(tJ —0®)} does not converge
to zero, we defing(®) = ||z — ©t)|| and3y,7t) > 4.
Let st = (z{") — @<t~>) /4. Thus, ") = @) +
() 519), 61 = 1 and sy'3), = 0. Fix somee € [0, 1] with
0 < ey < ~%), Therefore,
9(Z81)) = g(01) 44t 5(t)) < g(O) 4655t < g(Ot)) [18]
We assumeéim;_, 55” = 5 and take the limit of the above [19]
equation agi — oo, to obtain:g(©) < g(© + €¥3) < g(©).

We have

11
> g(Z0) > g(O D), vt -
[12]
[13]

[14]
[15]

[16]

[17]

9(0) = 9(6 +¢48), Vee[0,1] 120)

Since 4s # 0, this contradicts the fact thaj is uniquely
minimized w.r.t. each subproblem. Therefore, we conclhdeé t

— et

[21]

[22]
lim Z

7—0

From Eq.25, we have (23]

9(Z17) < (61,057,657 61),  vo, € X, 24]
Taking the limit asj — oo, we obtain
g(é) S 9(917 9_2; 9_37 9_4>; v91 S Xl (27)

Similar conclusions can be obtained fés, 63 and 6,, and (23]

we conclude tha® minimizesg over X. Combining with the
converge conclusion proved aboyds guaranteed to convergel26]
to a stationary point. Becaugeis not jointly convex w.r.tU,

I, T and(, the stationary point is a local optimum. [27]
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