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Abstract—Large-scale user contributed images with tags are
easily available on photo sharing websites. However, the noisy or
incomplete correspondence between the images and tags prohibits
them from being leveraged for precise image retrieval and
effective management. To tackle the problem of tag refinement,
we propose a method ofRanking based Multi-correlation Tensor
Factorization (RMTF), to jointly model the ternary relations
among user, image and tag, and further to precisely reconstruct
the user-aware image-tag associations as a result. Since the
user interest or background can be explored to eliminate the
ambiguity of image tags, the proposed RMTF is believed to
be superior to the traditional solutions, which only focus on
the binary image-tag relations. During the model estimation, we
employ a ranking based optimization scheme to interpret thetag-
ging data, in which the pair-wise qualitative difference between
positive and negative examples is used, instead of the point-wise
0/1 confidence. Specifically, the positive examples are directly
decided by the observed user-image-tag interrelations, while the
negative ones are collected with respect to the most semantically
and contextually irrelevant tags. Extensive experiments on a
benchmark Flickr dataset demonstrate the effectiveness ofthe
proposed solution for tag refinement. We also show attractive
performances on two potential applications as the by-products
of the ternary relation analysis.

Index Terms—tag refinement, factor analysis, tensor factoriza-
tion, social media

I. I NTRODUCTION

With the popularity of Web 2.0 technologies, there are
explosive photo sharing websites with large-scale image col-
lections available online, such as Flickr,1 Picasa,2 Zooomr3

and Pinterest.4 These Web 2.0 websites allow users as owners,
taggers, or commenters for their contributed images to interact
and collaborate with each other in a social media dialogue. Its
typical structure (Flickr as example) is illustrated in Fig.1,
in which three types of interrelated entities are involved,
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Fig. 1. An integrated structure of social tagging in Flickr

i.e., image, tag and user. From this view, we can deem the
user contributed tagging data as the products of the ternary
interactions among images, tags and users.

Obviously, given such a large-scale web dataset, noisy and
missing tags are inevitable, which limits the performance of
social tag-based retrieval system [1], [2]. Therefore, thetag
refinement to denoise and enrich tags for images is desired to
tackle this problem. Existing efforts on tag refinement [3],[4],
[5], [6], [7], [8], [9], [10] exploited the semantic correlation
between tags and visual similarity of images to address the
noisy and missing issues, while the user interaction as one of
important entities in the social tagging data is neglected.

As above mentioned, users are the originator of the tagging
activity and they are involved with images and tags in many
aspects. We believe that the incorporation ofuser information
contributes to a better understanding and description of the
tagging data. We take two simple examples to explain this
observation. As shown in Fig.2(a), both images are tagged
with “jaguar” by the two users (indicated by user ID,5) but
they have different visual content, i.e., a luxury car and an
animal respectively. Due to the well-known “semantic gap”,
traditional work on image content understanding cannot solve
the problem well. In this case, users’ interest and background
information can be leveraged to specify the image semantics.
That is, a car fan will possibly use “jaguar” to tag a ‘car’
image, while an animal specialist will use “jaguar” to tag a
‘wild cat’. Fig.2(b) shows three images from the FIFA 2010
final. We can see that different tags of “football” and “soccer”
are annotated to the visually similar images. Considering
the tagger information, we can easily understand this phe-
nomenon: users have different tagging patterns. Maybe user
88077630@N00is a Spanish fan while user14915523@N05

5 The user ID of the taggers can be acquired from the Flickr API:
http://www.flickr.com/services/api
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and43175983@N00are Americans. These two examples can
be considered as the reinforcement of tag understanding by
introducing theuser information. Note that it is not necessary
to explicitly know the users’ interests or profiles. What we
are interested in is the fact that the tags are annotated by
different users and there are variations in individual user’s
perspective and vocabulary. Incorporation ofuser may bring
similar benefits to the image understanding. On top of visual
appearance, the fact that images from the same user or tagged
by similar users can capture more semantic correlations.

The goal of our work is to improve the underlying asso-
ciations between the images and tags provided with the raw
tagging data from photo sharing websites. To this end, in this
paper, we solve it from a factor analysis perspective and aimat
building the user-aware image and tag factor representations.6

With the user factor incorporated, the image and tag factors
will be free to focus on their own semantics and we can obtain
more semantics-specified image and tag representations. A
novel method namedRanking based Multi-correlation Tensor
Factorization(RMTF) is proposed to tackle the tag refinement
task. The framework is illustrated in Fig.3. It contains three
primary parts: data collection, RMTF and tag refinement. For
data collection, three types of data including users, images
and tags as well as their ternary interrelations and intra-
relations are collected.7 In the RMTF module, we utilize tensor
factorization to jointly model the multiple factors. To make full
use of the observed tagging data and partial use of unobserved
data, we present a novel ranking scheme for model estimation,
which is based on the pair-wise qualitative difference between
positive examples (i.e., observed tagging data) and negative
ones (i.e., partial unobserved data). The collection of negative
examples is carried out by analyzing user tagging behavior.
The issue of noisy tags and missing tags are considered in a
conservative filtering strategy by exploiting the tag correlation
on context and semantics. Besides, the multiple intra-relations
are employed as the smoothness constraints and then the
factors inference is cast as a regularized tensor factorization
problem. Finally, based on the learnt factor representations,
which encode the compact users, images and tags representa-
tion over their latent subspaces, tag refinement is performed
by computing the cross-spaceimage-tag associations.

The main contributions of this paper are summarized as
follows.

• We introduceuser information into the social tag pro-
cessing and jointly model the multiple factors ofuser,
imageand tag by 3-order tensor.

• We propose the RMTF model to extract the latent factor
representations. A convergence provable learning algorith-
m is also presented.

• To make full use of the tagging data, a ranking optimiza-
tion scheme is proposed to leverage the incomplete and
ambiguous characteristics of user-generated tagging data.

6 These can be viewed as the feature matrices on the latent subspaces, which
are spanned by the images and tags. We detail factor matricesderivation in
Section3

7 We show a running example consisting of three users, five tagsand four
images in Fig.3(a).

(a)

(b)

Fig. 2. Example images from Flickr and their associated tagsand taggers

• RMTF provides an entrance to other potential applica-
tions in the social media and information retrieval fields,
which is discussed inSectionV.D.

The rest of the paper is organized as follows. Related work
is briefly reviewed inSectionII. In SectionIII we formulate the
problem and explain our basic idea. The detail of the proposed
RMTF is addressed inSectionIV. We report and discuss the
experimental results as well as the applications inSectionV.
Finally, the conclusion and future work are given.

II. RELATED WORK

In this section, we briefly review some of the research
literatures related to ternary analysis and image tag refinement.

A. Ternary Analysis and Applications

Tensor is a mathematical representation of a multi-way
array. The order of a tensor is the number of modes. A second-
order tensor is a matrix, and a higher-order tensor has three
or more modes. The most important tensor operation is tensor
factorization. Many tensor factorization methods have been
proposed, among which, CANDECOMP/PARAFAC (CP) and
Tucker Decomposition are the most popular ones. A good
survey for tensor factorization is provided in [11].

The advantage of ternary analysis is that we can use higher-
order tensor to capture the multi-dimension relational data and
employ tensor factorization to analyze their correlations. In the
last decade, interest in ternary analysis has expanded to many
fields, such as signal processing, numerical analysis, graphic
analysis, and so on. We do not intend to cover all the related
work and only focus on examples from the communities of
computer vision and data mining.

In [12], the authors presented a dimensionality reduction
algorithm based on tensor decomposition of N-mode SVD.
They demonstrated the power of multilinear subspace analysis
in the context of facial image ensembles. Heet al. [13]
also applied ternary analysis to the face recognition problem.
Li et al. [14] introduced an online tensor subspace learning
algorithm to the visual tracking problem. Considering the
influence of the environment changing in the tracking process,
Wen [15] extended the biased discriminant analysis (BDA) to
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Fig. 3. The proposed framework.

the tensor biased discriminant analysis (TBDA) for appearance
modeling and foreground extraction.

With the popularity of large-scale social media, massive
amounts of data with multiple aspects and high dimensions
are generated. Tensor provides a natural representation for
such data. In [16], tensor factorization is utilized for multi-
aspect data mining on the network data flow. Franzet al.
[17] modeled the Semantic Web by a 3-dimensional tensor
that enables the seamless representation of arbitrary semantic
links. Under the rich media social network scenario, such as
Diggs, Flickr, Last.fm, multi-relational data, user, item(post,
photo), keyword, comment, contact are involved. In [18], the
authors utilized 3-order tensor to model altogether users,tags
and items in music sharing websites, and tackled personalized
music recommendation based on latent semantic analysis.
Beyond ternary relationship modeling, recently, researchers of
[19] modeled the quaternary relationship among users, items,
tags and ratings as a 4-order tensor and conducted multi-
way latent semantic analysis. Linet al. [20] introduced tensor
factorization into photo sharing websites. The motivationis
to extract meaningful communities by modeling the multi-
relational social media contexts and interactions. As far as we
know, little work has focused on incorporating user interaction
to enhance the analysis of the correlation between images and
tags. Our work is the first to incorporate user information into
the task of image tag refinement.

One major challenge for ternary analysis is how to deal with
the sparse and large-scale data. Standard tensor factorization
methods do not account for the sparsity of the data. There
have been substantial developments on variations of CP or
Tucker Decomposition to account for the sparsity problem. For
example, Koldaet al. [22] developed a greedy CP for sparse
tensors that computes on triad at a time via an alternative
least square (ALS) method. Recently, several works tackled
the sparsity issue and avoided overfit by incorporating priors
and combining with other schema. Chiet al. [23] employed
the external information as smoothness priors into the tensor

factorization and provided a good probabilistic interpretation.
While in [24], the authors embeded a factorized representation
of relations in a nonparametric Bayesian clustering framework,
which achieves a tradeoff between the good predictive per-
formance and interpretable representations. In this paper, the
sparsity issue is addressed in two ways:

• The intra-relations among users, images and tags are
employed as multi-correlation smoothness constraints into
the tensor factorization model.

• We leverage the characteristics of user tagging activity and
introduce a novel ranking optimization scheme.

B. Image Tag Refinement

The literatures [10], [2] provide good surveys for the
research work on image tag refinement. Along the structure
of the tagging data illustrated in Fig.1, we characterize the
related work according to the resources they leveraged.

As a pioneer work, Jinet.al [3] employed WordNet to esti-
mate the semantic correlations among the annotated tags and
remove weakly correlated ones. The work of [25] performed
belief propagation among tags within the random walk with
restart framework to refine the imprecise original annotations.
In [6], Xu et al. proposed to jointly model the tag similarity
and tag relevance and perform tag refinement from the topic
modeling view. These work is typically based on thetag-
tag analysis. In [26], the authors explicitly considered the
tag-image and tag-tag relations and proposed a dual cross-
media relevance model for image annotation. Liuet al. [5]
proposed to rank the image tags according to their relevance
w.r.t. the associated images by modeling tag similarity and
image similarity. In [9], the improved tag assignments are
learnt by maximizing the consistency between visual similarity
and semantic similarity while minimizing the deviation from
initially user-provided tags. An interesting work is done by
Xie et al.[27], in which several important issues in building an
end-to-end image tagging application are addressed, including
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tagging vocabulary design, taxonomy-based tag refinement,
classifier score calibration for tag ranking, and selectionof
valuable tags. Recently, Liuet al.[28] proposed a multi-edge
graph based unified framework to solve the image annotation,
tag-to-region and tag refinement problem.Tag-tag, image-
imageandimage-tag relationships are explored in these work.

The most related work to this paper is [7], [10], which
solves the tag refinement problem through low-rank matrix
approximation. Zhuet al. [10] considered the tagging char-
acteristics from the view of low-rank, error sparsity, content
consistency and tag correlation. In [7], a factor analysis
model is proposed and the tag refinement problem is cast
as estimating the image-tag correlations. While these work
simultaneously modeled thetag-tag, image-imageand image-
tag relationships, they aggregated images’ tags over all users,
thereby losing important information about individual user’s
variation in tag usage. In this paper, we exploit the social
aspect of the photo sharing websites and consideruser factor
into the tag refinement problem. We believe that incorporation
of user information will facilitate explaining the tagging data
and lead to better estimates of image and tag factors.

III. PROBLEM FORMULATION

The low dimensionaluser, image and tag factor matrices
can be viewed as compact representations in the corresponding
latent subspaces. The latent subspaces capture the relevant
attributes, e.g., the user dimensions are related to users’
preferences or social interests, the image dimensions indicate
visual themes and the tag dimensions are related to the
semantic topics of tags. The basic intuition behind this work is:
The incorporation of user information will help extract more
compact and informative image and tag representations in the
semantic subspaces. The task of image tag refinement is then
solved by computing the cross-space image-tag associations.
In this section we first introduce the idea of jointly modeling
the user, image and tag factors into a tensor factorization
framework, then explain how to employ the derived factors
for tag refinement.

In the following, we denote tensors by calligraphic up-
percase letters (e.g.,Y), matrices by uppercase letters (e.g.,
U, I, T ), vectors by bold lowercase letters (e.g.,u, i), scalars
by lowercase letters (e.g.,u, i) and sets by blackboard bold
letters (e.g.,U, I,T).

A. Tensor Factorization

There are three types of entities in the photo sharing
websites. The tagging data can be viewed as a set of triplets.
Let U, I,T denote the sets of users, images, tags and the set
of observed tagging data is denoted byO ⊂ U × I × T,
i.e., each triplet(u, i, t) ∈ O means that useru has annotated
image i with tag t. For example, the left image in Fig.2(a)
corresponds to three triplets inO sharing the same image and
user. The ternary interrelations can be viewed as a three-mode
cube, where the modes are theuser, imageandtag. Therefore,
we can induce a three dimensional tensorY ∈ R|U|×|I|×|T|,

which is defined as:

yu,i,t =

{

1 if (u, i, t) ∈ O
0 otherwise

(1)

where |U|, |I|, |T| are the number of distinct users, images
and tags respectively. Fig.5(a) shows the tensor constructed
from the running example base on Eq.1.

To jointly model the three factors ofuser, imageand tag,
we employ the general tensor factorization model, Tucker
Decomposition for the latent factor inference. In Tucker De-
composition, the tagging dataY are estimated by three low
rank matrices and one core tensor (see Fig.4):

Ŷ := C ×u U ×i I ×t T (2)

where×n is the tensor product of multiplying a matrix on
moden. Each low rank matrix (U ∈ R|U|×rU , I ∈ R|I|×rI ,
T ∈ R|T|×rT ) corresponds to one factor. The core tensor
C ∈ RrU×rI×rT contains the interactions between the dif-
ferent factors. The ranks of decomposed factors are denoted
by rU , rI , rT and Eq.2 is calledrank-(rU , rI , rT ) Tucker
decomposition. An intuitive interpretation of Eq.2 is thatthe
tagging data depend not only on how similar an image’s visual
features and tag’s semantics are, but on how much these
features/semantics match with the users’ preferences.

Typically, the latent factorsU , I, T can be inferred by
directly approximatingY and the tensor factorization problem
is reduced to minimizing an point-wise loss on̂Y:

min
U,I,T,C

∑

(ũ,̃i,t̃)∈|U|×|I|×|T|

(ŷũ,̃i,t̃ − yũ,̃i,t̃)
2 (3)

whereŷũ,̃i,t̃ = C×uuũ×iiĩ×ttt̃. As this optimization scheme
tries to fit to the numerical values of 1 and 0, we refer it as the
0/1 scheme. To alleviate the sparse problem and better utilize
the tagging data, in this paper, we propose RMTF for factor
inference, which is detailed insectionIV.

B. Tag Refinement

From the perspective of subspace learning, the derived
factor matricesU , I, T can be viewed as the feature represen-
tations on the latentuser, image, tag subspaces, respectively.
As illustrated in Fig.3(c), each row of the factor matrices
corresponds to one object (user, image or tag). The core tensor
C defines a multi-linear operation and captures the interactions
among different subspaces. Therefore, multiplying a factor
matrix to the core tensor is related to a change of basis. We
define

T UI := C ×t T (4)

thenT UI ∈ RrU×rI×|T| can be explained as the tags’ feature
representations on theuser× image subspace. EachrU × rI
slice of matrix corresponds to one tag feature representation.
By summingT UI over theuser dimensions, we can obtain
the tags’ representations on theimage subspace. Therefore,
the cross-space image-tag association matrixXIT ∈ R|I|×|T|

can be calculated as:8

XIT = I · (T UI ×u 1⊤
rU ) (5)

8 In practice, for new images not in the training dataset, we can approx-
imate their positions in the learnt image subspace by using approximated
eigenfunctions based on the kernel trick [29].
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Fig. 4. Tucker decomposition: the tensorY is constructed by multiplying
three factor matricesU, I, T to a small core tensorC.

The tags with theK highest associations to imagei are
reserved as the final annotations:

Top(i,K) = max
t∈TKXIT

i: (6)

In the experiment, we fixK = 10.

IV. RANKING BASED MULTI -CORRELATION TENSOR

FACTORIZATION

In this section, we detail the proposed RMTF model. We
first introduce a novel ranking based optimization scheme for
better interpretation of the tagging data. Then the multiple
intra-relations among users, images and tags are utilized as
the smoothness constraints for the latent factors and finally
we present a convergence provable learning algorithm.

A. Ranking based Optimization Scheme

Traditional factorization models [7], [10] approximate the
tagging data based on the0/1 scheme. Under the situation of
social image tagging data, the semantics of encoding all the
unobserved data as0 are incorrect, which is illustrated with
the running example of Fig.3(a):

• Firstly, the fact thatuser3has not given any tag toimage2
andimage4does not mean thatuser3considered all the tags
are bad for describing the images.9 Maybe he/she does not
want to annotate the image or has no chance to see the
image.

• Secondly,user1 annotatesimage1 with only tag3. It is
also unreasonable to assume that other tags should not be
annotated to the image, as some concepts may be missing
in the user-generated tags and individual user may not be
familiar to all the relevant tags in the large tag set.

According to the optimization function in Eq.3, the learning
process tries to predict0 for both cases, which is apparently
unreasonable. To address the above problems, we present a
ranking optimization scheme which intuitively considers the
user tagging behaviors and addresses the issues of missing
tags and noisy tags.

We note that only the qualitative difference is important
and fitting to the numerical values of1 and0 is unnecessary.
Therefore, instead of solving an point-wise classificationtask,
we formulate it as a ranking problem which uses tag pairs
within each user-image combination(u, i) as the training data

9 We call triplets like(u3, i2, :) and (u3, i4, :) as the neutral triplets.

(a)

(b)

Fig. 5. Tagging data interpretation. (a) 0/1 scheme (b) ranking scheme

and optimizes for correct ranking. For example,y(u, i, t+) >
y(u, i, t−) indicates that useru considers tagt+ is better to
describe imagei than tagt−.

We provide some notations for easy explanation. Each user-
image combination(u, i) is defined as apost. The set of
observed posts is denoted asPO:PO = {(u, i)|∃t ∈ T, yu,i,t = 1} (7)

The neutral triplets constitute a setM:M = {(u, i, t)|(u, i) 6∈ PO} (8)

It is arbitrary to treat the neutral triplets as either positive or
negative and we remove all the triplets inM from the learning
process (filled by bold question marks in Fig.5(b)).

For the training pair determination, we consider two char-
acteristics of the user tagging behaviors. On one hand, some
concepts maybe missing in the user-generated tags. We assume
that the tags co-occurring frequently are likely to appear in the
same image (we call itcontext-relevant). On the other hand,
users will not bother to use all the relevant tags to describe
the image. The tagssemantic-relevant with the observed
tags are also the potential good descriptions for the image.
The two assumptions are reasonable. Looking at the running
example,user1annotatedimage1with tag3 (we assumetag3
is to describe Nemo, e.g.,tag3=“fish”). We can see that the
tags “water”, “sea”, “coral” which arecontext-relevantand
“animal”, “seafish” “clownfish” which aresemantic-relevant
with the tag “fish” are all good descriptions forimage1. To
perform the idea, we build a tag affinity graphWT based on
tag semantic and context intra-relations.10 The tags with the
k-highest affinity values are considered semantic-relevantor
context-relevant.

Regarding the possible noises in the user-generated tags, it
is risky to enrich the semantic or context relevant tags into
the positive set. Therefore, we choose a conservative strategy:
we keep the unobserved tags semantic-irrelevant and context-
irrelevant with any of the observed tags, to form the negative

10 Detail of WT construction is introduced in next subsection.
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tag set. Note that the ranking optimization is performed over
each post and within each post(u, i) a positive tag setT+

u,i

and a negative tag setT−
u,i are desired to construct the training

pairs. Given a post(u, i) ∈ PO, the observed tags constitute
a positive tag set (the corresponding triplets are filled by plus
signs in Fig.5(b)):T+

u,i = {t|(u, i) ∈ PO ∧ yu,i,t = 1} (9)

The negative tag set is constituted as:T−
u,i =

{

t|(u, i) ∈ PO ∧ yu,i,t 6= 1 ∧ t 6∈ NT+
u,i

}

(10)

whereNT+
u,i

indicates the set of tags relevant to the annotated

tags in post(u, i). Thent4, t5 ∈ T−
u1,i1

, presumablytag1 and
tag2 are relevant totag3. The final tagging data representation
for the running example is illustrated in Fig.5(b). The triplets
corresponding to tagst ∈ NT+

u,i
are also removed from the

learning process and filled by plain question marks. The minus
signs indicate the filtered negative triplets.

Any tag t ∈ T+
u,i is considered a better description for

image i than all the tagst ∈ T−
u,i. The pairwise ranking

relationships can be denoted as:

ŷu,i,t1 > ŷu,i,t2 ⇔ t1 ∈ T+
u,i ∧ t2 ∈ T−

u,i (11)

The optimization criterion is to minimize the violation of the
pairwise ranking relationships in the reconstructed tensor Ŷ,
which leads to the following objective:

min
U,I,T,C

∑

(ũ,̃i)∈PO( ∑

t+∈T+

ũ,̃i

∑

t−∈T−

ũ,̃i

f(ŷũ,̃i,t− − ŷũ,̃i,t+)) (12)

wheref : R→ [0, 1] is a monotonic increasing function (e.g.,
the logistic sigmoid function or Heaviside function). Through
necessary algebra manipulation, we derive the matrix form of
the objective function:

min
U,I,T,C

f











...
C ×u uũ ×i iĩ ×t (T

−

ũ,̃i
⊗ 1⊤

|T−

ũ,̃i
|
− T+

ũ,̃i
⊗ 1⊤

|T+

ũ,̃i
|
)

...











× 1∑

(ũ, ˜i)∈PO |T+

ũ,̃i
|·|T−

ũ,̃i
|

where⊗ is the cross product,f switches to a component-wise
function and1D ∈ R1×D is 1-vector with all the elements
1d = 1. T+

ũ,̃i
is the positive tag set for the post(ũ, ĩ):T+

ũ,̃i
=

{

t
(ũ,̃i)+

1 , · · · , t
(ũ,̃i)+

|T+

ũ,̃i
|

}

T+
ũ,̃i

∈ R
|T+

ũ,̃i
|×rT is the tag vector matrix composed by the

positive tags inT+

ũ,̃i
: T+

ũ,̃i
=

(

t⊤
(ũ,̃i)+:1

, · · · , t⊤
(ũ,̃i)+:|T+

ũ,̃i
|

)⊤

.

Heret(ũ,̃i)+:t̃ is t
(ũ,̃i)+

t̃
-th row vector of the tag factor matrix.

Note that the number of positive and negative tags in
the post(ũ, ĩ), |T+

ũ,̃i
| and |T−

ũ,̃i
|, are constant once the tag

relevances are determined. For simplicity, we denoteN =
∑

(ũ,̃i)∈PO |T+

ũ,̃i
| · |T−

ũ,̃i
| and further define

p⊤ =











...
C ×u uũ ×i iĩ ×t (T

−

ũ,̃i
⊗ 1⊤

|T−

ũ,̃i
|
− T+

ũ,̃i
⊗ 1⊤

|T+

ũ,̃i
|
)

...











p is a long row vector of length
∑

(ũ,̃i)∈PO |T+

ũ,̃i
| · |T−

ũ,̃i
|.

Therefore, with our novel ranking optimization scheme, the
tucker decomposition model amounts to minimizing:

f(p⊤)× 1N (13)

Note that the work in [30], [31] provided similar ranking
schemes for recommender systems, while the main difference
is that we explicitly consider the incomplete and ambiguous
characteristics of the user-generated tagging data and filter
out the quasi-positive tags. In their formulation, given a post
(u, i) ∈ PO, all the tags that not annotated byuser uto image i
will be treated as negative tags, and the corresponding negative
set is: T−

u,i = {t|(u, i) ∈ PO ∧ yu,i,t 6= 1} (14)

Apparently, this formulation ignores the issues of missingtags
and noisy tags, which cannot be directly applied to the social
tagging problems. In addition, Rendle employed l-1 norm for
regularization, while in the proposed RMTF, additional mul-
tiple intra-relations are utilized as the smoothness constraints,
which is detailed in the following subsection.

B. Multi-correlation Smoothness Constraints

In addition to the ternary interrelations, we also collect
multiple intra-relations among users, images and tags. These
intra-relations constitute the user, image, tag affinity graphs
WU ∈ R|U|×|U|, W I ∈ R|I|×|I| and WT ∈ R|T|×|T|, re-
spectively. Two objects with high affinities should be mapped
close to each other in the learnt subspaces. Therefore, the
intra-relations are employed as the smoothness constraints to
preserve the affinity structure in the low dimensional factor
subspaces. In this subsection, we first introduce how to con-
struct the affinity graphs, and then incorporate them into the
tensor factorization framework.

User affinity graph WU . Generally speaking, the activity of
joining in interesting groups indicates the users’ interests and
backgrounds. Also, the group statistic is more easy to obtain
compared with other privacy concerning information, e.g.,
searching history, the query log, etc. Therefore, we measure
the affinity relationship between userum and un using the
co-occurrence of their joined groups:

WU
m,n =

n(um, un)

n(um) + n(un)
(15)

wheren(um) is the number of groups userum joined and
n(um, un) is the number of groupsum andun co-joined.

Image affinity graph W I . To measure the visual similarities
between images, each image is extracted a428-dimensional
feature vectord as the visual representation [10], [9], including
225-d blockwise color moment features, 128-d wavelet texture
features and 75-d edge distribution histogram features. The
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image affinity graphW I is defined based on the following
Gaussian RBF kernel:

W I
m,n = e−||dm−dn||

2/σ2
I (16)

whereσI is set as the median value of the elements inW I .

Tag affinity graph WT . To serve the ranking based optimiza-
tion scheme, we build the tag affinity graph based on the tag
context and semantic relevance. The context relevance of tag
tm andtn is simply encoded by their weighted co-occurrence
in the image collection:

tcm,n =
n(tm, tn)

n(tm) + n(tn)
(17)

For tag semantic relevance, we follow Liuet al. [9]’s approach
and estimate the semantic relevance between tagtm and tn
based on their WordNet distance:

tsm,n =
2 · IC(lcs(tm, tn))

IC(tm) + IC(tn)
(18)

whereIC(·) is the information content of tag, andlcs(ti, tj)
is their least common subsumer in the WordNet taxonomy.
The tag affinity graph is constructed as:

WT
m,n = λct

c
m,n + λst

s
m,n (19)

whereλc + λs = 1, λc and λs are the weights of context
relevance and semantic relevance.11 Note that we have no
requirements on how to build the affinity graphs and other
intra-relation measurements can also be explored.

The affinity graphs are utilized as the regularization terms
to impose smoothness constraints for the latent factors. All the
affinity graphs are normalized. Take the image affinity graph
W I as an example, the regularization term is:

|I|
∑

m=1

|I|
∑

n=1

W I
m,n||im − in||

2 (20)

where || · ||2 denotes the Frobenius norm. The basic idea is
to make the latent representations of two images as close as
possible if there exists strong affinity between them. We can
achieve this by minimizingtr(I⊤LII), wheretr(·) denotes
the trace of a matrix andLI is the Laplacian matrix for the
image affinity matrixW I . Similar regularization terms can be
added for the user and tag factors. In this way, the extracted
data characteristics are consistent with such prior knowledge,
which alleviate the sparsity problem as well as control over
the outcomes.

Combining with Eq.13, we obtain the overall objective
function:

min
U,I,T,C

g = f(p⊤)× 1N + β(||U||2 + ||I||2 + ||T||2)
+ α(tr(U⊤LUU) + tr(I⊤LII) + tr(T⊤LTT ))

(21)

where ||U||2 + ||I||2 + ||T||2 is l-1 regularization term to
penalize large parameters,α and β are weights controlling
the strength of corresponding constraints.

11 In the experiment, we chooseλc = 0.9 andλs = 0.1.

Algorithm 1 Alternating Learning Algorithm

Input:
User tagging tensorY ∈ R|U|×|I|×|T|; affinity graph adjacency
matricesWU ∈ R|U|×|U|, W I ∈ R|I|×|I|, W T ∈ R|T|×|T|;
rank of the factor matricesrU , rI , rT ; and the weighting
parametersα, β.

Output:
User, imageandtag factor matricesU ∈ R|U|×rU , I ∈ R|I|×rI ,
T ∈ R|T|×rT and the core tensorC ∈ RrU×rI×rT .

1: initialize random dense matricesU (0)
∈ R|U|×rU , I(0) ∈R|I|×rI , T (0)

∈ R|T|×rT ; t← 0.
2: repeat
3: C(t+1) = argmin g(U (t), I(t), T (t), C)
4: U

(t+1) = argmin g(U, I(t), T (t), C(t+1))
5: I

(t+1) = argmin g(U (t+1), I, T (t), C(t+1))
6: T

(t+1) = argmin g(U (t+1), I(t+1), T, C(t+1))
7: t← t+ 1
8: until converge
9: return U = U (t−1),I = I(t−1),T = T (t−1),C = C(t−1)
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Fig. 6. The convergence curve of Algorithm 1.

C. Learning Algorithm

Next we present an algorithm to solve the optimization
problem. Obviously, directly optimizing Eq.21 is infeasible
and we use an iterative optimization algorithm. To begin with,
we first provide the following theorem:

Theorem 1. g is strictly convex w.r.t.U , I, T and C, respec-
tively.

We propose an alternating learning algorithm (ALA) to learn
the factors by iteratively optimizing each subproblems, which
is shown in Algorithm 1. According to Theorem1, each sub-
problem in Algorithm 1 has a unique solution. In practise, asg
is convex w.r.t.I, it is also convex w.r.t. eachim.12 Therefore,
when performing optimization onI, we optimize one row
im at a time with other rows{i1, · · · , im−1, im+1, · · · , irI}
fixed. We prove that the learning algorithm has a good
convergence property.

Theorem 2. The alternating learning algorithm converges to
a local optimum.

The proof of Theorem 1 directly follows the regularized matrix
factorization [32] and is omitted here. We provide the proof
of Theorem 2 inAppendixA. With the learnt factors, tag
refinement is performed by computing the cross-spaceimage-
tag associations as discussed inSectionIII.B.

In the experiments, we observed that the proposed ALA
converges to the minimum after about 20 iterations. Fig.6

12 The user factorU and tag factorT are the same cases as the image factor
I.
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TABLE I
THE STATISTICS OFNUS-WIDE-USER15

Users|U| Images|I| Tags|T| |O|

USER15 3,372 124,099 5,018 1,223,254

shows the change of objective function values in the conver-
gence process. We perform our experiments on MATLAB in a
PC with 2.13GHz CPU and 16 GB memory. The convergence
time on the experimental dataset is about 6 hours. Actually,
in the proposed learning algorithm, each factor vectorim is
updated independently of other vectors, which gives rise topo-
tentially massive parallelization (e.g. parallel MATLAB). The-
oretically, the algorithm achieves a linear converge speedup
which is proportion to the number of used processors [33].
Distributed storing also provides a convenient way to store
very large matrices. The largerrU , rI , andrT are, the more
obviously the speedup is.

Note that the user, image and tag factor matrices are initial-
ized randomly in the proposed learning algorithm. Likewiseto
other non-convex learning problems, the initialization ofthe
factor matrices is very important to our learning algorithm. We
will be working towards investigating a proper initialization
scheme in the future.

V. EXPERIMENTS

A. Data Set

We perform the experiments of social tag refinement on the
large-scale web image dataset, NUS-WIDE [1]. It contains
269,648 images with 5,018 unique tags collected from Flickr.
We crawled the owner information according to the image ID
and obtained the owner user ID of 247,849 images.13 The
collected images belong to 50,120 unique users, with each
user owning about 5 images. We select the users owning
no less than 15 images and keep their images to obtain
our experimental dataset, which is referred as NUS-WIDE-
USER15. Table I summarizes the collected dataset.|O| is
the number of observed triplets. The NUS-WIDE provides
ground-truth for 81 tags of the images. In the experiments,
we evaluate the performance of tag refinement by the F-score
metric:

Fscore =
2× Precision×Recall

Precision+Recall
(22)

B. Impact of Parameters

The proposed approach, RMTF, has five parameters, the
rank of factor matricesrU , rI , rT and the regularization
weightsα, β. We explore the influence of different parameter
settings on a smaller but representative dataset, NUS-WIDE-
USER50, which has 588 users and 55,141 images by filtering
out the users with less than 50 images.

Choosing the rank of factor matricesrU , rI and rT in
Tucker Decomposition model is not trivial. A practical option
is to use ranks indicated by SVD on the unfolded matrices in
each mode [34]. The tensorY can be unfolded along different
modes, leading to three new matricesYU ∈ R|U|×|I||T|,

13 Due to link failures, the owner ID of some images is unavailable

YI ∈ R|I|×|U||T| and YT ∈ R|T|×|U||I|. In this way, rU ,
rI and rT are chosen by preserving a certain percentage
of singular values in the unfolded matrices. By fixing small
values ofα = 0.001 and β = 0.001, we investigated the
average F-score of tag refinement on NUS-WIDE-USER50
by tuning the percentage of the preserved energy from 50% to
95%. The result in Fig.7(a) indicates that 80% performs well
on NUS-WIDE-USER50. By preserving 80% energy of the
singular values,rU = 25, rI = 105 andrT = 18.

The regularization termsα and β control how much the
tensor decomposition incorporates the information of affinity
intra-relations. We keeprU = 25, rI = 105 and rT = 18.
Fig.7(b) shows the impacts ofα andβ on the average F-score.
α = 0.01 andβ = 0.001 achieves the best result. From the
results, we can see that the performance is more sensitive to
the regularization weights than to the rank numbers. The poor
performances whenα = 0 or β = 0 confirm with the intuition
that purely affinity constraints orl-1 norm constraints cannot
generate good latent factors. For the remaining experiment, we
selectrU = 25, rI = 105, rT = 18, α = 0.01 andβ = 0.001.

C. Performance Comparison

To compare the performances, five algorithms as well as the
original tags are employed as the baselines:

• Original tagging (OT): the original user-generated tags.

• Random walk with restart (RWR): the tag refinement
algorithm based on random walk [25].

• Tag refinement based on visual and semantic consistency
(TRVSC, [9]).

• Multi-Edge graph (M-E Graph): a unified multi-edge
graph framework for tag processing proposed in [28].

• Low-Rank approximation (LR): tag refinement based on
low-rank approximation with content-tag prior and error
sparsity [10].

• Multiple correlation Probabilistic Matrix Factorization
(MPMF): the tag refinement algorithm by simultaneously
modeling image-tag, tag-tag and image-image correlations
into a factor analysis framework. [7].

In addition, we compared the performances of the proposed
approach with four different settings: 1) TF without smooth-
ness constraints, optimization under the0/1 scheme(TF 0/1),
2) TF with multi-correlation smoothness constraints, optimiza-
tion under the0/1 scheme(MTF 0/1), 3) TF without smooth-
ness constraints, optimization under theranking schemewith
negative set constructed as Eq.14 (TFrank) and 4) TF with
multi-correlation smoothness constraints, optimizationunder
the ranking schemewith negative set constructed as Eq.10
(RMTF).

Table II lists the average performances for different tag
refinement algorithms. It is shown that RWR fails on the noisy
web data. One possible reason is that the model does not
fully explore the image-image intra-relations. Both TRVSC
and M-E Graph suffer from the high computation problem
and the performances are limited on large-scale applications.
As their methods are difficult to implement, the results of
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(a) (b)

Fig. 7. Impact of parameters (a) rank numbers (b)α andβ

TABLE II
AVERAGE PERFORMANCES OF DIFFERENT ALGORITHMS FOR TAG REFINEMENT

OT RWR TRVSC M-E Graph LR MPMF TF 0/1 MTF 0/1 TF rank RMTF
F-score 0.477 0.475 0.490 0.530 0.523 0.521 0.515 0.542 0.531 0.571

Fig. 8. F-score of a subset of the 81 tags for different algorithms

TRVSC and M-E Graph are taken from [28], which conducted
tag refinement on a selected subset of NUS-WIDE. Their
results on the whole NUS-WIDE dataset tend to decrease.
Using factor analysis methods, MPMF and LR perform well on
sparse dataset, which coincides with the authors’ demonstra-
tion. For different settings of the proposed approach, RMTF,
and MTF 0/1 are superior than other algorithms, showing the
advantage of incorporatinguser information. Interpreting the
tagging data based on the proposedranking schemeinstead of
the conventional 0/1scheme, RMTF is generally better than
MTF 0/1. Without smoothness priors, TF0/1 fails to preserve
the affinity structures and achieves inferior results.

We note that TFrank follows the same spirits as Rendle’s
works [30], [31] and was implemented to perform performance
comparison with the proposed RMTF method. Consistent with
the discussion insectionIV.A that Rendle’s works cannot fully
account for the issues of missing tags and noisy tags, TFrank
obtains less improvement than the proposed RMTF. Actually,
without consideration on the utilization of smoothness con-
straints, TFrank is even inferior to MTF0/1. In addition,
according to the negative set selection strategy of TFrank, the
optimization algorithm needs to consider redundant pairs of
training samples. It turns out that generally TFrank achieves

slower convergence speed than MTF0/1 and RMTF.

The detailed performances for a representative subset of the
81 tags are provided in Fig.8. We can see that, for simple
concepts like “airport”, “beach”, “bear” and “birds”, our meth-
ods achieve a comparable, if not worse performance with the
baselines. The reason is that images containing these concepts
describe feasible and tangible objects, where image under-
standing can be effectively conducted by propagating visual
similarities and only exploiting theimage-tagrelations. While,
for more abstract and complex concepts like “cityscape”,
“earthquake”, “military”, “protest”, existing methods focusing
on utilizing image appearances and tag semantics fail and
our methods show remarkable improvement thanks to the
incorporation ofuser information. In addition, we also found
that for those uncommon concepts like “elk” and “glacier”,
both the proposed methods and the baselines obtained no
improvement and failed to perform image refinement. The
failure of our methods may be due to the severe sparse user
distribution on these concepts. Those uncommon concepts
focalize to small groups, which make it difficult to propagate
information between users.
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(a) (b) (c)

(d) (e) (f)
Fig. 9. Example of tag refinement results. For each image, thetop 5 annotations are shown.

D. Case Studies

We show some case studies in this subsection to demonstrate
the effectiveness of RMTF. Fig.9 further illustrates the tag
refinement results for some exemplary images by the proposed
RMTF framework. For examples of Fig.9(c) and Fig.9(e), it is
very hard to restore the relations between tags and images only
from the visual appearance, since the images are very complex.
With the aid ofuser information, it is observed that the tagger
of Fig.9(c) also tagged “mosaic” and “building” to images
and the tagger of Fig.9(d) is a “sculpture” fan. Therefore, the
exploited semantic is propagated into the refined results. In the
original tag set of Fig.9(a), only the tag “airport” is related to
the image content. After tag refinement, the subjective tags
are removed and the context-relevant tags, “airport”, “road”,
and semantic-relevant tags “plane” are enriched through the
proposed ranking-based optimization scheme. Fig.9(d)(f)fur-
ther show this advantage. Moreover, Fig.9(b) demonstrates
the capacity of the proposed framework on automatic image
annotation. It can be seen that the experimental results vali-
date our intuition that incorporation ofuser information with
appropriate optimization scheme and smoothness constraints
contributes to a better modeling of the tagging data and derives
compactimageand tag factor representations.

We have employed smoothness constraints into the op-
timization function to preserve the affinity structure in the
low dimensional factor subspace. To show the effectiveness
of smoothness constraints, we show in Table III and Table
IV the five nearest tags and images for the selected tag and
image, respectively. It is shown that RMTF succeeds to mine
the semantic correlations among tags and images from the
observed tagging data. Context and semantic relevant tags are
close in the derived tag subspace, while in the image subspace,
visual and sematic similar images are clustered together.

E. Applications

In the tag refinement task, we employed the derived factor
matrices to analyze theimage-tag associations. As we model
the social tagging data by taking into account all essential

TABLE III
FIVE NEAREST TAGS IN THE LEARNED TAG SUBSPACE FOR EACH OF THE

FOUR SELECTED TAGS

Selected Tag Five Nearest Tags
cat grass, animal, pet, dog, vacation

flower blooms, butterfly, nature, spring, blossoms

airplane aircraft, travel, planes, photographer, airport

buddhist buddha, religion, buddhism, thailand, ancient

TABLE IV
FIVE NEAREST IMAGES IN THE LEARNED IMAGE SUBSPACE FOR EACH OF

THE FOUR SELECTED IMAGES

Image Five Nearest Images

entities,user, imageandtag, we can apply the model to many
other real-world tasks.

1) Personalized image search:In personalized image
search, the returned image results depend on not only their
relevances with the query keywords, but the relevances with
the searchers. For our case, the associations between usersand
images can be estimated by measuring theuser-imagecross-
space distances in the same spirits as Eq.5, which reflect the
users’ preferences and can be leveraged to re-rank the returned
images.

An experiment is conducted. Following [35]’s evaluation
framework, in the context of Flickr, the photos markedFa-
vorites by the searcher are treated as the ground-truth. We
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Fig. 10. Evaluation results for the personalized image search

Fig. 11. Evaluation results for the personalized tag recommendation

chose 30 users who have the largest number ofFavoritesin the
image collection as the searchers. 58 tags frequently appearing
in their favorite images are selected as the queries. The metric
of NDCG@k is utilized to evaluate the performance. For each
query, we re-rank the top 50 (if there are) results by the tag-
relevance, and average the evaluated scores over queries and
searchers. The average results are demonstrated in Fig.10,
where we compare with two personalized methods, user-
based collaborative filtering (CF, [36]) and user interests-based
preference prediction (UI-PP, [35]) and three non-personalized
rules depending on relevance, view number and timelines.
We can see that the three personalization methods outperform
the non-personalized rules and RMTF achieves comparable
performance with state-of-the-art.

2) Personalized tag recommendation:The goal of a per-
sonalized tag recommender is to predict tags for each user
on a given web item (image, music, URL or publication).
The reconstructed tensor̂Y captures the ternary relationships
between users, images and tags, where the value ofŷu1,i1,t1

indicates the likelihood of useru1 using tagt1 to annotate
image i1. Therefore, the tags with the highestŷu,i,t can be
recommended to useru as the potential tags for itemi.

We conducted the experiment on a small benchmark dataset
from Bibsonomy,14 which consists of 116 users, 412 tags
and 361 items (publications). For each user, one post is
randomly removed for evaluation. We averaged the F-scores
in top-N recommended tags over users. Four personalized
tag recommendation algorithms are performed as baselines:
most popular tags by item (PopularI), most popular tags
by user (PopularU), Adapted PageRank [37] and FolkRank
[38]. Fig.11 illustrates the results. It is shown that with an
increasing number of recommended tags, the F-score decreases
less steeper for RMTF than other algorithms.

Note that we provide these two experiments to demonstrate
the potentials of the proposed framework. As the focus of

14 http://www.bibsonomy.org/

this paper is image tag refinement, we did not fully adapt
RMTF to other applications. For example, typical methods
of personalized tag recommendation (e.g., FolkRank) will
consider the user and item bias, while in our implementations
we did not explicitly consider this. With careful adaption to
these applications, the performance of RMTF has the potential
to improve.

The proposed RMTF can also be applied to other appli-
cations, e.g.,user profile construction and user recom-
mendation. It is believed that users express their individual
interests through tags [39], thus the latent user interestscan
be understood by estimating theuser-tag association. Besides
exploring the interrelations, we can directly evaluate theintra-
relations among users, images and tags in the corresponding
subspaces. Users with similar feature representations canbe
recommended to each other to connect people with common
interests and encourage people to contribute and share more
content.

VI. CONCLUSIONS

We have presented a ranking based multi-correlation factor
analysis method that jointly models theuser, imageand tag
factors. We argued that by exploiting the underlying structure
of the photo sharing websites, our model is able to learn
more semantics-specified image and tag descriptions from a
corpus of social tagging data. The experimental results on
collections from the photo sharing site Flickr show that our
model performs well on the tag refinement task.

The potential applications and two simple experiments are
also presented in the paper. It is an interesting issue to adapt
the proposed RMTF to more related applications in the future.
In addition, there exist different forms of metadata, such as
descriptions, comments, and ratings. While we focus on tags
in this paper, how to model other metadata for a overall
understanding is also our future work.

APPENDIX

PROOF OFTHEOREM 2

Proof: For easier explanation, we rewrite the optimization
function of Eq.21 into a general form:

min
Θ∈X g(Θ) (23)

whereΘ are the model parameters ofU, I, T, C and denoted
as Θ = (θ1, θ2, θ3, θ4), X is a Cartesian product of closed
convex setsX1,X2,X3,X4:X = X1 ×X2 ×X3 ×X4 (24)

We assume thatX1, X2, X3, X4 are closed convex subsets ofRrU×rI×rT , R|U|×rU , R|I|×rI , R|T|×rT , respectively. Then
the subproblems in Algorithm 1 can be formulated into a
unique form:

θ
(t+1)
i = arg min

θi∈Xi

g(θ
(t+1)
1 , · · · , θ

(t+1)
i−1 , θi, θ

(t)
i+1, · · · , θ

(t)
4 )

(25)
According toTheorem1, the minimum in Eq.25 is uniquely
attained. In the following, we first prove the algorithm will
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converges to a limit point, and then show the limit point is a
local optimum.

An auxiliary vector is introduced:

Z
(t)
i := (θ

(t+1)
1 , · · · , θ

(t+1)
i , θ

(t)
i+1, · · · , θ

(t)
4 )

By Eq.25, we obtain

g(Θ(t)) ≥ g(Z
(t)
1 ) ≥ · · · ≥ g(Z

(t)
3 ) ≥ g(Θ(t+1)), ∀t (26)

Let Θ̄ = (θ̄1, · · · , θ̄4) be a limit point the sequence{Θ(t)}.
SinceX is closed,Θ̄ ∈ X. Eq.26 implies sequence{g(Θ(t))}
converges tog(Θ̄).

Let {Θ(tj)|j = 0, 1, · · · } be a subsequence of{Θ(t)}. We
first show that{Z(tj)

1 − Θ(tj)} converges to zero asj → ∞.
Assuming the contrary that{Z(tj)

1 −Θ(tj)} does not converge
to zero, we defineγ(tj) = ||Z

(tj)
1 −Θ(tj)|| and∃γ̂, γ(tj) ≥ γ̂.

Let s(tj) = (Z
(tj)
1 − Θ(tj))/γ(tj). Thus, Z(tj)

1 = Θ(tj) +

γ(tj)s(tj), s(tj)1 = 1 ands
(tj)
2,3,4 = 0. Fix someǫ ∈ [0, 1] with

0 ≤ ǫγ̂ ≤ γ(tj). Therefore,

g(Z
(tj)
1 ) = g(Θ(tj)+γ(tj)s(tj)) ≤ g(Θ(tj)+ǫγ̂s(tj)) ≤ g(Θ(tj))

We assumelimj→∞ s
(tj)
1 = s̄ and take the limit of the above

equation asj → ∞, to obtain:g(Θ̄) ≤ g(Θ̄ + ǫγ̂s̄) ≤ g(Θ̄).
We have

g(Θ̄) = g(Θ̄ + ǫγ̂s̄), ∀ǫ ∈ [0, 1]

Since γ̂s̄ 6= 0, this contradicts the fact thatg is uniquely
minimized w.r.t. each subproblem. Therefore, we conclude that

lim
j→0

Z
(tj)
1 −Θ(tj) = 0

From Eq.25, we have

g(Z
(tj)
1 ) ≤ g(θ1, θ

(tj)
2 , θ

(tj)
3 , θ

(tj)
4 ), ∀θ1 ∈ X1

Taking the limit asj → ∞, we obtain

g(Θ̄) ≤ g(θ1, θ̄2, θ̄3, θ̄4), ∀θ1 ∈ X1 (27)

Similar conclusions can be obtained forθ2, θ3 and θ4, and
we conclude that̄Θ minimizesg overX. Combining with the
converge conclusion proved above,g is guaranteed to converge
to a stationary point. Becauseg is not jointly convex w.r.t.U ,
I, T andC, the stationary point is a local optimum.
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