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Abstract

Constructing a robust and discriminative local descrip-

tor for 3D shapes is a key component of many computer

vision applications. Although existing learning-based ap-

proaches can achieve good performance in specific bench-

marks, they usually fail to learn sufficient information from

shapes with different types and structures (e.g., spatial res-

olution, connectivity, and transformation).

To solve this issue, we present a more discriminative lo-

cal descriptor for deformable 3D shapes with incompat-

ible structures. Based on spectral embedding using the

Laplace–Beltrami framework on the surface, we construct

a novel local spectral feature that exhibits high resilience

to changes in mesh resolution, triangulation, and transfor-

mation. The multiscale local spectral features around each

vertex are then encoded into a geometry image called ver-

tex spectral image in a compact manner. Such vertex spec-

tral images can be efficiently trained to learn local descrip-

tors using a triplet neural network. Then, we present a new

benchmark dataset for training and evaluation by extend-

ing the widely used FAUST dataset. We utilize a remeshing

approach to generate modified shapes with different struc-

tures. Furthermore, we evaluate the proposed approach

thoroughly and conduct an in-depth comparison to demon-

strate that our approach outperforms recent state-of-the-art

methods on this benchmark.

1. Introduction

Obtaining detailed 3D shapes has become easy with the

advancement of 3D scanning devices and computer vision

reconstruction techniques. Accordingly, the importance of

3D shape analysis (e.g., shape matching, segmentation, cor-

respondence, and retrieval) has increased remarkably. De-

signing local descriptors for surface points is a fundamental

problem in computer vision, computer graphics and robotic-

∗Corresponding authors: jianwei.guo@nlpr.ia.ac.cn, yandong-

ming@gmail.com

Figure 1. Shape matching results between the reference shape

(6890 points) and different shapes with high-resolution (12K

points) and other incompatible structures.

s, and it is a building block of various shape analysis and

geometry processing applications.

Many local shape descriptors, including hand-crafted

shape feature [13] and deep learning-based descriptors [8],

have been proposed for different scenarios. Compared with

hand-crafted methods that are usually limited by the rep-

resentation power of hand-tuned parameters, deep learn-

ing methods innovatively apply deep convolution to non-

Euclidean geometric data and exhibit better performance.

However, current popular datasets used for descriptor learn-

ing, such as FAUST [3], SCAPE [1], and TOSCA [7],

have a compatible shape structure, that is, mesh resolution

and connectivity are identical across all shapes. The ac-

quired/reconstructed surface shapes usually have incompat-

ible shape structures even when the same acquisition tech-

nique is used, and their resolution, triangulation, and trans-

formation may differ. Constructing robust and informative

local descriptors for such shapes thus remains challenging.

Furthermore, existing deep learning methods have serious

limitations. First, training and testing usually require the

same number of vertices on the input shapes because of the

fixed network architecture. Second, if the features fed into

the network are sensitive to triangulation, ensuring that the

learned features are robust to triangulation cannot be guar-

anteed. Third, the model needs to be normalized to the same
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scale before training. However, sometimes, two models are

normalized incorrectly such as in partial matching.

In this study, we propose a new dense local descriptor for

matching non-rigid shapes with incompatible structures. In

our approach, we theoretically derive a novel local spec-

tral feature called Local Point Signature (LPS) from Dirich-

let energy. Different from traditional spectral descriptors

(e.g., Global Point Signature (GPS), Heat Kernel Signature

(HKS), and Wave Kernel Signature (WKS)), we introduce

extra vertex coordinate information to capture distinctive at-

tributes in a local patch. The multiscale LPS features around

each vertex are then compactly encoded into the pixels of

vertex spectral images, on which a classic triplet neural net-

work can be applied directly to obtain a more discriminative

local descriptor. Extensive experimental evaluation shows

that the proposed approach outperforms recent state-of-the-

art local descriptors.

Contributions. The main contributions of this work are as

follows:

• We present a novel local spectral feature that exhibits

high resilience to changes in mesh resolution, triangu-

lation, scale, and rotation.

• We design a new representation form of geometry im-

age (GI) called vertex spectral image, in which lo-

cal spectral features can be encoded in a compact and

memory-efficient manner.

• We provide a new benchmark dataset by extending the

well-known FAUST dataset, which contains six reso-

lution shapes with different connectivities and trans-

formations.

2. Related Work

We present a brief overview of local descriptors from

three aspects.

Spatial domain-based approaches. Spin images (SI) [17]

and 3D shape context (3DSC) [11] create accumulators by

dividing the local space into different bins and calculat-

ing the number of points that fall into each bin to con-

struct descriptors. Signature of histogram of orientations

(SHOT) [31] generates descriptors by accumulating the nor-

mal angles of the key and neighboring points in the neigh-

borhood space. Unlike the SHOT descriptor, the Mesh-

HOG [37] descriptor is a histogram based on the orienta-

tions of the gradients on the mesh. The rotational projec-

tion statistics (RoPS) [14] descriptor is generated by rota-

tionally projecting neighboring points onto 2D planes and

calculating a set of statistics. Obviously, these tradition-

al approaches are based on the spatial domain feature and

susceptible to resolution and shape deformation. Recently,

the dual spin image (DSI) [36] descriptor was proposed by

introducing 3D critical net on the surface, which is robust

against non-rigid deformation. However, this method does

not consider the matching between different resolutions.

Embedding-based approaches. Many intrinsic descrip-

tors have been proposed to deal with isometric deforma-

tions. The most common method for generating embed-

ded descriptors is based on the Laplace–Beltrami operator.

Shape–DNA [28] considers the spectrum of the Laplace–

Beltrami operator as the descriptor because the spectrum is

isometry-invariant and independent of spatial position. G-

PS [29] combines the spectrum and eigenfunctions to ob-

tain the global descriptor of a vertex. HKS [30], scale-

invariant HKS [9], WKS [2], and optimal spectral descrip-

tors (OSD) [23] were proposed based on diffusion geome-

try. Hu et al. [15] extracted salient geometric feature points

in the Laplace–Beltrami spectral domain and considered the

Laplace–Beltrami spectrum in the local region a local shape

descriptor. However, most of these embedding methods are

based on global intrinsic features and are not robust enough

for local detail descriptions.

Deep learning-based approaches. 3D deep learning meth-

ods have recently been used to extract shape descriptors.

Wei et al. [34] generated invariant descriptors by using

a large dataset of depth maps for training. Huang et

al. [16] extracted local descriptors by training multiple ren-

dered views in multiple scales. Zeng et al. [38] used 3D

volumetric convolutional neural networks to generate lo-

cal descriptors for robustly matching RGB-D data. The

method of compact geometric features (CGF) [18] map-

s high-dimensional histograms into a low-dimensional Eu-

clidean space to generate descriptors on unstructured point

clouds. Wang et al. [32] presented a deep learning frame-

work using local GIs to learn descriptors.

In addition, geometric deep learning has been develope-

d for directly training on manifolds. Anisotropic diffusion

descriptors [6] are learned by using a fully connected neu-

ral network to construct direction-sensitive features. GCN-

N [24], ACNN [5], and MoNet [26] train the network ef-

fectively on manifolds by defining the convolution opera-

tion in the spatial domain, and they are mainly suitable for

shape correspondence applications. FMNet [22] is anoth-

er framework that introduces deep learning into functional

maps. LSCNN [4] generalizes windowed Fourier transform

to deeply learn local descriptors, and it can be regarded as

a time–frequency analysis on manifolds. Lim et al. [21]

avoided resampling to learn correspondences on unstruc-

tured surface meshes by using a spiral operator on neigh-

borhood vertices. However, given that these methods learn

information related to shape structures (e.g., mesh scale and

spatial resolution) that vary in shape, their generalization

capability is defective. We focus on these issues and present

a novel approach to generate a local spectral feature that is

robust to different resolutions, triangulations, and transfor-

mations.
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Figure 2. Overview of our descriptor generation framework. Giv-

en an input shape (left), we first compute a 16-dimensional local

spectral feature for each vertex of the mesh to construct feature

models, and the scalar value of each dimension is color-coded in

the middle images. For a point of interest, we then generate vertex

spectral images by packing the 16-dimensional LPS in a compact

manner. Finally, we send the vertex spectral images to the convo-

lutional neural network to obtain our descriptor.

3. Problem Statement and Overview

Given a mesh M with irregular sampling on the under-

lying smooth surface defined as (V,E), where V = {vi|i =
1, ..., n} and E are the sets of vertices and edges, respec-

tively. Real function X = (x1, x2, x3) : V → R3 on the

vertices represents vertex coordinates. Our goal is to obtain

a discriminative local descriptor f(vi) ∈ Rd for any given

vertex vi.

The proposed method of generating the local descrip-

tor is divided into two stages, namely, local spectral fea-

ture construction and local descriptor learning. As shown

in Fig. 2, in the first stage, we propose a local point signa-

ture for each vertex in the frequency domain that is robust

to resolution, triangulation, scale, and rotation. The sec-

ond stage is for descriptor learning. Inspired by the recent

deep learning method [32], we design a local vertex spec-

tral image using GI to encode the proposed local spectral

feature. Benefiting from the designed local spectral feature

and vertex spectral image, our method can exploit all vertex

information instead of only the sampling vertices for train-

ing.

4. Local Spectral Feature

This section introduces the Laplace–Beltrami frame-

work. Then, the local spectral feature is proposed, and sev-

eral properties of our proposed feature are analyzed.

4.1. Laplace–Beltrami Framework

Given a smooth real function f : S → R on the surface,

where S is a continuous surface, the following Dirichlet en-

ergy is a measure of the change of function f over S [8].

E (f) =

∫

S

|∇f (v)|
2
dv =

∫

S

f (v)∆f (v)dv (1)

We often seek function f as smooth as possible, which min-

imizes the Dirichlet energy. If we obtain a set of orthonor-

mal basis functions {φi|i = 0, 1, ..., k − 1} on S and the ba-

sis function minimizes Dirichlet energy, then the solution is

the first k eigenfunctions of ∆ [8]. In this study, ∆ is the

Laplace–Beltrami operator ∆f = −div (∇f), which satis-

fies

∆φi = λiφi, i = 0, 1, ..., k − 1, (2)

where {λi|i = 0, 1, ..., k − 1} is the smallest k eigenvalues

in increasing order.

Given that the data we process involve a 3D mesh, the

discrete case is highly important, and this means that the

function f̃ : V → R on mesh M becomes discrete [25].

On the meshes, the value of ∆f on vi can be written as

∆f̃ (vi) =
1

ai

∑

j∈N(vi)

cotαij + cotβij

2

(
f̃ (vi)−f̃ (vj)

)
,

where ai is the area of the Voronoi region of vi. N (vi)
represents the one-ring neighborhood vertex set of vi. αij

and βij are the two angles opposite the edge {i, j} on the

triangle mesh. Fig. 3 shows the angles and Voronoi area of

the vertex.

Figure 3. Illustration of the angles and Voronoi area in the discrete

Laplace–Beltrami operator.

Therefore, Laplace–Beltrami matrix L can approximate

Laplace–Beltrami operator ∆ in a discrete manner and can

be written as

Lij =





−
cotαij+cot βij

2ai
if i, j are adjacent∑

k

cotαik+cot βik

2ai
if i = j

0 otherwise.

The orthogonal basis of minimizing Dirichlet energy can

be solved in a discrete form.

LΦi = λiΦi, i = 0, 1, ..., k − 1 (3)

If the Laplace–Beltrami matrix is positive semi-definite,

then the eigenvalues λi are nonnegative, and their mini-

mum is 0. These eigenvalues can be sorted from small to
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large and interpreted as frequencies in the signal processing

community. In addition, the symmetry property of L facili-

tates numerical calculations. Unfortunately, L is asymmet-

rical, which may lead to imaginary numbers in the numer-

ical computation. Equation (3) can be rewritten as a gen-

eralized eigenvalue problem by introducing two symmetric

matrices T and A, and the rewritten form is presented as

TΦi = λiAΦi, i = 0, 1, ..., k − 1, (4)

where

Tij =





−
cotαij+cot βij

2 if i, j are adjacent∑
k

cotαik+cot βik

2 if i = j

0 otherwise

and A is a diagonal matrix, Aii = ai.

By using the Arnoldi method of ARPACK [20], the

eigenvectors of discrete Laplacian are real, and the eigen-

values are real and nonnegative.

4.2. Local Point Signature

After calculating the eigenvectors Φi in the generalized

eigenvalue problem, Φi are orthogonal in terms of the A-

dot product.

〈Φi,Φj〉A = ΦT
i AΦj (5)

Similar to the Fourier series, the functions defined on

mesh vertices can be expanded as follows:

f =

+∞∑

j=0

σjφj , (6)

where σj is the coefficient of the frequency domain on the

surface. Therefore, we know that the function on the sur-

face can be transformed into a set of coefficients in the fre-

quency domain by a basis function. In the discrete case, the

coefficients can be calculated by

σj =
〈
f̃ ,Φj

〉

A

= f̃TAΦj . (7)

We now introduce the derivation of the proposed spectral

features.

Recall the formula of Dirichlet energy, Equation (1), and

its discrete form f̃TALf̃ in terms of the A-dot product.

Combined with Equation (3) and Equation (6), the Dirichlet

energy of the function can be expressed as

Ẽ
(
f̃
)
= f̃TALf̃ =

N−1∑

j=0

σ2
jλj , (8)

where N is the number of vertices.

If a more generalized function F = (f1, f2, ..., fd) :
S → Rd is obtained on the surface, the Dirichlet energy

over S is

E (F ) =

∫

S

|∇F (v)|
2
dv =

d∑

i=1

∫

S

|∇fi (v)|
2
dv. (9)

Equation (8) is transformed into the discrete form of E-

quation (9) and presented as

Ẽ
(
F̃
)
=

d∑

i=1

N−1∑

j=0

σ2
ijλj (10)

=

N−1∑

j=0

λj

d∑

i=1

σ2
ij . (11)

The Dirichlet energy of this generalized function can be

composed of different frequency band energies λj

d∑
i=1

σ2
ij

that can be considered a feature of the surface in this band.

Therefore, we remove λ0 with an eigenvalue of 0. The

proposed spectral feature can be expressed as follows:

sf =

(
λ1

d∑

i=1

σ
2

i1, λ2

d∑

i=1

σ
2

i2, ..., λN−1

d∑

i=1

σ
2

iN−1

)
. (12)

Thus far, we have proposed the spectral feature on

the surface. Next, we demonstrate how to design a lo-

cal spectral feature using vertex coordinates with a rigid

transformation-invariant property. It is worth mentioning

that we can design other features by using different infor-

mation as the input.

For a vertex vi, we extract the neighbor triangles around

the vertex and build a local patch mesh. Neighborhood se-

lection uses a geodesic disk whose radius is a fraction of a

geodesic diameter (the longest geodesic path on the mesh).

Parameter selection is shown in the supplementary material.

We simply extract a local mesh in the geodesic disk. After

the local patch mesh is obtained, we construct the Laplace–

Beltrami matrix on the patch. For this patch, we have the

function X = (x1, x2, x3) : V → R3 in the vertices repre-

senting the vertex coordinates.

In Equation (9), the Dirichlet energy over patch P can be

rewritten as

E (X) =

∫

P

|∇X (v)|
2
dv =

3∑

i=1

∫

P

|∇xi (v)|
2
dv. (13)

However, for the case with a boundary, we cannot as-

sume that Equation (1) is satisfied because of boundary en-

ergy. We take the solution of Hu et al. [15]. By attaching

the same surface patch with opposite normals to the open

boundary patch, we obtain a watertight surface with zero

volume. Therefore, Equation (1) is naturally satisfied.

Therefore, the equation can be written as follows:
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Ẽ (X) =

N−1∑

j=0

λj

3∑

i=1

σ
2

ij . (14)

We select the feature of 16 dimensions corresponding to

the smallest 16 eigenvalues without 0 as our local spectral

features, and we define them as Local Point Signature (LP-

S). The reason for choosing 16 is twofold. First, a large

amount of information is concentrated at a low frequency.

Hence, we choose 16 dimensions to avoid the influence of

high-frequency noise as much as possible. Second, con-

structing our vertex spectral images using 16 dimensions is

convenient. In addition, an intuitive reason for robustness

can be explained. With the input of vertex coordinates, the

energy represents the area of the surface that is robust to tri-

angulation and coordinate-independent despite using coor-

dinate information. Hence, the descriptors that we expand

the energy in the frequency domain should be insensitive

to these incompatible shape structures. This trait will be

proven through experiments later. In addition, to obtain s-

cale invariance, we multiply each energy band by its eigen-

value λj and calculate square root of the energy. The reason

and theoretical proof will be specified in the supplementary

material. The expression of the proposed feature is as fol-

lows.

LPS =


λ1

√√√√
3∑

i=1

σ2

i1, λ2

√√√√
3∑

i=1

σ2

i2, .., λ16

√√√√
3∑

i=1

σ2

i16


 (15)

4.3. Discussion

Several spectral features, such as GPS, HKS, and WKS

have been proposed for previous methods. These method-

s avoid relying on any extrinsic features to obtain global

intrinsic features on the mesh, but the capability of their

local description is not strong. Although intrinsic features

are invariant under (near-) isometric deformations, they still

encounter problems when dealing with non-isometric de-

formations. In practice, several studies [22, 26] have ob-

tained better results by using non-intrinsic descriptors, such

as SHOT. In our approach, we introduce vertex coordinate

information to design a new spectral feature by utilizing the

Dirichlet energy framework. Therefore, we combine the ad-

vantages of intrinsic and extrinsic descriptors to obtain a

more discriminative local spectral feature.

In addition, many extrinsic (e.g., SHOT) and intrinsic

(e.g., shape DNA, HKS, and WKS) features are sensitive to

scale transformation. In comparison, our proposed features

can theoretically guarantee scale invariance. The proof of

our invariant properties is provided in the supplemental ma-

terials.

Figure 4. Sample shapes from our dataset. The three models on

the left have different resolutions (6890, 8K, and 15K) and trian-

gulations. We show the models with different scalings (middle)

and rotations (right).

5. Dataset Creation and Descriptor Learning

An appropriate dataset containing 3D shapes with in-

compatible structures is required to demonstrate the validity

of the proposed spectral feature. We describe how to gen-

erate such shapes automatically. Then, we propose a novel

vertex spectral image encoding the previous LPS feature,

which can be fed into an existing learning framework. Sec-

tion 5.3 describes the architecture of our network.

5.1. Dataset

The FAUST dataset is a challenging and widely used s-

tandard benchmark for solving shape-matching tasks, and

it has richer details and more accurate ground-truth corre-

spondences than other datasets. Our benchmark expands

upon this dataset to generate shapes with different levels of

resolution, triangulation, scale, and rotation.

Resolution and triangulation. All models in FAUST have

the same triangulation and resolution with 6890 vertices.

We refer to [10, 33] for details on remeshing and generate

multi-resolution shapes with irregular triangulation while

ensuring that each shape contains user-specified vertices.

Specifically, to retain the ground-truth correspondence

across all shapes for accurate evaluation, we mark each o-

riginal vertex with a “lock” flag, which indicates that the o-

riginal vertices cannot be moved or deleted during remesh-

ing. Next, the number of user-specified points is satisfied

by randomly adding or removing vertices via edge splitting

or edge collapsing to increase or decrease the mesh reso-

lution, respectively. We then apply a random edge flip-

ping operation iteratively to obtain an irregular triangula-

tion. Several vertex smoothing operations may be applied

to avoid too many badly shaped triangles. These operations

will maintain the detail features of the model by consider-

ing the Hausdorff distance. For coarse resolution, we use

the models with 5K vertices in [27] that are independently

remeshed by the centroidal Voronoi tessellation (CVT) ap-

proach [35]. Six resolutions are created for the benchmark,

namely 5K, original 6890, 8K, 10K, 12K, and 15K vertices.

Scale and rotation. For scaling, we randomly scale the

shapes with one of the following five scaling factors: 0.2,

0.5, 1.0, 2.0, and 4.0. For rotation, we generate the rotated

shapes by randomly rotating the models. Fig. 4 presents
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several selected examples from our dataset.

5.2. Vertex Spectral Images

Geometry image (GI) [12] is a good tool for converting

irregular geometry into regular 2D images. Wang et al. [32]

generated a local GI for descriptor learning. In their ap-

proach, the vertex normal direction and principal curvatures

are encoded into the pixels of a GI. However, this method

requires a large amount of memory to store multichannel

GIs. For example, an image with a size of 32 × 32 is re-

quired to store only one element of the vertex normal. In

addition, the low-level features used in their approach are

more sensitive to shape structures.

To become memory-efficient, we introduce a new rep-

resentation of the local GI, called vertex spectral image to

encode our proposed LPS feature. Fig. 5 shows examples

of vertex spectral images, and each of them is composed

of 16 smaller GIs. To build such a vertex spectral image

around a point p, we regularly sample 64 points from the

local patch of p. Notably, each point is equipped with a

16-dimensional LPS feature. Hence, we can obtain 16 s-

mall GIs with a size of 8 × 8, and each GI encodes one

element of the LPS feature. Our LPS feature is generated

from the local patch instead of the original vertex informa-

tion. Thus, 64 sampling points are sufficient to describe

the local details, and the amount of data is reduced. Then,

we pack these small GIs into a large vertex spectral image

(32 × 32) by rearranging them in a row-major order, thus

enabling the use of convolution operation to learn informa-

tion between frequency bands. As a result, small GIs with

the feature corresponding to the smallest and largest eigen-

values are placed in the upper left and lower right corners of

the vertex spectral image, respectively. This approach sig-

nificantly reduces the amount of memory used to encode the

geometric information of a vertex. In addition, this splicing

operation only applies to coordinate-independent features,

such as ours. If the feature is coordinate-dependent (e.g.,

vertex normal direction), then the results will be affected by

the rotation because of the ordering problem. Given that

our LPS is coordinate-independent, which is unrelated to

the embedding of the model, the case of model rotation can

be solved.

Finally, we extract the local patch at three scales to

construct multiscale vertex spectral images with neighbor

geodesic radii of 2.1, 2.7, and 3.5ρ0, respectively. ρ0 is

computed as 1% of the geodesic diameter of the entire

mesh. In addition, we also generate 12 vertex spectral im-

ages around each point for training by rotating the small GIs

at 30◦ intervals.

5.3. Training Architecture Details

To learn our descriptor, we adopt the triplet neural net-

work presented in [32] that consists of three identical con-

1

2

3

1 2 3

Figure 5. Vertex spectral images around three vertices: (1) middle

finger, (2) belly button, and (3) right knee.

volutional networks (“ConvNet” for simplicity). For each

ConvNet, we utilize a network constructed as CONV128-

3x3-/2 + CONV256-3x3-/2 + CONV512-3x3-/2 + FC512

+ FC256. CONVx refers to a convolutional layer that has

an x-dimensional output of feature maps, wherein 3x3 is the

size of the convolution kernel, /2 is a pooling operation with

a stride of 2, and FCx refers to a fully connected layer that

outputs a vector with x-dimension. The output feature is ex-

panded to 256 dimensions because we introduce the vertex

spectral images of all points as training data. The main dif-

ference between our learning process and that of [32] is that

the anchor-positive and anchor-negative pairs are selected

not only as the key points but also as all the points encoded

by utilizing the proposed vertex spectral image.

6. Experimental Results

We conduct an extensive evaluation to verify the effec-

tiveness of the proposed local descriptor. An in-depth com-

parison with other related state-of-the-art approaches is per-

formed to demonstrate the advantages of our approach. We

also show that the proposed spectral feature can be used as

a drop-in replacement for tasks involving a search for shape

correspondence. All results presented in this study are ob-

tained using an Intel Core i7-7700 processor with 4.2 GHz

and 16 GB RAM. Offline training is run on an NVIDIA

GeForce GTX 1080Ti (11 GB memory) GPU.

Evaluation metrics. We evaluate descriptor performance

by using the standard cumulative match characteristic

(CMC) and Princeton protocol (PP) [19]. CMC eval-

uates the probability of finding a correct match among

k−nearest neighbors in the descriptor space. PP is a popu-

lar correspondence quality metric that measures correspon-

dence quality by plotting the percentage of nearest-neighbor

matches that are at most r-geodesically distant from the

ground-truth correspondence.

6.1. Descriptor Evaluation

Invariant to resolution and triangulation. Literature [29]

and [15] mentioned that frequency–domain features are ro-

bust to resolution and triangulation. In our configuration,

we know that they affect the T and A matrices in Equa-

tion (4). To show that our proposed spectral feature is in-

variant to shape resolution and triangulation, we select four

kinds of shapes, namely, skinny man, fat woman, fat man,

and skinny girl for the experiments. Each kind of shape
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Figure 7. Impact of resolution and triangulation on our newly-

learned descriptor. Left: CMC curve. Right: correspondence qual-

ity of the geodesic error.

has five models with different resolutions and triangulation-

s. We calculate the spectral feature with 16 dimensions for

each specific model. Then, the classical principal compo-

nent analysis (PCA) projection of the features is computed.

The dimension reduction results are visualized in Fig. 6.

The features of the five resolutions belonging to the same

category are clustered together, indicating that our spectral

feature is not sensitive to spatial resolution and triangula-

tion. The right of this figure also shows the shape-matching

results obtained using our unlearned LPS feature, further

demonstrating the robustness of the proposed spectral fea-

ture.

The above experiment illustrates the resolution and tri-

angulation invariance of our designed spectral feature. Nex-

t, we demonstrate the discriminative power and robustness

of our newly learned shape descriptor to establish dense

matching between multi-resolution shapes. Accordingly, a

challenging task is conducted, whereby we compute local

descriptors on low-resolution and high-resolution shapes,

and the descriptors are used for shape matching. The deep

neural network is trained by only using the original FAUST

shapes with 6890 points. Fig. 7 shows the matching re-

sults, in which “OURS” means shape matching between

original shapes and “OURS Ori-8K” means shape match-

ing between the original shape and a high-resolution shape

with 8K points. Our algorithm is applied to different res-

olutions, especially two challenging tests “10K-100K” and
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Figure 8. Performances of different descriptors for dense matching

between resolution 6890 and 8K. Left: CMC curve. Right: dense

correspondence quality of geodesic error.
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Figure 9. Performance of different descriptors in dense matching

between the original 6890 and 12K resolutions. Left: CMC curve.

Right: correspondence quality of the geodesic error.

“5K(CVT)-10K”. In the test with CVT models, we select

the points with the nearest geodesic distance as the ground-

truth correspondence. Furthermore, given that we use the

same triplet network in the method of the local descriptor

using GIs (LDGI) [32], we also show its matching result.

This figure shows that our method is better than LDGI when

testing on the original FAUST shapes. When our method

is trained at low resolution and tested on high resolution,

the results show that no significant performance degrada-

tion exists.

We further evaluate the performance of our method by

comparing it with various state-of-the-art techniques. Many

recent deep-learned methods (such as MoNet [26] and FM-

Net [22]) can only be trained and tested at the same reso-

lution because of their fixed network structure. Therefore,

these methods are unsuitable for matching tasks between d-

ifferent resolutions. In this test, three learned descriptors

(OSD [23], CGF32 [18], and LDGI [32]) and four hand-

crafted alternatives (SI [17], SHOT [31], RoPS [14], and

HKS [30]) are selected for comparison. All these meth-

ods can perform shape matching with different resolutions.

Figs. 8. and 9 show the matching results between the orig-

inal shape with 8k and 12k resolutions, respectively. Other

comparisons and analyses are provided in the supplemental

materials. All the learned descriptors are trained on the o-

riginal FAUST dataset and applied to high resolutions. Pre-

6237



0 20 40 60 80 100

number of matches

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

h
it
 r

a
te

CGF32 Rotation

HKS Rotation

LDGI Rotation

OSD Rotation

OURS Rotation

RoPS Rotation

SHOT Rotation

SI Rotation

OUR-LPS Rotation

0 0.1 0.2 0.3

geodesic radius

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
 c

o
rr

e
c
t 
c
o
rr

e
s
p
o
n
d
e
n
c
e
s

CGF32 Rotation

HKS Rotation

LDGI Rotation

OSD Rotation

OURS Rotation

RoPS Rotation

SHOT Rotation

SI Rotation

OUR-LPS Rotation

Figure 10. Performance of different descriptors on randomly rotat-

ed models. Left: CMC curve. Right: correspondence quality of

the geodesic error.

vious methods have difficulty handling different resolution-

s, whereas the newly learned descriptor exhibits excellent

performance.

Invariant to scale and rotation. Scale and rotation invari-

ance is critical in shape matching because 3D surfaces have

many unique spatial factors, such as translation, rotation,

and scaling. Many approaches need to normalize the model

before processing, but our method is theoretically guaran-

teed to have no effect. Figs. 10 and 11 show the compar-

ison results obtained on shapes with different rotations and

scalings. As shown, our approach significantly outperforms

state-of-the-art methods.

6.2. Shape Correspondence

Obtaining the shape correspondence is a different task

from the construction of the local descriptor. Although

computing the similarity of local descriptors helps in i-

dentifying corresponding points, recent learning-based ap-

proaches, such as GCNN [24] and MoNet [26], demon-

strate better performance by considering the shape corre-

spondence as a labeling problem. To demonstrate that our

proposed local spectral feature can be used to compute the

shape correspondence, we compare it with GCNN [24] and

MoNet [26]. Our approach is tested in two configurations.

“GCNN(OURS)” refers to the use of the GCNN framework,

but the input feature in GCNN is our proposed LPS feature.

This configuration shows that LPS can be used as a drop-in

replacement for any existing local feature. In the “OURS-

CORR” configuration, we utilize the ConvNet used for our

descriptor learning but change the triplet loss to a cross-

entropy loss for tagging. Fig. 12 shows the performance of

shape correspondence on the FAUST dataset. Both config-

urations are competitive with existing state-of-the-art meth-

ods.

7. Conclusions

We presented a novel local point signature for shape

matching of incompatible shape structures. We experimen-

tally demonstrated that this spectral feature is robust to res-
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Figure 11. Performance of different descriptors on randomly s-

caled models. Left: CMC curve. Right: correspondence quality of

the geodesic error.
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Figure 12. Performance of shape correspondence on the original

FAUST dataset.

olution and triangulation, and its invariance to rigid trans-

formations (scale and rotation) can be proven theoretically.

We drew inspiration from 2D Fourier transform of an im-

age and introduced the local vertex spectral image to encode

the information of LPS features in the local region. Then,

a deep metric learning model using vertex spectral images

was applied to compute local shape descriptors. We also

provided a new benchmark dataset for evaluation by extend-

ing the well-known FAUST dataset. We demonstrated the

advantages of our method in shape matching applications

with incompatible shape structures that have not been seen

in training data.

Limitation and future work. Given that the eigen-

decomposition of every local vertex must be computed, tak-

ing a longer time than full eigen-decomposition on the en-

tire model is reasonable. However, this process can be eas-

ily parallelized. We will further improve efficiency in the

future. Moreover, we will extend our framework to handle

point cloud data for a wide range of applications by consid-

ering different calculations of the Laplace–Beltrami opera-

tor.
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