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Abstract

Gesture is a natural interface in interacting with wear-
able devices such as VR/AR helmet and glasses. The main
challenge of gesture recognition in egocentric vision aris-
es from the global camera motion caused by the sponta-
neous head movement of the device wearer. In this paper,
we address the problem by a novel recurrent 3D convo-
lutional neural network for end-to-end learning. We spe-
cially design a spatiotemporal transformer module with re-
current connections between neighboring time slices which
can actively transform a 3D feature map into a canonical
view in both spatial and temporal dimensions. To vali-
date our method, we introduce a new dataset with sufficient
size, variation and reality, which contains 83 gestures de-
signed for interaction with wearable devices, and more than
24,000 RGB-D gesture samples from 50 subjects captured
in 6 scenes. On this dataset, we show that the proposed
network outperforms competing state-of-the-art algorithms.
Moreover, our method can achieve state-of-the-art perfor-
mance on the challenging GTEA egocentric action dataset.

1. Introduction

With the development and popularity of the wearable de-
vices such as VR/AR helmet and glasses, there is a demand
to manipulate these devices intelligently. Since gesture is a
common form for human communication and hands can be
conveniently captured by cameras mounted on the devices
from the first person view, hand gesture is a natural way to
interact with wearable devices. It motivates the demand to
recognize meaningful gestures from egocentric videos au-
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tomatically.

In the traditional gesture recognition implementations,
hand-crafted features are commonly adopted [16, 30, 20].
With the development of deep neural networks, end-to-
end learning frameworks based on convolutional neural net-
works (CNNs) and recurrent neural networks (RNNs) are
applied to gesture recognition achieving state-of-the-art per-
formance [18, 14, 19]. First-person vision provides a new
perspective of the visual world that is inherently human-
centric, and thus brings its unique characteristics to gesture
recognition: 1) Egocentric motion: since the camera is worn
on the user’s head, camera motion can be significant due to
the head movement, in particular when the user interacts
while walking. 2) Hands in close range: due to the short
distance from the camera to the hands and the narrow field-
of-view of the egocentric camera, hands are prominent in
the frame but meanwhile could be partly or even totally out
of the field-of-view. The frameworks proposed for the sec-
ond and third person view gesture recognition can not deal
with these challenges very well.

Another notable issue in the field of egocentric gesture
recognition is a lack of large scale training data for devel-
oping models especially the deep networks. With limited
available datasets such as American sign language dataset
[27] (which defines 40 American sign language gestures for
deaf captured with only 1 subject) and Interactive museum
database [2] (which contains 7 gesture classes performed
by 5 subjects), a few methods have been developed. Starn-
er et al. [27] use Hidden Markov model to recognize the
sentence-level sign language with hand-crafted features ex-
tracted from hand blobs. Baraldi et al. [2] extract dense tra-
jectory features inside and around hand regions which need
to perform hand detection in advance and remove the cam-
era motion by estimating the homography between two con-
secutive frames. However, hand detection brings addition-
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al computational cost. Another disadvantage of the multi-
stage framework is that the recognition performance heavily
relies on the accuracy of the hand detection and camera mo-
tion estimation algorithms, which could be the bottleneck in
case with large data variation.

We aim to design an end-to-end learnable egocentric
gesture recognition model without detecting hand and es-
timating head motion explicitly and independently. Since
3D CNNs and RNNs have been proved to be effective at
video analysis [28, 7, 19], we connect a RNN after a 3D
CNN to process video sequences, constituting a framework
for egocentric gesture recognition. Inspired by the spatial
transformer [11] which is introduced to spatially transfor-
m images, we propose a novel spatiotemporal transformer
module (STTM) to actively transform 3D feature maps into
a canonical view in both spatial and temporal dimensions.
The STTM mainly consists of three parts: a localization net-
work for transformation parameters prediction, a grid gen-
erator for sampling grid generation, and a sampler for fea-
ture map interpolation. In order to handle the spatial and
temporal variations in video simultaneously and universal-
ly, we use 3D homography transformation to warp the spa-
tiotemporal feature maps of 3D CNNs. For better learning
ability, we include recurrence between STTMs to embed
long-term information. The recurrent STTM (RSTTM) can
be inserted into a 3D CNN between any two convolution-
al layers. The whole framework as shown in Figure 1 is
end-to-end learnable.

To validate our method, we introduce up-to-date the
largest egocentric gesture dataset, named EgoGesture, with
sufficient size, variation and reality, to be able to train deep
networks. This dataset contains over 24,000 gesture sam-
ples and 3,000,000 frames for both color and depth modali-
ties from 50 distinct subjects. We design 83 gestures focus-
ing on interaction with wearable devices and collect them
from 6 diverse indoor and outdoor scenes. We also consider
the scenario when people perform gestures while walking.
This dataset provides the test-bed not only for gesture clas-
sification in segmented data but also for gesture detection in
continuous data.

The main contributions of our work include:

• We extend spatial transformer in temporal dimension,
obtaining a 3D spatiotemporal transformer which can
be directly applied to 3D CNNs for video processing.

• We utilize homography transformations to deal with
head motion in egocentric videos which can rectify the
warp caused by head movements.

• We estimate the transformation parameters at current
time based on the previous ones on video sequences
by introducing recurrent connections.
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Figure 1. Illustration of the recurrent 3D CNN with RSTTM.
Video sequence is split to clips and then input to the 3D CNN with
RSTTM for feature extraction. LSTM is used to model the tempo-
ral transition and dependency between video clips, outputting the
class label for each clip or only returning the final sequential label.

• We propose a benchmark dataset to help the communi-
ty to move steps forward in egocentric gesture recog-
nition, make it possible to apply data-hungry methods.

2. Related Work
There are several branches in egocentric computer vi-

sion related to hands, such as hand detection and segmenta-
tion [1], fingertip detection [10], pose estimation [21], ges-
ture recognition [2], human-object interaction [8, 17] and
cooking action recognition [24]. Besides the hand detection
tasks, most of the existing recognition methods [2, 17, 24]
also need to detect hand regions explicitly. Baraldi et al. [2]
and Singh et al. [24] employ hand segmentation algorithms
based on detecting skin pixels before feature extraction. Ma
et al. [17] pre-train a hand segmentation CNN to help find
objects of interest for activity recognition. These hand de-
tection based methods bring additional computational cost
and are heavily relies on the accuracy of the hand detection
algorithms. Most of the hand detection algorithms are based
on skin model which is easy to be affected by the other ir-
relevant skin areas or wearing gloves. To model the motion
caused by head movement, 2D affine [25] and 2D homogra-
phy [24] transformations are used as a pre-processing step
for image warping independently from the model learning.



However, we argue that it is better to design a transformer
module integrated within the classification model which can
directly enhance the discrimination of the representation
and still maintain the end-to-end learning capability.

Jaderberg et al. [11] introduce a differentiable module,
the Spatial Transformer, which can be trained to learn the
optimum transformation parameters conditionally on the in-
put only with the class label for supervision, to improve the
robustness of CNNs towards translation, scaling, rotation
and even more generic image warping variances. Sønderby
et al. [26] extend the spatial transformer network (STN)
with RNN for digit sequence recognition in spatial dimen-
sion. This recurrent STN model performs better than the
feed-forward STN model [11] by attending to an individual
digit at a time. Zhong et al. [35] apply the spatial trans-
former module to alignment learning in face recognition.
Comparing to similarity and affine transformations, the ho-
mography transformation is proved to be more suitable for
face recognition in [35]. However, the above researches
are all based on images. For video analysis, van Amers-
foort et al. [29] utilize a 2D affine transformer to predict the
next frame in video. A CNN is used to predict a series of
affine transformations applied on the current frame patches
to generate the next frame. Although transformations of a
few previous frames are given to the CNN, there are no tem-
poral connections to model the sequential information. We
extend 2D spatial transformers to 3D spatiotemporal trans-
formers, and choose the most suitable transformation type,
i.e. homography, for egocentric gesture recognition. More-
over, we include recurrence in our model not only for la-
bel prediction but also for transformation estimation, which
takes full advantage of the temporal information in videos.

3. Method
In this section, we describe the architecture of the pro-

posed recurrent 3D convolutional neural network with re-
current spatiotemporal transformer module.

3.1. Recurrent 3D Convolutional Neural Network

3D CNNs and RNNs have been testified [28, 19, 4, 7, 15]
to be good at video representation and sequence modeling
respectively. We propose a framework of recurrent 3D CN-
N in an end-to-end learning paradigm, which can not only
capture short-term spatiotemporal features, but also model
long-term dependencies.

C3D [28] and long short term memory network (LSTM)
[9] are chosen as the basic brick to construct our frame-
work. C3D [28] is a 3D convolutional neural network with
eight 3D convolutional layers, one 2D pooling layers, four
3D pooling layers and three fully-connected layers. The 3D
layers take a volume as input and output a volume which
can preserve the spatiotemporal information of the input.
LSTM [9] is employed to model the temporal evolution of

Figure 2. Illustration of the localization network.

sequences. Compared to the traditional RNN, it addresses
the problem of gradient vanishing and explosion by insert-
ing gate units. Specifically, we connect a single-layer LST-
M with 256 hidden units after the first fully-connected lay-
er (fc6 layer) of C3D to process sequence inputs. The re-
current 3D convolutional neural network can process video
sequences of arbitrary lengths. For classification, the pre-
diction of the last time slice can be used as the video label.
Alternatively, we can also utilize the lstm layer features to
train a linear SVM classifier for recognition.

3.2. Recurrent Spatiotemporal Transformer

There are 3 parts in a recurrent spatiotemporal trans-
former module: a localization network, a grid generator and
a sampler. As shown in Figure 1, the localization network
predicts a set of transformation parameters conditioned on
the input through a number of hidden layers. Then, the grid
generator uses the predicted transformation parameters to
construct a sampling grid, which is a set of points where the
source map should be sampled to generate the target trans-
formed output. Finally, the sampler takes the feature map to
be transformed and the sampling grid as inputs, producing
the output map sampled from the input at the grid points.

Specifically, at any time slice t, the localization network
takes a 3D convolutional feature map It as input and pre-
dicts the transformation parameters θt that should be ap-
plied to the feature map Ut. Note that the input feature
map of the localization network is not necessarily the fea-
ture map to be transformed, i.e. It and Ut can be different
feature maps. The size of θt is determined by the transfor-
mation type, e.g. θt is 6-dimensional for 2D affine transfor-
mation and 9-dimensional for 2D homography transforma-
tion. We choose to use the most general homography trans-
formation and apply it on 3D spatiotemporal convolutional
feature maps. A homography is a non-singular, line preserv-
ing, projective mapping. A n-dimension homography is p-
resented by a square (n+1)-dim matrix with (n+1)2−1 de-
grees of freedom (DOF), where homogeneous coordinates
are used to manipulate n-dim vectors in a (n + 1)-dim s-
pace. In 3D homography case, the transformation predicted
by the localization network is 16-dimensional:

floc(It) = Hθt =


θ11 θ12 θ13 θ14
θ21 θ22 θ23 θ24
θ31 θ32 θ33 θ34
θ41 θ42 θ43 θ44

 (1)

where we omit the symbol of time t in the matrix for clarity.



Figure 3. Example of the 3D grids before and after a transforma-
tion of homography.

We include recurrence in the localization network as il-
lustrated in Figure 2 to predict the current transformation
parameters conditioned on the previous ones:

ct = f cnnloc (It) (2)
ht = frnnloc (ct, ht−1) (3)

Hθt = ffcloc (ht) (4)

where f cnnloc is a 3D CNN which takes It as input and out-
puts a feature map ct. frnnloc is an RNN with hidden state ht
and ffcloc is a fully-connected layer to regress the transfor-
mation parameters. In our experiments, we use a GRU [5]
layer with 256 hidden units as the frnnloc .

The output transformation is used to create a sampling
grid, which is done by the grid generator. For 3D feature
maps, define the activations of the target feature map V
to lie on a regular grid G = {Gi} of coordinates Gi =
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T is used to represent the source
coordinate in the feature map U that defines the sample
points. Note that, the index of time in the symbols of param-
eters is omitted for clarity from now on. In the program, all
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An example of the 3D grids before and after a transfor-
mation of homography is shown in Figure 3. Given one
sampling grid and the original pixel values in the grid, we
are able to construct a new output by interpolation or sam-
pling the pixel values on the corresponding grid positons.

Finally, the sampling grid Tθ (Gi) and the feature map
U ∈ RC×L×H×W with widthW , heightH , lengthL andC
channels to be transformed are taken as input to a sampler.
The sampler outputs feature map V ∈ RC×L′×H′×W ′

by
sampling from U at the grid points. In the paper, we use
bilinear kernel to do sampling.

V ci =

W∑
m

H∑
n

L∑
k

U cmnl · [1− |xsi −m|]+

· [1− |ysi − n|]+ · [1− |z
s
i − k|]+

(9)

where [x]+ = max (0, x) and ∀i ∈ [1, . . . , L′H ′W ′] ,∀c ∈
[1, . . . , C]. Note that the size of feature map V can be dif-
ferent fromU by varying the number of sample points in the
target and source coordinates. We specify a down-sampling
parameter with three elements (rl, rh, rw) to adjust the ratio
of input size L × H ×W to output size L′ × H ′ ×W ′ in
spatiotemporal dimensions.

4. Dataset

In this paper, we introduce up-to-date the largest dataset
called EgoGesture for the task of egocentric gesture recog-
nition. The dataset, which is publicly available 1, con-
tains 2,081 RGB-D videos, 24,161 gesture samples and
2,953,224 frames from 50 distinct subjects. We carefully
design 83 classes of static or dynamic gestures specifically
for interaction with wearable devices. Our dataset is more
complex than any existing dataset as our data is collected
from the most diverse yet representative scenes with large
variations. The 6 scenes we designed consist of 4 indoor
scenes: 1) the subject in a stationary state with a static clut-
ter background; 2) the subject in a stationary state with a dy-
namic background; 3) the subject in a stationary state facing
a window with drastic-changing sunlight; 4) the subject in a
walking state; and 2 outdoor scenes: 5) the subject in a sta-
tionary state with a dynamic background; 6) the subject in
a walking state with a dynamic background. We select Intel
RealSense SR300 as our egocentric camera due to its small
size and integrating both RGB and depth modules. The two-
modality videos are recorded in a resolution of 640 × 480
pixel with 30 fps. The subjects wearing the RealSense cam-
era with a strap belt on their heads are asked to continuously
perform 9-14 gestures as a session and recorded as a video.
Since the order of the gestures performed is randomly gen-
erated, the videos can be used to evaluate gesture detection
in continuous stream. Besides the annotation of class la-
bel, the start and end frame index of each gesture sample
are also manually labeled, which provides the test-bed for
segmented gesture classification. We believe the proposed
dataset can be used as a benchmark and help the communi-
ty to move steps forward in egocentric gesture recognition,
making it possible to apply data-hungry methods such as
deep neural networks for this task.

1http://www.nlpr.ia.ac.cn/iva/yfzhang/datasets/egogesture.html



5. Experiments
We test the proposed model in our newly created E-

goGesture dataset and another egocentric action dataset
GTEA [8] which focuses on the cooking actions of hand-
s. There are few appropriate egocentric gesture datasets
for research as mentioned before. We do not take the In-
teractive Museum database [2] for experiment as it is less
challenging. The recognition results on it are already high
even with two gesture samples from each class as training
set. Moreover, our proposed method is not restricted to ges-
ture recognition field, it is a general framework for video
analysis especially in the first person view. Hence we al-
so evaluate the proposed model on GTEA dataset. All the
models are implemented using Theano [3] and Lasagne [6].
Cross entropy loss and SGD are used for training.

For comparision, in our proposed EgoGesture Dataset,
we systematically evaluate state-of-the-art methods based
on both hand-crafted features and deep networks as base-
lines on two tasks: gesture classification and gesture de-
tection. These methods are also the winner approaches in
ChaLearn 2016 Looking at People ICPR Challenge [14].
We randomly split the data by subject into training (60%),
validation (20%) and testing (20%) sets, resulting in 1,239
training, 411 validation and 431 testing videos. The num-
bers of gesture samples in training, validation and testing
splits are 14416, 4768 and 4977 respectively.

5.1. Classification Results on EgoGesture dataset

For classification, we segment the video sequences into
isolated gesture samples based on the manual annotation of
the begin and the end frames. The learning task is to pre-
dict the class labels for each gesture sample. Classification
accuracy is used as the evaluation metric.

We select one hand-craft features: iDT-FV [32], and four
deep learning based methods: VGG16 [23], C3D [28], VG-
G16+LSTM [7] and IDMM+CaffeNet [34] as baselines.
iDT-FV is a representative hand-crafted feature for local
motion modeling where global camera motion is canceled
out by optical flow estimation. We compute the Trajectory,
HOG, HOF and MBH descriptors in the RGB videos. After
PCA, we train GMMs with 256 Gaussians to generate Fish-
er Vectors (FV) for each type of the descriptor. Then, the
FVs after L2 normalization are concatenated to form a video
descriptor. Finally, linear SVM is used for classification.
There are mainly four kinds of frameworks to classify video
sequences with deep learning methods: 1) Use 2D CNNs to
extract features of single frames. Then frame-level features
are encoded as video descriptors and classifiers are trained
to predict the labels of videos. 2) Use 3D CNNs to extract
features of video clips. After that, clip features are aggre-
gated into video descriptors for classifier training. 3) Make
use of RNNs to model the temporal evolution of sequences
based on convolutional features. 4) Represent a video as

one or multiple compact images and then input it to a neu-
ral network for classification. We choose VGG16, C3D,
VGG16+LSTM and IDMM+CaffeNet as baselines which
correspond to the four kinds of deep learning framework-
s described above. Among them, IDMM+CaffeNet [34]
encodes both spatial and temporal information of a depth
video into an image called improved depth motion map (ID-
MM), then uses CaffeNet [12] for classification. The other
baselines take either an image or a 16-frame clip as input,
then average pooling with L2 normalization are used to ag-
gregate the frame-level or clip-level features (activations of
the first fully-connected layer for CNNs and the lstm layer
for VGG16+LSTM) into a video-level descriptor. Finally,
linear SVM is employed for classification. For RGB-D fu-
sion, the scores of classification probability obtained from
RGB and depth modalities are added with a weight which
is chosen on the validation split.

The classification accuracies of the baselines are listed
in Table 1. As we can see, in most cases, deep features
performs much better than hand-crafted features. VGG16
does not perform as well as other deep approaches since it
can only characterize the visual appearance and losses the
temporal information seriously. Benefit from the attached
temporal model, VGG16+LSTM improves the performance
of VGG16 significantly. The performance of C3D is obvi-
ously superior to those of other methods with a margin more
than 10%. It is probably because of the excellent spatiotem-
poral learning ability of C3D. For different modalities, the
results on depth data are better than those on RGB data, s-
ince the short-range depth sensor can eliminate most of the
noise from the background and the RGB data are sensitive
to illumination changes. However, the depth sensor is easy
to be affected with infrared and fast movements. The per-
formance is further improved by fusing the results from the
RGB and depth modalities together.

We analyse the performance of different transformers in-
serted to 2D CNNs and 3D CNNs (i.e. VGG16 and C3D).
The results are shown in Table 2. This time, we use L-
STM to model the evolutions of the whole gesture samples
instead of fixed-length clips. In EgoGesture dataset, the av-
erage length of a segmented gesture is 38 frames, while the
minimum and the maximum length are 3 and 196 frames
respectively. For convenience, we constrain the maximum
length of a gesture sample to be 40 frames by downsam-
pling the longer ones. In the experiments based on C3D, we
choose the last convolutional feature map and the second
last convolutional feature map of C3D as I and U in the
spatiotemporal transformer module. The f cnnloc is designed
to consist of three 3D convolutional layers with 20 filters.
The same experimental setting is applied to VGG16 based
models, which use 2D convolutional layers instead of 3D
ones. We test (1, 1, 1), (1, 2, 2), (2, 2, 2), (1, 3, 3), (2, 3, 3)
down-sampling factors (where the three elements represent



Table 1. The Baseline Classification results on EgoGesture dataset.

Method Modality Accuracy
iDT-FV [32] RGB 0.643
VGG16 [23] RGB 0.625
VGG16+LSTM [7] RGB 0.747
C3D [28] RGB 0.864
IDMM+CaffeNet [34] depth 0.664
VGG16 [23] depth 0.623
VGG16+LSTM [7] depth 0.777
C3D [28] depth 0.881
VGG16 [23] RGB-D 0.665
VGG16+LSTM [7] RGB-D 0.814
C3D [28] RGB-D 0.897

Table 2. Analysis of the transformers on EgoGesture dataset. “A”
and “H” stand for the affine and homography transformations re-
spectively. The LSTMs are used to model the evolution of a whole
sequence. For convenience, the maximum length of a sequence is
constrained to 40 frames.

Method Modality Accuracy
VGG16+LSTM, 40frm RGB 0.808
VGG16+LSTM+RSTM (A) RGB 0.812
VGG16+LSTM+RSTM (H) RGB 0.838
C3D RGB 0.864
C3D+STM (A) RGB 0.880
C3D+STM (H) RGB 0.882
C3D+STTM (H) RGB 0.887
C3D+LSTM RGB 0.889
C3D+LSTM+STTM (H) RGB 0.890
C3D+LSTM+RSTTM (H) RGB 0.893
VGG16+LSTM+RSTM (H) depth 0.857
C3D+STTM (H) depth 0.895
C3D+LSTM+RSTTM (H) depth 0.906
VGG16+LSTM+RSTM (H) RGB-D 0.885
C3D+STTM (H) RGB-D 0.917
C3D+LSTM+RSTTM (H) RGB-D 0.922

the down-sampling coefficients in length, height, width re-
spectively) for C3D in advance, and choose the best param-
eter with (1, 3, 3). Similarly, the VGG16 based architecture
performs best with (3, 3) down-sampling factor in space.
Actually, when the down-sampling factor is greater than one
we introduce an information bottleneck forcing the model
to zoom in the attention regions. We evaluate the perfor-
mance of affine transformation and homography transfor-
mation in experiments. Table 2 shows that both 2D CNNs
and 3D CNNs benefit from adding a transformer module.
The improvement produced by homography is higher than
that from affine. Spatiotemporal transformers can further
improve the recognition results of spatial transformers. The
best accuracy is achieved by recurrent 3D CNNs with recur-
rent spatiotemporal homography transformer modules.

Analysis of confusion matrix: The confusion matrix
of C3D and C3D+LSTM+RSTTM with RGB-D fusion is

shown in Figure 6. The gesture classes with the high-
est accuracy are: “Dual hands heart” (Class 53), “Pause”
(Class 36), and “Cross index fingers” (Class 7) which
are with an accuracy of 98.3% by C3D and 100% by
C3D+LSTM+RSTTM. The gestures with the lowest classi-
fication accuracies are: “Grasp” (66.1% by C3D, 74.6% by
our method), “Sweep cross” (71.2% by C3D, 83.1% by our
method) and “Scroll hand towards right” (72.4% by C3D,
75.9% by our method). Specifically, the most confusing
class of “Grasp” (Class 48) is “Palm to fist” (Class 43),
“Sweep cross” (Class 19) is easy to be classified as “Sweep
checkmark” (Class 20), while “Scroll hand towards right”
(Class 1) is likely to be regard as “Scroll hand towards left”
(Class 2). It is reasonable since these gestures contain sim-
ilar movements. Our method improves the performance of
C3D significantly, especially for the confusing classes.

Analysis of different scenes: By analyzing the classi-
fication results of each scene shown in figure 4, we can
find that deep learning features are more robust than hand-
crafted features for illumination and global motions includ-
ing egocentric movements and background dynamics. In
general, RGB features are more sensitive to illumination
changes which can be seen with the results of iDT-FV and
C3D-RGB in scene 3. It is noteworthy that the large ego-
centric motion caused by walking hurts the performance of
all the methods except our proposed model which can be
seen in the results of scene 4 and 6. The results of scene
4 do not degenerate too much because the walking speed is
low due to the space limit in an indoor environment. Our
method persistently performs well in all the scenarios even
if the egocentric motion is obviously.

Results on different egocentric movement intensities:
Table 3 lists the improvements with our method on station-
ary and walking scenario domains using RGB data. Adding
STTM to C3D can increase the accuracy on both domain-
s. Especially the walking scenario domain benefits a lot
from the spatiotemporal transformation ability of STTM.
By introducing recurrence to handling temporal sequences,
the performance is further improved. The recognition d-
ifference of C3D on the two domains is 3.8%, while the
difference of C3D+RSTTM+LSTM is decreased to 1.4%.
C3D+RSTTM+LSTM increases the accuracy on the walk-
ing scenario domain by 4% demonstrating its good ability
to deal with egocentric motion.

Visualization of the spatiotemporal transformer: We
visualize the feature maps before and after the 3D homog-
raphy transformation in Figure 5. For more intuitive com-
parison, we use the (1, 1, 1) down-sampling factor without
changing the size of feature maps and choose two gesture
samples belonging to the same class from two different sub-
jects. Comparing the feature maps of sample1 and sample2
shows that the activations on the layer after transformation
have a more similar appearance and especially more con-
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Figure 4. Classification accuracies in the 6 different scenes on EgoGesture dataset.
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Figure 5. Feature maps before and after 3D homography transformation. We visualize the 3D feature maps of conv5b (the layer to be
transformed) and transform (the layer after transformation) for comparison. The spatiotemporal feature maps are shown by a series of
spatial images. We choose two gesture samples belonging to the same class from two different subjects as input.The first 8 channels are
drawn in rows. A few representative channels are highlighted.

Table 3. Classification accuracies of the models trained on differ-
ent domains with RGB data.

Domain C3D +STTM +RSTTM+LSTM
stationary

(scene1,2,3,5) 0.866
0.870

(↑0.004)
0.882

(↑0.016)
walking

(scene4,6) 0.828
0.839

(↑0.011)
0.868

(↑0.040)

sistent temporal distribution than that on the layer before
transformation. Taking the channels highlighted with red
boxes for example, the feature maps before transformation
are much different not only in the temporal dimension but
also between the two samples, while the feature maps after
transformation are evenly distributed in the temporal dimen-
sion and more similar between samples.

Figure 6. The confusion matrix of C3D and the recurrent C3D with
RSTTM using RGB-D fusion on EgoGesture dataset.

5.2. Detection Results on EgoGesture dataset

For detection, we aim to spot and recognize gestures
from continuous unsegmented video sequences. Perfor-
mance is evaluated by the Jaccard index used in ChaLearn
LAP 2016 challenges [30]. This metric measures the aver-
age relative overlap between the ground truth and the pre-
dicted label sequence for a given input.

We test two detection baselines: For the first baseline,
we train a C3D to classify 84 gestures (with an extra non-
gesture class). When testing, a 16-frame length sliding win-
dow with 8 or 16 frame stride is used to slide through the
whole sequence to generate video clips. The class probabil-
ity of each clip predicted by C3D’s softmax layer is used to
label all the frames in the clip. After summing the overlap-
ping probabilities, the most possible class is chosen as the
label for each single frame. The second baseline [34] tack-
les temporal segmentation and classification separately and
sequentially. Firstly, the quantity of movement (QOM) [13]
is used to detect the start and end frame of each candidate
gesture in the stream. Then the IDMM is generated within
a candidate gesture and input to CaffeNet for classification.

The Jaccard index for detection is shown in Table 4,
where l16s16 denotes 16-frame length sliding window with
16-frame stride. We also list the runtime tested on a sin-
gle GTX Titan X GPU and Intel i7-3770 CPU @3.4GHz.
As shown in Table 4, small stride setting can achieve bet-
ter performance with more computations. The best per-
formance (70.9%) is achieved by C3D+STTM-l16s8 with
RGB-D inputs. Optimizing the computation of grid gener-



Table 4. Detection results on EgoGesture dataset.
Method Modality Jaccard Runtime
C3D [28]-l16s16 RGB 0.585 624fps
C3D-l16s8 RGB 0.659 312fps
C3D+STTM-l16s8 RGB 0.670 215fps
QOM+IDMM [34] depth 0.430 30fps
C3D-l16s16 depth 0.600 626fps
C3D-l16s8 depth 0.678 313fps
C3D+STTM-l16s8 depth 0.681 229fps
C3D-l16s16 RGB-D 0.618 312fps
C3D-l16s8 RGB-D 0.698 156fps
C3D+STTM-l16s8 RGB-D 0.709 111fps

Table 5. Detection results on GTEA dataset. The results are e-
valuated in terms of frame-level accuracy for comparison with the
published outcomes. We further evaluate our methods with data
augmentation.

Method Accuracy
DT [31] 0.452
iDT [32] 0.524
TDD (Spatial) [33] 0.586
TDD (Temporal) [33] 0.571
TDD (Spatial+Temporal) [33] 0.595
Ego ConvNet (2D) [24] 0.576
Ego ConvNet (3D) [24] 0.558
Ego ConvNet (2D+3D) [24] 0.589
Ours 0.615
Ours (augmentation) 0.630

ation and feature map interpolation should further speed up
the runtime of STTM based models. In the second base-
line method, the most time consuming step is to convert the
depth sequence into one image with IDMM, making it less
efficient than C3D with sliding window. Another disadvan-
tage is that the detection performance heavily relies on the
pre-segmentation which could be the bottleneck of the two-
stage framework.

5.3. Detection Results on GTEA dataset

GTEA dataset [8] contains 28 videos belonging to 7 ac-
tivities performed by 4 subjects. The activities are com-
posed of several actions. Take the activity “Cheese” for ex-
ample, it consists of “take” bread, “take” cheese, “open”
cheese etc. actions operating with different objects. There
are 10 annotations of actions defined by verbs. Including
the idle state, the number of actions is 11. To compare with
the published results on GTEA dataset, we follow the ex-
perimental settings of [24] by using the data of subject 1
and subject 3 for training, subject 4 for validation and sub-
ject 2 for testing. Performance is evaluated with frame-level
accuracy for continuous video understanding.

The results of our proposed model and competing meth-
ods are shown in Table 5. From the table we can see that
iDT [32] improves DT [31] significantly by canceling the

global camera motion with optical flow estimation. TDD
[33] is a kind of video descriptor which conduct trajectory-
constrained pooling on two-stream networks [22]. The s-
patial stream takes a RGB image as input at a time, while
the temporal stream takes a stack of optical flow images
for input. Both the spatial stream and the temporal stream
use 2D CNN to extract features. For TDD [33], the perfor-
mance of the temporal stream is inferior to that of the spatial
stream on the egocentric GTEA dataset, which is contrary
to the results on the traditional video analysis fields. This
demonstrates that head motion severely damage the perfor-
mance of the representative methods proposed for tradition-
al video-based action recognition. Ego ConveNet [24] uses
hand-crafted egocentric cues (including hand masks, head
motions and saliency maps) as input to a 2D CNN or 3D
CNN model. The 2D CNN and 3D CNN both are smal-
l networks with only 2 convolutional layers. Since GTEA
dataset is a relatively small dataset, even for the Ego Con-
veNet which used multiple well-designed features and shal-
low network architecture, the network is fine-tuned on a
pre-trained gesture model. In order to alleviate overfitting,
we use the model pre-trained on our proposed EgoGesture
dataset to initialize the model on GTEA dataset. We also try
to scale (±20%) and rotate ( ±15◦) the input video clips in
space randomly for data augmentation. The performance of
our method outperforms competing methods significantly
demonstrating its good learning ability.

For continuous video understanding, the accuracy of our
method on the test split is close to that on the validation
split. While for segmented video classification, due to the
insufficient training data, overfitting is severe. Even though
the accuracy on the test split is about 10% lower than that
on the validation split with isolated actions, the recognition
result can reach 75.0% without combining other features.

6. Conclusion

In this work, we propose a novel recurrent 3D CNN mod-
el with recurrent spatiotemporal transformer module which
can deal with the egocentric motion effectively. We extend
spatial affine transformers to spatiotemporal homography
transformers for better learning ability and include recur-
rent connections between time steps to deal with video se-
quences. We also introduce up-to-date the largest dataset
called EgoGesture for the task of egocentric gesture recog-
nition with sufficient size, variation and reality, to success-
fully train deep networks.
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