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Abstract Modern direct solvers have been more and
more widely used by computer graphics community for
solving sparse linear systems, such as those that arise
in cloth simulation. However, external constraints usu-
ally prevent a direct method from being used for cloth
simulation due to the singularity of the constrained sys-
tem. This paper makes two major contributions towards
the re-introduction of direct methods for cloth dynamics
solvers. The first one is an approach which eliminates all
the constrained variables from the system so that we ob-
tain a reduced, non-singular and unconstrained system.
As alternatives to the well known MPCG algorithm, not
only the original, unmodified PCG method, but also any
direct method can be used to solve the reduced system
at a lower cost. Our second contribution is a novel direct-
iterative scheme applied for the reduced system, which is
basically the conjugate gradient method using a special
preconditioner. Specifically, we use the stiff part of the
coefficient matrix, which we call the matriz core, as the
preconditioner for the PCG. The inverse of this precon-
ditioner is computed by any eligible direct solver. The
direct-iterative method has proved to be more efficient
than both direct and iterative methods. Our experiments
show a factor of two speedup over direct methods when
stiff springs are used, even greater improvements over
the MPCG iterative method.
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1 Introduction

In computer graphics, a mass-spring model or any of its
variants has proved to be an effective model for cloth sim-
ulation. Simulating cloth usually involves integrating an
ordinary differential equation (ODE) over time. Explicit
integration methods served researchers in the early days
but are seldom used now due to their instability. Implicit
methods have been widely adopted ever since the break-
through work of Baraff and Witkin [5]. Among them are
semi-implicit backward Euler [5], backward differential
formula (BDF2) [13] etc. Although more stable than ex-
plicit solvers, these methods still don’t allow for arbi-
trary step sizes because they approximate a nonlinear
system with a linear one. Sometimes adaptive stepsiz-
ing was adopted to ensure a stable solution. Hauth [24]
presented a more accurate approach, the Inexact Sim-
plified Newton’s method, which is actually a nonlinear
solver with an embedded linear solver. The linear solver
is executed multiple times within one time step until cer-
tain residual criterion is satisfied. Although this method
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allows much larger step sizes, handling collisions often
requires small step sizes during the solution, limiting the
usefulness of being able to handle large step sizes.

How to solve the linear system — either stand-alone
or embedded — efficiently has become inevitably impor-
tant. Various techniques have been put forward to speed
up the linear system solver. These include the implicit-
explicit (IMEX) of Ascher et al. [3] by Eberhardt et
al. [18] and Boxerman and Ascher [9]. And also a sim-
plified system by Desbrun et al. [17] and a mixed ex-
plicit/implicit by Bridson et al. [11]. Many of the existing
cloth dynamics solvers suffer performance loss as higher
stretching coefficients are applied to overcome the exces-
sive elongation problem. This is because the condition
number of the system grows with the material stiffness,
forcing an iterative solver to perform many steps. Low
coefficients, on the other hand, result in stretchy and less
appealing cloth behavior.

Many researchers tried to alleviate the over-stretching
problem by a strain limiting post-process [10] [17] [20]
[26] [29] [32]. Among these attempts, [20] works very well
for quadrilateral meshes, while others have poor conver-
gence properties. Most recently, English and Bridson [19]
presented a method that introduce no in-plane deforma-
tion at all and it works for arbitrary triangular meshes.
However, all methods fail to integrate ideal solid/cloth
collision handling into one pass.

We realized that being able to efficiently handle sys-
tems with very high spring coefficients is of great impor-
tance. This problem is addressed in this paper from a nu-
merical analysis point-of-view. We put forward a direct-
iterative framework, called corePCG, for solving the lin-
ear system in semi-implicit setup. With this method, the
system is solved by an iterative method — the precondi-
tioned conjugate gradient (PCG) method — while inside
the PCG, a direct method is employed to compute the
inverse of the preconditioner. The preconditioner, which
we call matriz core, is the “stiff” part of the matrix and
it makes the iterative solver converge more quickly than
other preconditioners, including the widely adopted di-
agonal preconditioner and the Incomplete Cholesky (IC)
factor, etc. The computation time of corePCG is almost
a constant, independent of spring stiffness. Thus for very
stiff systems, corePCG is an order of magnitude faster
than the regular PCG where the matrix diagonal is used
as the preconditioner.

In computer animation, collisions and user interven-
tions often add constraints to the simulation system. For
example, Baraff and Witkin [5] presented an approach of
applying constraints on the simulation. These constraints
could easily cause the system to become singular and
thus cause the solver to fail. Baraff and Witkin modified
the preconditioned conjugate gradient method to make it
handle the constrained system gracefully. For the direct-
iterative method to be applied for the constrained case,
our solution is to first transform the singular system into
a non-singular one. Moreover, if the original system is

symmetric and positive definite (such as the one built
by Choi and Ko [13]), our reduction transformation pre-
serves both the symmetry and positive definiteness.

The paper is organized as follows: in §2, we give an
analysis of existing numerical techniques, including the
MPCG algorithm; in §3, we present how to reduce con-
straints so that direct methods can be used for the con-
strained situations; in §4 and §5, we discuss and evaluate
direct methods for the linear systems assembled in the
semi-implicit and IMEX integrations; our corePCG, the
direct-iterative method, is presented in §6; we discuss a
little about how the collision handling could affect the
direct-iterative solver in §7 and draw the conclusion in
68.

2 Related Work

There are a number of ways of approaching the math-
ematical modeling of the physics of cloth. Adopting a
mass-spring system, our work follows one of the most
common approaches that deals with integrating ordinary
differential equations and solving a linear system of the
form

of of
(I—Mla—/\/lga)u:b, (1)
where f, x and v are vectors of force, position and ve-
locity, respectively. Furthermore, matrices M7, My and
the right-hand-side vector b are assembled differently ac-
cording to different integration methods. The unknown
vector u could be either the position change or veloc-
ity change according to different methods. For example,
in the semi-implicit backward Euler [5], M; = hM™1!,
My = h2M~! and u = Av, where M is the diagonal
mass matrix, h is the time step. In the second order
BDF method used by Choi and Ko [13], M; = %hM_l,
My = %hQI\/If1 and u = Ax. The linear system in our
work is assembled according the first approach (i.e.,the
semi-implicit backward Euler) and we denote the system
as AAv = b by defining

of
b= Y f+h—v) .
(f+ 8xv)

(2)

If the above system is symmetric positive-definite, it
usually can be efficiently solved by PCG method. The
PCG method uses a preconditioner M, such that M is
close to A1 It then addresses the solution of M;lAAv =
M, b which should require fewer iterations than the
original equation since M LA is closer to the identity
matrix than A was. The key to the method is finding a
matrix M, that is similar to A but easier to invert than
A is. One of the simplest such matrices is formed from
the diagonal elements of A, which is trivial to invert, but
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may or may not be sufficiently similar to A to be useful
(this approach is sometimes called diagonal scaling).

In the absence of constraints, Baraff and Witkin tried
to make matrix A be symmetric positive-definite by drop-
ping some Jacobian terms in Equ 2, so that the system
can be solved by the PCG method. Choi and Ko [13]
pointed out that dropping certain terms is not enough to
guarantee a symmetric positive-definite system, thus the
solver could fail. Based on a mass-spring model defined
over a rectangular mesh, they found the indefiniteness is
more likely to happen when springs are excessively com-
pressed. In this case, the term % turns to be negative
definite, causing the whole system to be indefinite. One
solution to this problem is to use adaptive stepsizing,
i.e., decrease the time step h when the system is hard
to converge. Since % is scaled by h?(h < 1) in Equ 2,
decreasing h will cause this term to diminish — at a
quadratic rate. Choi and Ko gave a different solution
by using a specially designed compression model for the
post-buckling response. With their model, A is guaran-
teed to be positive definite. We adopted their buckling
model thus the linear systems in our experiments are
always positive definite.

However, in the context of solid/cloth collision (such
as cylinder/cloth interaction as shown in Figure 1 and
sphere/cloth interaction as shown in Figure 3), things
are more complicated due to constraints that represent
restrictions on the movement of nodes at the point of im-
pact. Integrating those constraints into the system makes
us face a singular system. Baraff and Witkin [5] cus-
tomized the conjugate gradient method to handle con-
straints. They called their method modified-pcg. Ascher
and Boxerman [2] improved the modified-pcg algorithm
(calling their method MPCG) and gave a proof of its
convergence. We present the pseudo code of the origi-
nal, unmodified PCG algorithm [6] [21] [31] (we call it
uPCG in this paper) and the MPCG algorithm, where
the matrix diagonal is adopted as the preconditioner M,
because it is easily invertible.

1. function uPCG()
2 initial guess for Av
3. = le\/Iglb

4. r=b-AAv

5 c¢=M,'r

6. d=rlc

7. while (6 > tol?5p)
8. q=Ac

9. a=46/(c’q)
10. Av = Av + ac
11. r=r-—aq
12. s = M;lr
13. 5=46
14. §=rls
15. c=s+(§/d)c
16.  end

The above algorithm is only good for unconstrained
systems. When constraints (e.g. those caused by solid/cloth
interactions) exist in applications, Baraff and Witkin de-
fined a 3 x 3 constraint matrix S; for each particle to be

I if ndof(x;) =3

S _ I-p,p’l if ndof(x;) = 2 ()
vt I- 13113? - quZ if ndof(:vi) =1
0 if ndof(x;) =0

where p; and q; are unit vectors along which accelerating
is prohibited. Note that the name q; is unrelated to name
q in the uPCG pseudo code. A global constraint matrix
S for a system of N particles can be formed from S;

Szdiag{Sl,--- ,SN} (4)

The linear system for the constrained case is

SAAv =Sb . (5)

And a further restriction is

(I-S)Av=1-S)z, (6)
where z is the desired velocity change due to constraints
(In the experiment of ball hitting cloth, the cloth node
being hit will assume velocity of the ball in the direction
of the colliding normal. Thus the corresponding z, vy, 2
components in z is set to that velocity. For unconstrained
nodes, their components in z are zero). This equation
says that the constrained coordinates of Av are set to
be equal to those of z. The matrix S of Equ. 5 guaran-
tees that the values of the constrained coordinates not
to change while Av is being solved.

With constraints, although A is still positive definite,
the system of Equ. 5 is singular because S; is singular for
ndof(z;) # 3. In MPCG, the rows and columns in SA
that cause the singularity are filtered out in the compu-
tation and thus the iteration proceeds successfully. As-
cher and Boxerman [2] gave the proof of convergence
of the MPCG method and accelerated the convergence
of MPCG by using a corrected stop criterion and a bet-
ter initial guess. The following is their MPCG algorithm,
which is slightly different from Baraff’s. We followed this
algorithm in our experiments.

1. function MPCG()
2. initial guess for Av
3. b=S(b-Al-S)z)
4. 5= (Sb)"M,'(Sb)
5. r=S(b—-AAv)

6. c= SMglr
7

8

9

s=r"c
while 6 > tol?6
. q = S(Ac)
10. a=145/(c’q)
11. Av = Av + ac
12. r=r—aq
13. s=M,"'r
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14. 6=46

15. §=rTs _
16. c=S(s+(d/0)c)
17.  end

Ascher and Boxerman pointed out that their improved
MPCG method is equivalent to the uPCG method ap-
plied to a reduced system, and also proved the exis-
tence of the reduced system. A system of N cloth par-
ticles determines matrix A to be of size n x n, where
n = 3N. If d DOFs are constrained, the system has
(n—d) DOFs. Matrix S is an orthogonal projection which
defines a mapping from the n-dimensional space to the
(n — d)-dimensional space. This fact allows us to write
S = UU”, where U € R™*("~9) has (n — d) orthogo-
nal columns. Note that UTU =1 and rank(S) =n — d.
From Equ. 6, there is
Av =SAv+ (I—-9S)z (7)
Substitute it into Equ. 5 and left-multiplying the equa-
tion by U7 yields the unconstrained, positive definite
system.

AAV =Db (8)
where

A =UTAU (9a)
b=U"(b-A(I-8)z) (9b)

(9¢)
However, Ascher and Boxerman never formed the trans-
formation matrix U explicitly.

Interestingly, Ascher also suggested another way of
solving the constrained system, but they seemed never
implement it. Their idea was to combine Equ. 5 and 6
into one system
(SA+I-S)Av=Sb+(I-9)z (10)
and solve it using a preconditioned Krylov-space method.

However, this will not work. The two systems, Equ. 5
and Equ. 10, are not equivalent, as the solution of the lat-
ter does not satisfy Equ. 6. While solving a constrained
system with (n — d) DOFs, we are in fact solving for
the (n — d) components of a n dimensional vector. But
Equ. 10 gives a solution where the desired (n—d) numer-
ical values are “diluted” to all n components. To make it
work, a transformation matrix, which should be similar
to the matrix U given below, is needed to turn the solu-
tion vector for Equ. 10 from n dimensional into (n — d)
dimensional. Thus finding matrix U is the key point.

In the next section, we will show how to turn the
constrained system into an unconstrained one by elimi-
nating all constraints, so that a direct solver, as well as
the direct-iterative solver presented in this paper, can be
used.

3 Reducing a Constrained System into an
Unconstrained One

In this section, we present our solution which makes us-
ing a direct method to solve constrained systems possi-
ble. Our work is an extension of the above Ascher and
Boxerman approach. The constraints are eliminated and
the original system is reduced to a lower dimensional and
non-singular system.

Our solution is still based on Equ. 8 to 9c. We ob-
serve that if such a matrix U can be found, Equ. 5 can be
transformed into Equ. 8. In fact Equ. 9a turns an n x n
singular matrix SA into an (n—d) x (n—d) full-rank ma-
trix A. Similarly, Equ. 9b turns an n-dimensional vector
into an (n — d)-dimensional vector. Once we solve Av
out of Equ. 8, we can get Av from Equ. 9c¢: multiplying
both sides with U yields

UAV = UUT Av = SAv,
and together with Equ. 7, we have

Av=UAV+(I-9)z . (11)

Now our task is to find the transformation matrix U.
A fact is such a matrix U is not unique. As long as n-
dimensional column vectors uy, us, - - - ,u, form a set of
orthogonal basis for the subspace defined by S, matrix
U= (u u u,.) is one solution. However, not
all candidates perform equally well.

Re-writing S = UU7 into block form

U, U7
= '.' (12)
UNUL

we get S; = U;UT. Recall Equ. 3, the dimension of U;
varies according to the number of DOF's a cloth particle
has. When ndof(z;) = 3,1,0, U; is uniquely defined:

— If ndof(z;) = 3, U; =1 € R3*3;
— If ndof(z;) = 1, U; = 2524 € R, where p; and
q; are the same as in Equ. 3;

— If ndof(x;) = 0, U; = 0;

When ndof(z;) = 2, there are infinitely many U,; €
R3*2 satisfying S; = U;UY. If we consider p; as a nor-
mal vector which defines a plane, we could find infinitely
many pairs of mutual orthogonal unit vectors t1; and s
in that plane. Juxtaposing any pair of column vectors iy
and 03 forms one of the candidate matrices U;. However,
when using such Uj; to eliminate the constraints, we find
sometimes the average number of iterations of uPCG is
bigger than MPCG. We conclude that improper U causes
an increment of the conditional number of A.

We then tried QR decomposition [21] to get a pair
of orthogonal vectors and it works well. Actually, given
the specialty of the matrix S; = I — p;p/, We don’t
have to use the generic QR algorithm which is intended
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Fig. 2 Experiments of pinned cloth and draping cloth in order to compare uPCG on the reduced system with MPCG on

the original system.

for rectangle matrices. Recall that p; = (p1,p2,p3)” and
p? +p3 +p% = 1. We give a close form expression for U;.

We define

000
010
001

if(py = 1)

V1-p300
__ _Dbip2 00

\/1717%
01

___Pip3

\/l—pf
1—p2 0 0

if(p1 # 1)and(ps = 0)

__pip2 |p3| th .
i—p? i_p? otherwise
___Pip3 _ p2p3
V1-p?  |psly/1-p?

(13)

Eliminating the zero column from G; gives U; € R3*2,

Once matrix U is determined, all constraints can be
eliminated according to Equ. 9a and Equ. 9b. A nice
thing about the matrix U is it does not introduce any
new non-zero to the sparse system. In the implementa-
tion, we adopted the widely used block compressed col-
umn storage (BCCS) [6] for A in MPCG, and compressed
column storage (CCS) for A in uPCG.

Please note that Ascher and Boxerman have proved
that the convergence performance of the uPCG algo-
rithm for the reduced Equ. 8 is equivalent to that of
the MPCG algorithm. From [31] we can conclude the so-
lution searching directions (vector ¢ in the pseudo-code)
of the MPCG are restricted to the space spanned by the
column vectors of SA, which is a subspace of the space
spanned by A. This subspace is actually the same space
spanned by A in the uPCG. Moreover, the values of d
and § in the uPCG are identical to their counterparts
in the MPCG, thus the two algorithms terminate the it-
eration according to the same criteria. Our experiments
have verified this — the number of iterations of the uPCG
and the MPCG are almost equal (roundoff error makes
them differ slightly).

Due to the constraints in the system, the MPCG is
different from uPCG in that matrix S is applied twice in

each while-loop, at line 9 and line 16 of the pseudo code.
The reduced system no longer suffers such issue.

How is the performance of the uPCG for a reduced
system compared to the MPCG for a constrained sys-
tem? We set up two experiments: (1) a piece of cloth
with four corners pinned subjected to gravity; (2) a piece
of cloth draped on a sphere. We try to introduce as few
constraints as possible in the first experiment, and in-
troduce as many constraints as possible in the second.
The matrix main diagonal is used as the preconditioner
for both MPCG and uPCG. The initial guess was chosen
the same way as Ascher and Boxerman did.

k MPCG uPCG
strho | diter  time | #iter  time
60 | #35 0.25s | #35 0.22s
pinned 600 | #116 0.65s | #115 0.50s
6,000 | #413 2.03s | #414 1.53s
60 | #26  0.23s | #24  0.11s
draping 600 | #T78 0.49s | #77 0.17s
6,000 | #267 1.54s | #270 0.42s

Table 1 CPU time of one step ODE integration with At =
3.67ms for experiments of Figure 2. The mesh has 6,561
nodes.

All the experiments mentioned in this paper ran on a
system with Intel Core 2 Duo 2.13GHz CPU and 2 Gig
memory. There was no multi-core programming involved.
The computation time in the tables is for ODE integra-
tion, including matrix assembling and linear system solv-
ing but excluding the self-collision handling. The cloth
is based on Provot’s rectangular model [29], each node is
connected to 12 neighbors via linear stretch, shear and
bend springs.

Table 1 shows the result of our experiments. The
cloth mesh has 6,561 nodes, making the matrix A to
be of size 19,683. In the first case, four nodes are com-
pletely constrained, decreasing the DOFs of the whole
system only by 12. After eliminating the constraints, the
size of matrix A in uPCG is of size 19,671, which is al-
most of no change to size of A. The experiment showed
that the number of iterations in the MPCG is almost
equal to that in the uPCG, which has been predicted
by Ascher and Boxerman. The CPU time of uPCG is
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10% to 25% less than MPCG, because no application of
matrix S and transposing block matrices is needed. In
the second case, the cloth falls down onto a sphere and
strong static friction makes each colliding node to stick
with the sphere. Thus many nodes have DOF = 0 and
the matrix size is greatly reduced. Due to a much smaller
matrix A, the CPU time of uPCG cuts the running time
by 50% to 75% off MPCG. Note although many nodes
are constrained, setting up the matrix A (evaluation of
forces and force Jacobians) does not take advantage of
the constraints, thus no saving happens at this stage for
uPCG. We did a series of experiments, varying the size
of the mesh and stiffness of the spring. All experiments
showed that solving reduced systems by uPCG is more
efficient than solving the original system by MPCG.

The reduced system actually offers us more choices
on how to solve it. Previous work has shown that the
uPCG solver can be performed on a GPU [8] [28]. Do-
ing general purpose GPU computation is not an interest
of this paper. However, we would like to explore other
methods for solving the reduced system.

4 Direct Solvers for Linear Systems

Although iterative methods, particularly the PCG method,

are widely used for sparse linear systems, direct methods
should not be neglected. A direct method is either the
Gaussian elimination or its variant tailored to exploit the
special structure of the matrix. For symmetric systems
there are LDLT and LL” factorizations. For example,

applying the LDL” factorization to a symmetric matrix
A yields

A =LDL”, (14)
where L is the lower triangular matrix with all diagonal
elements being one, and D is a diagonal matrix. Thus
solving the system Ax = b turns into solving three sub-
systems Ly = b, Dz =y and L”x = z.

One issue with direct methods is that when a sparse
matrix A is factored, it typically suffers some fill-in and
becomes less sparse. That is, L has nonzeros in positions
which are zero in the lower triangular part of A. Fill-in
not only adds load to forward substitution Ly = b and
backward substitution LTx = z, but also increases the
round-off error as it causes more arithmetic to be done.
However, it is possible to reduce the amount of fill-in by
reordering the matrix prior to the factorization, thus sav-
ing computer execution time and storage. A reordering
means a symmetric permutation of the rows and columns
of A, and the same permutation applied to b. Permuta-
tion of the rows is done by left-multiplying A with a
permutation matrix P, and permutation of the columns
is done by right-multiplying A with P7. Once the re-
ordering is done, factorizing PAPT | instead of A, into
LDL” requires less calculation and leads to much less

fill-in in L. Thus instead of solving Ax = b, we solve

(PAP")(Px) =Pb , (15)
and then do a inverse permutation to the solution vector.

Which is better, the iterative method or the direct
factorization, is really application-dependent. With an it-
erative method, the number of iterations required varies
depending on the condition number of the matrix, or the
stiffness of the linear system in cloth simulation. Quite
a few researchers [33] [18] have observed that stiffer sys-
tems converge more slowly. This is not a surprise because
dp in the uPCG depends on M,, and b, so tol needs
to be adjusted whenever M,, or b changes. Several fac-
tors affect the stiffness of a system, such as the spring
coefficients, the time step size and the velocities of the
constrained particles. The direct method, however, does
not suffer such drawbacks, as its running time does not
change along the stiffness. For the direct factorization,
certain matrices have sparsity patterns that the reorder-
ing algorithm results no fill-in (Baraff [4] presented such
a case) or little fill-in. But for most matrices, we are not
so lucky. Actually, finding an optimal permutation that
results in the minimum amount of fill-in is NP-hard [25].
Heuristics are usually used to find a decent permutation.

Since the early 1990s, many new direct algorithms
and a number of new software packages for sparse sys-
tems have been developed. Using sophisticated direct
methods in computer graphics, even in the field of cloth
simulation, is not new. In addition to [4], Hauth used
and compared several direct solvers for cloth simulation
in his Ph.D thesis [23], and he found direct methods were
comparable to iterative methods. More recently, the di-
rect Pardiso solver [30] has been employed in cloth sim-
ulation [19] [20].

Gould et al. [22] did an evaluation of the state-of-the-
art solvers, including BCSLIB-EXT, CHOLMOD, MA57,
MUMPS, Oblio, PARDISO, SPOOLES, SPRSBLKLLT,
UMFPACK, TAUCS and WSMP (please refer to [22]
for references to each individual solver). Among them,
we are particularly interested in Cholmod [12] [14] [15]
[16], designed for solving positive definite systems, and
Pardiso [30], designed for both definite and indefinite
systems. We have benefitted from the early version of
the Cholmod package in our previous work [35] [36].
The latest Cholmod package automatically choose the
best reordering between approximate minimum degree
(AMD) [1] and graph-partitioning-based nested dissection
(METIS) [27]. The evaluation work [22] shows that the
Cholmod gives the best overall performance in 88 posi-
tive definite problems, and the Pardiso takes the second
place. Therefore, we were very interested in applying the
Cholmod to the linear system assembled in our cloth
simulation, which happens to be positive definite. More
importantly, the source code of the Cholmod package is
available to the public domain, and this enable us to ac-
quire the permutation matrix so that the direct-iterative
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solver (see §6) can be carried out. Since the Pardiso pack-
age is among the most efficient solvers and has been
favored by the computer graphics community, we inte-
grated it into our system to do a comparison against the
Cholmod side-by-side. It is unfortunate that the latest
version Pardiso package comes only in the format of bi-
nary library file and it does not return the permutation
matrix, so we are unable to use it in our direct-iterative
algorithm at this moment.

5 Experiments of Using the Direct Solvers

In the semi-implicit Euler integration setup of Equ 2,
the stretching forces, the shearing forces and the bend-
ing forces and their damping are all treated implicitly.
In addition to the semi-implicit setup, another popular
ODE integration method used in cloth simulation is the
implicit-explicit method (IMEX) developed by Ascher et
al. [3]. The IMEX method is a splitting method that
consists of two portions, an implicit and an explicit one,
the first one being applied to the stiff part of the ODE
and the second one to the nonstiff part. Splitting can be
done differently depending on the applications. For ex-
ample, Eberhardt et al. [18] split the stretching force into
a linear portion and a nonlinear portion; Boxerman and
Ascher [9] treated all stretching springs implicitly, and at
the same time adopted a stability criterion to deal with
shear springs, thus resulted in an adaptive IMEX scheme.
IMEX leads to matrices sparser than those assembled in
either the implicit or semi-implicit integration, and we
will occasionally call them thin-matriz and full-matriz
hereafter, respectively. In our IMEX setup, the stretch
force is treated implicitly while the shear and the bend
forces are treated explicitly. Handling a spring connec-
tion explicitly is as simple as dropping its contribution
to the Jacobian matrix.

Our next experiment ' simulates a piece of cloth
with two corners pinned being hit by a flying ball (Fig-
ure 3). In the semi-implicit setup, each row of matrix
has 13 nonzero 3 x 3 blocks, equivalent to around 40
non-zero floats per row/column. The thin-matrix from
IMEX is much sparser, with each row/column having
only 15 nonzeros. The linear force model follows Choi
and Ko’s post-buckling model [13] so that the matrices
(thin or full) are positive definite.

Choi and Ko’s model results in a stable simulation in
which high spring coefficient and large time step can be
used. It is known that the stiffness of the System does not
depend on the spring coefficient k£ but on = [29] [18]. We
simulates three meshes of different rebolutlons, varying

! This experiment is used in the next section as well. One
difficulty in cloth simulation is overstretching. To explore this
problem, this experiment involves a ball applying force on
the surface of a hanging cloth. The proper behavior is for the
cloth to get out of the way of the ball rather than let the ball
stretch the cloth like the cloth were made of rubber.

the stretch coefficient kg to be 60, 600 and 6000 for
each mesh. Fixed mass of 9.5e-06 kg is used for each
cloth node, making to be as high as 6.3e+08 WLM.
The shear and bend coefficients, while unchanged, are set
as small as 0.3 and 0.05, respectlvely, making the ratio
Z:;’; as high as 1.2e+4-05. Wlth such a bmh ratio that the
stretching stiffness is greater than the bending stiffness
by four or more orders, it is enough simulate inextensible
plates and shells [7]. The time steps used for the three
different sized meshes are 6.67ms, 5.55ms and 3.67ms,
respectively. In fact, a larger time step is allowed if we
do any of the following adjustments: (1) fix more nodes
on the top row of the mesh; (2) slow down the motion
of the ball; (3) make the cloth to fit less tightly on the
surface of the ball.

We applied MPCG, Cholmod and Pardiso to linear
systems formed by the semi-implicit and the IMEX inte-
grations. The result is shown in Table 2. As previous ex-
periments, we only record the computation time for ODE
integration, excluding the time for self-collision handling.
The value of tol is carefully chosen to make the compu-
tation barely converge so that the iteration terminates
as early as possible. Both of the two direct solvers in our
implementation use Level-3 BLAS supernode techniques.
A flag can be set for the Pardiso solver so that it is op-
timized to handle symmetric positive definite systems
more efficiently than indefinite systems (data is shown
in column “Pardiso(1)” of Table 2). An interesting point
about the Pardiso solver is it allows a combination of di-
rect and iterative methods in order to accelerate the solu-
tion process. This mode is referred as the preconditioned
CSG, and it works by applying the L and U factors from
the previous step to a preconditioned Krylov-Subspace
iteration. If that attempt fails to converge, the solver will
automatically switch back to the direct factorization. Ex-
perimental data corresponding to this mode is shown in
the column “Pardiso(2)” of Table 2.

kstrn
m

Our experiment shows that MPCG performs better
than direct methods only when the spring stiffness is
very low, and this is true for both the semi-implicit and
IMEX cases. Comparing Cholmod with Pardiso(1), the
former is more efficient in all experiments, and this is
consistent with the evaluation result of Gould et al. [22].
Using the preconditioned CSG mode (Pardiso(2)), we
gained no benefit in terms of running time. However, we
did monitor that many steps of preconditioned CSG at-
tempts were successful during the simulation. We guess
the preconditioned CSG mode works best in cases that
identical sparsity pattern is maintained for many consec-
utive steps and only the numerical values change. Our
matrices are reduced from constrained ones, and their
sparsity pattern is not fixed.

The key insight of the experimental data is that the
execution time for the thin-matrix of the IMEX setup is
1/3 of that for the full-matrix of the semi-implicit setup,
and that the larger the mesh size, the more IMEX out-
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#nodes At Intesration | & MPCG Direct method corePCG
in mesh | (ms) & strho | diter time || Cholmod | Pardiso(1) | Pardiso(2) || #iter  time
semi- 60 | #119  0.16s #2 0.07s
implicit 600 | #314  0.38s 0.11s 0.15s 0.15s || #4 0.07s
1,681 6.67 6,000 | #722  0.84s #3 0.07s
60 | #131  0.10s N/A  N/A
IMEX 600 | #305  0.22s 0.05s 0.06s N/A || N/JA  N/A
6,000 | #681  0.46s N/A  N/A
semi- 60 | #50 0.32s #3 0.35s
implicit 600 | #123  0.66s 0.65s 0.78s 0.76s || #4 0.35s
6,561 555 6,000 | #511  2.43s #5 0.37s
60 | #53  0.21s N/A  N/A
IMEX 600 | #114  0.36s 0.23s 0.29s N/A || N/JA  N/A
6,000 | #442  1.22s N/A NJ/A
semi- 60 | #88 2.24s #4 1.79s
implicit 600 | #256  5.77s 3.88s 4.29s 4.40s || #4 1.81s
95,021 | 3.67 6,000 | #574 12.42s #4 1.80s
60 | #88 1.32s N/A  N/A
IMEX 600 | #258  3.35s 1.16s 1.42s N/A || N/JA  N/A
6,000 | #575  7.22s N/A  N/A

Table 2 CPU time of one step ODE integration while simulating a piece of cloth being hit by a sphere using the semi-
implicit and the IMEX integration to assemble the linear system. Cholmod, Pardiso(1), Pardiso(2) and corePCG are applied
to reduced systems. Pardiso(1) is the case that the solver is set to handle symmetric positive systems, while Pardiso(2) is

the preconditioned CSG mode.

performs semi-implicit. This observation inspired us to
develop the corePCG method of the next section.

6 corePCG: a Direct-iterative Framework for
Linear Systems

Although the IMEX typically gives savings on execu-
tion time compared to the semi-implicit method, it is
not always preferable for time-dependent PDE/ODE, as
mentioned by Ascher et al. [3]. This is also true for the
ODE arising in cloth simulation. In the above experi-
ments where all shear forces were treated explicitly, we
noticed that increasing the shear coefficient makes the
IMEX setup become unstable. Stability can be increased
if the shear forces are treated implicitly. This, however,
will increase the density of the IMEX matrix, thus in-
crease the computation cost of the linear solver. In such
a case, it is often a tough call in deciding whether shear
forces should be treated explicitly or implicitly. This is
the main reason behind the adaptive IMEX proposed by
Boxerman and Ascher [9]. And also, the IMEX solver
is usually less accurate than implicit or semi-implicit
solvers. For example, Eberhardt al. [18] had to update
the right-side-hand within the PCG while-loop, other-
wise the system does not generate enough motion to the
cloth mesh. Therefore, in certain situations, dealing with
a full-matrix is preferred rather than a thin-matrix. In
this section, we focus on full-matrices formed in the semi-
implicit setup, and present a technique to speed up the
iterative solver. The efficiency of direct methods in IMEX
presented in the previous section inspired us in finding

a new preconditioner, which we will call matrix core, for
the iterative solver.

A good preconditioner is very helpful in making the
PCG converge quickly. Some people have spent much ef-
fort in finding a better preconditioner. In addition to the
diagonal preconditioner used by Baraff and Witkin [5],
Choi and Ko [13] tried using 3 x 3 block diagonal precon-
ditioner, Incomplete Cholesky (IC) and Incomplete LU
(ILU), and got an improvement of approximately 20%
from the block diagonal but no gain from the other two.
Hauth et al. [24] experimented with IC and Symmetric
Successive Overrelaxation (SSOR) preconditioners, and
both gave a performance improvement of approximate
20%. Boxerman and Ascher [9] also tried the 3 x 3 block
diagonal preconditioner, but taking consideration of the
constraints. They reported a performance improvement
of 30% when a significant number of constraints exist.
Their preconditioner, constructed by projecting the tri-
diagonal of unconstrained matrix A onto the constrained
space, is equivalent to the tri-diagonal of our reduced ma-
trix A (discussed in §3), so the improvement brought by
our new algorithm is indeed on top of their work. All
above preconditioning techniques, although offer certain
improvement, are still not suitable for handling very stiff
systems because the number of iterations still increases
as the stiffness increases.

Different from existing techniques, we select the pre-
conditioner by taking consideration of not only the ma-
trix pattern but also the numerical values of matrix en-
tries. This is achieved by a careful analysis of how the
matrix A for cloth simulation is assembled. In Equ. 2,
the term f includes internal forces (fsirn, fsnear and foena)
and external forces (gravity, air friction etc.). The Jaco-
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Fig. 3 A piece of cloth modeled by 25,921 nodes is being hit by a flying ball. The stretch coefficient varies from 60 to 6000.

bian of external forces is zero. We write A into the form
of A = Asrn + Ashear + Avend + Dother. Sparse matrix
A p is due to stretching forces and their Jacobian,and
their corresponding damping terms. (Agpear and Apend
can be interpreted similarly.) Each sparse matrix has a
different sparsity pattern, which is determined by the in-
ternal dynamics model. The diagonal matrix D¢, can
be considered as the identity matrix in Equ. 2. All four

matrices contribute to the main diagonal of A, making
the main diagonal somewhat “heavier” than other sub-
diagonals. Using the diagonal of A as the preconditioner
works well when the particle mass is relatively high and
the spring stiffness, particularly the stretching stiffness,
is relatively low, as in this case A numerically approaches
the Dy¢per. We can see this in Table 2 where the diago-
nal of A is the preconditioner being used for the MPCG
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results. This was also observed and pointed out by As-
cher [2]. As the stiffness increases, the matrix diagonal
becomes less good as a preconditioner. Due to the fact
that the cloth model has a large stretch stiffness but
relatively small shear and bend stiffness, the numerical
values in Ag,p, are greater in magnitude (the absolute
values) than those in Agpeqr and Apenq. Increasing the
stretching stiffness causes A, to have more “weight”
in A.

We derive a special matrix, which we call matrix core,
as the preconditioner: A ore = Agtrn, + diag(Aspear) +
diag(Apend) + Dother. Matrix A o has the same spar-
sity pattern as the thin-matrix used in IMEX integration
but different numerical values, as the IMEX thin-matrix
does not contain diag(Aspeqr) and diag(Apeng). In im-
plementation, we extract A ,.. from A by deleting those
nonzero blocks which occur in Agpeqr Or Apeng but not
in Astrh-

Using the matrix core as the preconditioner, we call
our method corePCG() algorithm. A preconditioner ma-
trix should be easily invertible. Actually, the inverse of
the preconditioner A.,.. does not have to be explicitly
computed. Applying inverse matrix s = M, Ly (line 12 of
the uPCG() algorithm) is equivalent to solving M,s = r
(and the same rule applies to the calculation of §p at
line 3). To solve this system, we use a direct method —
Cholmod in our experiment — with matrix reordering. In
corePCG(), the LDLT factorization, applied to the re-
ordered preconditioner Acom(: PA....PT), should be
done once outside of the while-loop (line 5 of corePCG())
so that the system can be backsolved for multiple values
of RHS inside the loop (line 17). A, b and potentially
the initial guess Av are reordered before the while-loop
starts so that their orders are consistent with the re-
ordered preconditioner.

We present the corePCG algorithm as follows, and
note lines 8 to 20 is the original uPCG pseudo code.

1. function corePCG()

2 extract A.ore from A as the preconditioner

3 analyze A o to find the permutation matrix P
4. reorder Aore: Acore = PAorPT

5. do factorization: Ao = LDLT

6. reorder A and b: A = PAP” b =Pb

7. reorder the initial guess: Av = PAv

8. Solve (LDL™)t = bfort,sod = bTA! b=">b"t
9. r=b-AAv

10.  solve (LDLT)c =r for ¢
1. §=rlec

12.  while § > tol?6y

13. q= Ac

14. a=46/(c’q)

15. AV = AV 4 ac

16. r=r—oaq

17. solve (LDLT)s =r for s
18. o=10

19. d=rls

20. c=s+(d/d)c

21.
22.

end
inversely reorder the solution: Av = PTAv

One might want to avoid reordering matrix A before
the while-loop, as reordering a matrix is more costly than
reordering a vector. An alternative to reordering A, b
and Av at line 6 and 7 is to apply reordering and the
direct solver at line 17 to solve A ope§ = ¥. This way, r
is reordered a priori to form a proper ¥, and solution § is
inversely-reordered right after to make it consistent with
vector c¢. Since the while-loop will be executed multiple
times, vector reordering will occur multiple times. In our
experiment, the while-loop is executed only a few times,
and there is no obvious performance difference between
these two choices. We guess that in applications where
the number of iterations is high, this alternative choice
is not favorable.

Our implementation of corePCG uses the Cholmod
package, not only because Cholmod is particularly effi-
cient for positive definite systems. More importantly, the
open source Cholmod makes the permutation matrix P
available to us, while the Pardiso package (available in
binary library file only) does not. The permutation ma-
trix is used in line 4, 6, 7 and 22 of corePCG algorithm. If
the Pardiso could be used in corePCG, we believe, it will
not change the conclusion of this paper. We are looking
forward to a new version Pardiso that is more friendly
to our corePCG algorithm, thus the system to be solved
does not have to be positive definite.

The corePCG method gives exciting results as shown
in Table 2. Comparing to the Cholmod for the semi-
implicit setup in solving a full-matrix, the corePCG cuts
the execution time by 46% for the medium mesh, and
54% for the large mesh. An interesting point here is
the number of iterations in corePCG is quite low and
it does not change significantly as the stretch coefficient
changes. As a result, the execution time of corePCG is
almost a constant, no longer sensitive to the stiffness of
the system. These justify the observation that the ma-
trix core preconditioner is such a good approximation to
the original matrix, and calculating the inverse of the
preconditioner is the most time-consuming part in each
simulation step.

In conclusion, for systems of high stiffness, modern
direct solvers are in general more efficient than itera-
tive methods, although the performance of an iterative
method is often implementation-dependent, influenced
by the stop criterion and the time step (which affects the
initial guess for the solution). Solving a full-matrix sys-
tem often gives more accurate result than solving a thin-
matrix. If the stiff part of the full-matrix can be easily
extracted, our direct-iterative method can be applied and
it is superior to direct methods. Essentially as an itera-
tive method, the cost of corePCG consists of applying a
direct method to the thin-matrix plus a very few number
of matrix-vector multiplications and forward/backward
substitutions. Compared to the IMEX direct solver for a
thin-matrix, the corePCG handles a full-matrix with less
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Fig. 4 Frame images for the simulation of clumping cloth with excessive self-collisions. A relatively small At = 0.0022 sec
is adopted so that the collisions are resolved at a fine level. When using MPCG, the average running time is 1.83s per step
(0.75s for dynamics simulation and 1.08s for collision handling). When using Cholmod, the running time is 1.44s per step
(0.36s for dynamics simulation and 1.08s for collision handling). When using corePCG, the running time is 1.29s per step
(0.21s for dynamics simulation and 1.08s for collision handling).

than 50% of extra cost. The corePCG intends to bring
performance improvement per step basis, and it has no
restriction on the step size. None of the existing precon-
ditioning techniques used in cloth simulation, including
IC, SSOR and block diagonal, offers a performance im-
provement as much as corePCG does. That the compu-
tation cost of corePCG does not change along the system
stiffness could be a good news for real-time applications,
since the running time can be predictable.

7 Collision Response

The performance boost offered by our corePCG algo-

rithm is preserved along with self-collision handling (see

Figure 1 and 4). We followed Bridson et al. [10] to resolve

self-collision by doing velocity adjustment, and form Rigid
Impact Zone (RIZ) if excessive collisions happen in a cer-

tain region. All nodes in a RIZ assume the identical linear

and angular velocity, thus can be treated as DOF = 0

and their corresponding matrix entries are eliminated by

the dynamics solver.

Eberhardt [18] reported a performance loss of the reg-
ular CG method when the repositioning suggested in [5]
was used. We believe the main reason behind this can
still be explained by Choi and Ko’s analysis [13] (also
see §2): arbitrarily repositioning cloth nodes would cause
some springs to be over-compressed, turning the matrix
towards indefiniteness. This should not be an issue with

Choi and Ko’s post-buckling model, as it always pro-
duces positive definite systems. Therefore, the corePCG
would just work well with repositioning collision han-
dling.

Even if our corePCG algorithm is used in a system
that is not always positive definite, repositioning will
cause it to suffer less performance loss than regular CG,
because the major computation burden is in comput-
ing the inverse of the preconditioner by a direct solver,
whose performance is only sensitive to the nonzero pat-
tern of the matrix, not the numerical values. We believe
the corePCG will work well with other robust collision
resolution strategies, such as [34].

8 Conclusion

Following the ideas in the convergence proof of Ascher
and Boxerman [2], we have presented a technique that re-
duces a constrained system to an unconstrained one, thus
allowing uPCG, direct solvers and our direct-iterative
solver to work for cloth simulations. The reduction elim-
inates two matrix-vector multiplication from the inner
loop of the MPCG algorithm and resulted in substantial
time savings in the presence of many constraints.

With our constraints reduction approach, we are able
to apply direct solvers for linear systems in cloth simu-
lation. The popular numerical methods for integrating
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ODEs are IMEX and semi-implicit integrations. We ex-
plore two direct methods, Cholmod and Pardiso, for solv-
ing linear systems assembled in these two different inte-
grations. While the performance of an iterative method
varies greatly depending on the stiffness of the system,
the direct method outperforms the iterative method when
the system stiffness is above certain level. In IMEX setup,
we found direct solvers are particularly efficient. For semi-
implicit setup, we proposed a direct-iterative method,
corePCG, by developing a new preconditioner that out-
performs existing preconditioners. Although inverting the
preconditioner is more costly than inverting a traditional
diagonal, its inverse is much closer to the inverse of the
coefficient matrix than the inverse of the diagonal pre-
conditioner. Thus the extra inversion cost is balanced off
by the low number of iterations needed. Our experiments
showed its performance relative to the popular diagonal
preconditioner improves both as stiffer springs are used
to model the cloth and as more nodes are used to model
the cloth at higher resolution. By the time we are us-
ing 25,921 nodes with a stretch coefficient of 6,000, our
corePCG method (uPCG using the matrix core precon-
ditioner) executes at only 50% of the time it takes to run
the already efficient Cholmod solver, and it takes only 4
iterations to converge. The iterative method is even far
from comparable to corePCG.

Although all experiments shown in this paper are
based on rectangular meshes, our theory is developed
independent of mesh geometry. In particular, all algo-
rithms should work on triangular cloth meshes as well.
Since triangular meshes are more flexible for modeling
complicated cloth structures such as shirts, we are inter-
ested in continuing to develop this work in that domain.
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