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Sequence-to-Sequence Conversion and Recognition:
Human Language Technology (HLT)

Automatic Speech Recognition (ASR)

we want to preserve this  great  idea

Statistical Machine Translation (SMT)

wir wollen diese große Idee erhalten

we want to preserve this great idea

Handwriting Recognition (HWR)
(Text Image Recognition)

we  want to preserve this  great  idea

tasks:
– speech recognition
– handwriting recognition

– machine translation
(+ sign language processing)
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Sequence-to-Sequence Conversion and Recognition
Speech and Language

characteristic properties:

• well-defined ’classification’ tasks:
– due to 5000-year history of (written!) language
– well-defined goal: letters or words (= full forms) of the language

• easy task for humans (in native language!)

• hard task for computers
(as the last 50 years have shown!)

unifying view:

• formal task: input sequence → output sequence

• output sequence: sequence of words/letters in a natural language

• models of context and dependencies:
– within input and output sequences
– across input and output sequence
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RWTH Large-Scale Joint Projects (1993-2016)

• VERBMOBIL 1993-2000: funded by German BMBF
toy task (8000-word vocabulary): recognition and translation for appointment scheduling

• TC-STAR 2004-2007: funded by EU
– real-life task: first research system for speech translation (EU parliament)
– partners: KIT Karlsruhe, FBK Trento, LIMSI Paris, UPC Barcelona, IBM-US Research, ...

• GALE 2005-2011: funded by US DARPA
emphasis on Chinese and Arabic speech and text

• BOLT 2011-2015: funded by US DARPA
emphasis on colloquial text for Arabic and Chinese

• QUAERO 2008-2013: funded by OSEO France (CNRS, INRIA, ...)
European languages, more colloquial speech, handwriting

• EU projects 2012-2014: EU-Bridge, TransLectures
emphasis on recognition and translation of lectures (academic, TED, ...)

• BABEL 2012-2016: funded by US IARPA
speech recognition for low-resource languages (and noisy audio!)
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Similarities: Recognition of Speech and Handwriting

define sequence of vertical windows over horizontal axis:

result: one-dimensional approximation to handwriting recognition

comparison: speech vs. handwriting (text image):

• sequence of observation vectors:
– speech: signal segments, spectral analysis or PCA,...
– handwriting: geometric features, PCA, pixels, ...

• models of sounds/characters:
how to convert the observation vectors into hypotheses about sounds/characters?

• lexical model: how to convert the sequence of sounds/characters
into hypotheses about words?
– speech: pronunciation lexicon along with an orthographic dictionary
– handwriting: only orthographic dictionary

• language model: syntax and semantics
how to convert the sequence of words into hypotheses about "good" sentences?
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ASR: what is the problem?
– ambiguities at all levels
– interdependencies of decisions

approach [CMU and IBM 1975]:
– score hypotheses
– probabilistic framework
– statistical decision theory

and Bayes decision rule

important consequence:
the sequence context implies
a combinatorial search problem:
– interpret a 10-ms vector
– as a part of a sound/character
– as a part of a word
– as a part of a sentence
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Bayes Decision Rule Revisited

• closed world: consider a large, but finite set of (observation, label) pairs:
(Xr,Wr), r = 1, ..., R

• decision rule: for each observation sequence X,
we want to guess or generate the label sequence W :

X → Ŵ (X) = ?

complications: the same sequence X in the given set can have different sequences W ;
a perfect guess cannot be guaranteed!

• therefore: define performance measure or loss function (e. g. edit or Levenshtein distance)
between correct output sequence W and hypothesized output sequence W̃ :

L[W, W̃ ]

• for an observation X, what is the expected loss of the decision rule X → Ŵ (X):
answer:

∑

W pr(W |X) · L[W, Ŵ (X)]

by using the posterior distribution derived from the joint empirical distribution:

pr(W,X) = 1/R ·
∑

r δ(W,Wr) · δ(X,Xr)

• optimum performance: Bayes decision rule minimizes the expected loss:

X → Ŵ (X) := argmin
W̃

{

∑

W

pr(W |X) · L[W, W̃ ]
}
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Bayes Decision Rule Revisited

optimum performance: Bayes decision rule minimizes the expected loss:

X → Ŵ (X) := argmin
W̃

{

∑

W

pr(W |X) · L[W, W̃ ]
}

Under these two conditions:

L[W, W̃ ] : satisfies triangle inequality

max
W

{pr(W |X)} > 0.5

we have the MAP rule (MAP = maximum-a-posteriori) [Schlüter & Nussbaum+ 12]:

X → Ŵ (X) := argmax
W

{

pr(W |X)
}

Since [Bahl & Jelinek+ 83], this simpified Bayes decision rule is widely used
for speech recognition, handwriting recognition, machine translation, ...

from closed world of finite sample, switch to arbitrary pairs of (observation, label) sequences:
introduce models of distributions pϑ(W |X) with free parameters ϑ
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Modelling Approaches:
Generative, Discriminative, Log-Linear...

For the unknown distribution in Bayes decision rule,
assume suitable model distributions pϑ(W ) and pϑ(X|W ) with free parameters ϑ:

pϑ(W |X) =
pϑ(W ) · pϑ(X|W )

∑

W̃

pϑ(W̃ ) · pϑ(X|W̃ )
or pϑ(W |X) =

qλ
ϑ(W ) · q1−λ

ϑ (W |X)
∑

W̃

qλ
ϑ(W̃ ) · q1−λ

ϑ (W̃ |X)

generalization: log-linear combination of models qϑ(W ) and qϑ(W |X)

important property: decomposition into two separate models:
– language model pϑ(W ): depends on text data only!

advantage: huge amounts available, no annotation needed!
– observation model (speech, text image) pϑ(X|W ):

depends on (observation, label) pairs!

learning from data:

• models pϑ(W ) and pϑ(X|W ) with unknown parameters ϑ

• training data: set of (observation, label) pairs (Xr,Wr), r = 1, ..., R
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Traditional Training Criteria for ASR

• generative model (joint probability): maximum likelihood
(along with EM/Viterbi algorithm for Hidden Markov models):

F (ϑ) =
∑

r

log pϑ(Wr, Xr) =
∑

r

log pϑ(Wr) +
∑

r

log pϑ(Xr|Wr)

• sentence posterior probability (MMI = maximum mutual information)
[Bahl & Brown+ 86],[1991 Normandin]:

F (ϑ) =
∑

r

log pϑ(Wr|Xr)

• [Povey & Woodland 02] MWE/MPE: minimum word/phoneme error (= expected ’accuracy’):

F (ϑ) =
∑

r

∑

W

pϑ(W |Xr) · A(W,Wr)

with the accuracy A(W,Wr) of hypothesis W for correct sentence Wr:
:= sequence discriminative training

remarks:
– complex optimization problem: sum over all sentences in denominator
– approximation: word lattice, many shortcuts, ...
– experiments: relative improvement by 5-10% over maximum likelihood
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Sequence-to-Sequence Recognition:
Statistical Approach to HLT Tasks

Probabilistic
Models

Performance Measure
(Loss Function)

Training Criterion

Bayes Decision Rule
(Efficient Algorithm)

Training
Data

Output

Parameter
Estimates

Evaluation

Optimization
(Efficient Algorithm)

Test
Data
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Statistical Approach and Machine Learning
four ingredients:

• performance measure: error measure (e.g. edit distance)
we have to decide how to judge the quality of the system output
(ASR + HWR: edit distance; SMT: edit distance + block movements)

• probabilistic models with suitable structures:
to capture the dependencies within and between input and output sequences
– elementary observations: Gaussian mixtures, log-linear models,

support vector machines (SVM), multi-layer perceptron (MLP), ...
– sequences: n-gram Markov chains, CRF, Hidden Markov models (HMM),

recurrent neural nets (RNN), LSTM RNN, CTC, ...

• training criterion:
to learn the free model parameters from examples
– ideally should be linked to performance criterion
– typically result in complex mathematical optimization (efficient algorithms!)
– extreme situation: number of free parameters vs. observations

• Bayes decision rule:
to generate the output word sequence
– combinatorial problem (efficient algorithms)
– should exploit structure of models
examples: dynamic programming and beam search, A∗ and heuristic search, ...
(public toolkits for ASR/HWR: RWTH, Kaldi, ...)
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Bayes Decision Rule: Principal Issues

ongoing work at RWTH:

• form of Bayes decision rule:
MAP rule vs. exact rule: justification?

• mismatch conditions:
– optimality of Bayes rule: holds for TRUE distribution
– what about a model distribution learned from data? optimality?

• relation between performance (classification error) and training criteria

• peformance at various levels:
frames, phonemes, words, sentences
– suitable training criteria at each level
– interaction betweeen these levels

(end-to-end training)

some results by RWTH team:
[Ney 03, Schlüter & Nussbaum+ 12, Schlüter & Nussbaum-Thom+ 13, Beck & Schlüter+ 15]

H. Ney: From Bayes Rule to ANNs c©RWTH 13 ICFHR, 25-Oct-16



Acoustic Modelling: HMM and ANN

– why HMM? mechanism for time alignment (or dynamic time warping)
– critical bottleneck: emission probability model requires density estimation!
– hybrid approach: replace HMM emission probabilty by label posterior probabilities,

i. e. by ANN output after suitable re-scaling

time

A

L

E

X
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History: ANN in Acoustic Modelling

• 1988 [Waibel & Hanazawa+ 88]:
phoneme recognition using time-delay neural networks (and CNNs!)

• 1989 [Bridle 89]:
softmax operation for probability normalization in output layer

• 1990 [Bourlard & Wellekens 90]:
– for squared error criterion, ANN outputs can be interpreted as

class posterior probabilities (rediscovered: Patterson & Womack 1966)
– they advocated the use of MLP outputs

to replace the emission probabilities in HMMs

• 1993 [Haffner 93]: sum over label-sequence posterior probabilities in hybrid HMMs

• 1994 [Robinson 94]: recurrent neural network
– competitive results on WSJ task
– his work remained a singularity in ASR

• until 2011: for speech, ANNs were never really better than Gaussian mixture models

first clear improvements over the state of the art:
– 2008 handwriting: Graves using LSTM-RNN and CTC
– 2011 speech: Hinton & Li Deng using deep FF MLP and hybrid HMM
– more ...
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What is Different Now after 25 Years?

important property:
ANN outputs are probability estimates

today: huge improvements by ANN:
– image object recognition
– speech and handwriting recognition
– machine translation

comparison for ASR: today vs. 1989-1994:

• number of hidden layers:
10 (or more) rather than 2-3

• optimization strategy:
practical experience and heuristics,
e.g. layer-by-layer pretraining

• computation power: much higher

• specifically for ASR:
number of output nodes (phonetic labels):

5000 rather than 50
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Recurrent Neural Network: String Processing

principle for sequence processing over time t = 1, ..., T :
– introduce a memory (or context) component to keep track of history
– result: there are two types of input: memory ht−1 and observation xt
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extensions:
– bidirectional variant [Schuster & Paliwal 1997]
– feedback of output labels
– long short-term memory [Hochreiter & Schmidhuber 97; Gers & Schraudolph+ 02]
– stacking of recurrent-hidden layers
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Recurrent Neural Network (RNN):
Extension towards Long Short-Term Memory

add a memory cell vector ct to hidden state vector ht:
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Recurrent Neural Network:
Details of Long Short-Term Memory

forget
gate

input
gate

output
gate

net
input

tanh

ingredients:
– separate memory vector ct in addition to ht

– use of gates to control information flow
– (additional) effect: make backpropagation more robust
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ANNs in Acoustic Modelling

hybrid approach:
replace emission probability of an hidden Markov model by ANN ouput

three types of emission models in HMMs:
– GMM: Gaussian mixture model
– MLP: deep multi-layer perceptron
– LSTM RNN: recurrent neural network with long short-term memory

experimental results for QUAERO English 2011:

approach layers WER[%]

conventional: best GMM – 30.2
hybrid: best MLP 9 20.3
hybrid: best LSTM RNN 6 17.5

remarks:

• comparative evaluations in QUAERO 2011:
competitive results with LIMSI Paris and KIT Karlsruhe

• best improvement over Gaussian mixture models
by 40% relative using an LSTM RNN
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Language Modeling and Artificial Neural Networks

History:

• 1989 [Nakamura & Shikano 89]:
English word category prediction based on neural networks.

• 1993 [Castano & Vidal+ 93]:
Inference of stochastic regular languages through simple recurrent networks

• 2000 [Bengio & Ducharme+ 00]:
A neural probabilistic language model

• 2007 [Schwenk 07]: Continuous space language models
2007 [Schwenk & Costa-jussa+ 07]: Smooth bilingual n-gram translation (!)

• 2010 [Mikolov & Karafiat+ 10]:
Recurrent neural network based language model

• 2012 RWTH Aachen [Sundermeyer & Schlüter+ 12]:
LSTM recurrent neural networks for language modeling

today: ANNs in language (and translation!) show competitive results.

H. Ney: From Bayes Rule to ANNs c©RWTH 21 ICFHR, 25-Oct-16



ANNs in Language Modelling

goal of language modelling: compute the prior pϑ(w
N
1 ) of a word sequence wN

1

– how plausible is this word sequence wN
1 (independently of observation X!) ?

– measure of language model quality: perplexity PPϑ, i. e. effective vocabulary size

logPPϑ = −1/N ·
N
∑

n=1

log pϑ(wn|w
n−1
0 )

results on QUAERO English (like before):
– vocabulary size: 150k words
– training text: 50M words
– test set: 39k words

perplexity PP on test data:

approach PP

baseline: count model 163.7
10-gram MLP 136.5
RNN 125.2
LSTM RNN 107.8
10-gram MLP with 2 layers 130.9
LSTM RNN with 2 layers 100.5

important result: improvement of PP by 40%
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Interpolated Language Models: Perplexity and WER

• linear interpolation of TWO models: count model + ANN model

• recognition experiments:
due to unlimited history, RNN language models require re-design of ASR search

• perplexity and word error rate on test data:

Models PP WER[%]
count model 131.2 12.4
+ 10-gram MLP 112.5 11.5
+ Recurrent NN 108.1 11.1
+ LSTM RNN 96.7 10.8
+ 10-gram MLP with 2 layers 110.2 11.3
+ LSTM RNN with 2 layers 92.0 10.4

• experimental result:
– significant improvements by ANN language models
– best improvement in perplexity: 30% reduction (from 131 to 92)
– empirical observation:

power law between perplexity and WER (cube to square root)
[Klakow & Peters 02]

H. Ney: From Bayes Rule to ANNs c©RWTH 23 ICFHR, 25-Oct-16



Extended Range: Perplexity vs. Word Error Rate

empirical power law: WER = α · PP β
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Word Error Rate vs. Local Perplexity
(3-word window, 20 bins)

empirical power law: WER = α · PP β
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Recognition: From Speech to Handwriting

• consider sequence of vertical windows over horizontal axis
(maybe after normalization and preprocessing):

– approximate two-dimensional problem by one-dimensional problem
– ... looks like a problem of speech recognition
– so far most successful

• history: dynamic time warping/HMM for character recognition
– 1992 Pieraccini & Levin; 1993 Agazzi & Kuo
– 1997 Kaltenmeier et al.
– 1998 BBN Byblos: Schwartz et al. [Lu & Bazzi+ 98]

• history (no langauage model):
interdependence of segmentations, alignment and decisions:
– 1968 Kovalevsky for characer recognition (sequential optimization)
– 1971 Vintsyuk for speech recognition
Work was overlooked in Europe and USA.
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Hybrid HMM Revisited

for each class symbol (sound or character),
define HMM:
– sequence of states (e g. three) with

label state posterior prob.
– set of transitions

with transition prob.

main purpose: time alignment

time

A

L

E

X

training criterion for a single (!) sequence of ovbservations xT
1 := x1...xt...xT

with state label sequences sT1 := s1...st...sT :

max
...

{

log
∑

sT
1

∏

t

(

p(st|st−1) · pt(st|x
T
1 )

/

p(st)
)}

simplification: best path (Viterbi) in lieu of exact sum [Haffner 93]

H. Ney: From Bayes Rule to ANNs c©RWTH 27 ICFHR, 25-Oct-16



CTC: Connectionist Temporal Classification
[Graves & Fernandez+ 06]

simplify HMM structure:
– two states only
– tie second state across all symbols

(white space)
– drop transition probabilities
– drop prior probabilities

time

A

X

E

L

resulting training criterion for a single (!) sequence xT
1 with state label sequence sT1 :

max
...

{

log
∑

sT
1

∏

t

pt(st|x
T
1 )

}

comparison of CTC with hybrid HMM and full sum:
– effect of many simplifications: unclear ?
– is it the criterion or the optimization strategy ?
– shortcoming: no language model → weaker than seq.discr. training
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LSTM RNN: From 1D to 2D Processing

more information at this ICFHR:

• paper with more details (Monday, oral session, 14:20):
P. Voigtlaender, P. Doetsch et al.:
Handwriting Recognition with Large Multidimensional LSTM RNNs.

• competition organized by J. A. Sánchez et al. (Wednesday, oral session, 17:30):
ICFHR2016 Competition on Handwritten Text Recognition on the READ Dataset.
RWTH participated with excellent results.
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LSTM RNN: From 1D to 2D Processing
[Graves 2008: Multidimensional RNN]
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Database IAM

• IAM handwriting corpus [Marti & Bunke+ 02]

• Lexicon: 50k words

• 3-gram language model

• 80 class labels: 78 characters + whitespace + blank

corpus #paragr. #lines #run. words #run. chars OOV[%]

train 747 6,482 53.8k 219.7k -
dev 116 976 8.7k 31.7k 3.94
eval 336 2,915 25.4k 96.6k 3.42
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IAM Results: Closed Vocabulary
(OOV: 3.9 % and 3.4 %)

System Model and #params WER[%] CER[%]
Training dev eval dev eval

Gaussian Mixtures Max.Lik. 108.9K 10.7 - 3.8 -

LSTM RNN: 4 layers HMM: best path 20.7M 11.2 14.5 3.3 5.3
+ seq.disc. training 10.6 13.5 3.2 5.1

HMM: sum 20.7M 12.7 14.6 3.8 5.5
CTC: sum 11.3 13.1 3.7 5.3

2D LSTM RNN: 5 layers CTC: sum 2.6M 10.1 11.7 3.1 4.0

[Pham & Bluche+ 14]
2D LSTM RNN CTC: sum 142.0K 11.2 13.6 3.7 5.1

observations:
– high performance: seq.disc. training
– significant improvements for 2D LSTM RNN
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IAM Results: Open Vocabulary

from closed to open vocabulary:
extend word-based language model by character-based language model
so that any character sequence can be recognized
[Kozielski & Mathysiak+ 14] at ICFHR 2014

... requires extension of search strategy (decoder)

System Model and #params WER[%] CER[%]
Training dev eval dev eval

LSTM RNN: 4 layers HMM: best path 20.7M 8.6 12.1 2.8 4.9
+ seq.disc. training 8.3 11.7 2.8 4.7

HMM: sum 20.7M ? ? ? ?
CTC: sum 8.6 11.1 3.0 4.7

2D LSTM RNN: 5 layers CTC: sum 2.6M 7.1 9.3 2.4 3.5

observations:
– in general: significant improvement by open vocabulary
– overall ranking: like closed vocabulary
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Database RIMES Text Lines

• RIMES handwriting corpus [Augustin & Brodin+ 06]

• Lexicon: 6.7k words

• 4-gram language model

• 98 class labels: 96 characters + whitespace + blank

corpus #paragr. #lines #run. words #run. chars OOV[%]

train 1500 11,279 82.2k 452.7k -
eval 100 778 5.6k 31.2k 4.2
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Results on RIMES Text Lines
(closed vocabulary; OOV = 4.2%)

System Model and #params eval eval
Training WER[%] CER[%]

Gaussian Mixtures Max.Lik. 47.2K 15.7 5.5

LSTM RNN: 4 layers HMM: best path 20.7M 11.4 4.1
+ seq.disc. training 10.9 3.8

HMM: sum 20.7M ? 15.3 ? 7.8
CTC: sum 11.1 4.1

2D LSTM RNN: 5 layers CTC: sum 2.6M 9.4 2.9

[Pham & Bluche+ 14]
2D LSTM RNN CTC: sum 142.0K 12.3 3.3

observations:
– high performance (1D case): seq.disc. training and CTC
– significant improvements for 2D approach
– high fluctuations for HMM/sum: reason unclear (?)
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Sequence-to-Sequence Recognition:
Statistical Approach and Machine Learning

• four key ingredients:
– choice of performance measure: errors at sequence, word, phoneme, frame level
– probabilistic models at these levels and the interaction between these levels
– training criterion along with an efficient optimization algorithm
– Bayes decision rule along with an efficient search algorithm

• about recent work on ANNs (2011-16):
– yes, ANNs result in significant improvements
– ANNs provide one more type of probabilistic models

• shortcomings of present ANNs and challenges: too much trial and error
– need of robust training and convergences
– need of clear principles in designing ANN structures

scientific challenges for the future of sequence-to-sequence recognition:

• open lexicon: get away from closed lexicon and allow ANY sequence of characters

• unsupervised training:
e. g. ASR/HWR: observations data (without labels) + (very good) language model

• alignment mechanism:
can attention-based mechanism replace first-order concepts (e.g. HMM)?
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Sequence-to-Sequence Recognition:
Statistical Approach to HLT Tasks
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BACK-UP SLIDES
(Handwriting)
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2D LSTM RNN: Architecture

.....

Softmax

CTC

Input Image

Convolution
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 +Tanh
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Attention-based NN MT
[Bahadanau et al. 2014]

. . . . . . . . . . . .

yi+1 si+1 ci+1 α(j|i + 1), j = 1, . . . , J

yi si ci α(j|i), j = 1, . . . , J

yi−1 si−1 ci−1 α(j|i − 1), j = 1, . . . , J

. . . . . . . . . . . .
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Preprocessing: Deslanting

• Reduce vertical distortions through shearing angle normalization
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Preprocessing: Deslanting

• Calculate vertical projection ρ for different shearing angles

• Choose angle with maximal score:

χ(ρ) =

N−1
∑

i=1

(ρi − ρi+1)
2
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Preprocessing: Deslanting
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Feature extraction

• Shift (overlapping) sliding window from left to right over the image

H. Ney: From Bayes Rule to ANNs c©RWTH 44 ICFHR, 25-Oct-16



Window-based transformations

• Normalize vertical position and scaling
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2D RNN

h(u,v-1) h(u,v)

h(u-1,v)

x(u,v)
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BACK-UP SLIDES
(Speech and Translation)
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Speech Input

Acoustic
Analysis

Phoneme Inventory

Pronunciation Lexicon

Language Model

Global Search:

maximize

  x1 
...
 
xT

Pr(w1 ... wN)  Pr(x1 ... xT  |  w1...wN)

  w1 ... wN

Recognized
Word Sequence

 

over

  Pr(x1 ... xT  |  w1...wN )

Pr(w1 ... wN)

Statistical Approach to Automatic
Speech Recognition (ASR)
[Bahl & Jelinek+ 83]
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Hidden Markov Models (HMM)

• fundamental problem in ASR:
non-linear time alignment

• Hidden Markov Model:
– linear chain of states s = 1, ..., S

– transitions: forward, loop and skip

• trellis:
– unfold HMM over time t = 1, ..., T

– path: state sequence sT1 = s1...st...sT
– observations: xT

1 = x1...xt...xT

ST
A

T
E

  I
N

D
E

X

TIME  INDEX

2 31 5 64
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Hidden Markov Models (HMM)

The acoustic model p(X|W ) provides the link between
sentence hypothesis W and observations sequence X = xT

1 = x1...xt...xT :

• acoustic probability p(xT
1 |W ) using hidden state sequences sT1 :

p(xT
1 |W ) =

∑

sT
1

p(xT
1 , s

T
1 |W ) =

∑

sT
1

∏

t

[p(st|st−1,W ) · p(xt|st,W )]

• two types of distributions:
– transition probability p(s|s′,W ): not important
– emission probability p(xt|s,W ): key quantity

realized by GMM: Gaussian mixtures models (trained by EM algorithm)

• phonetic labels (allophones, sub-phones): (s,W ) → α = αsW

p(xt|s,W ) = p(xt|αsW )

typical approach: phoneme models in triphone context:
decision trees (CART) for finding equivalence classes

• refinements:
– augmented feature vector: context window around position t

– subsequent LDA (linear discriminant analysis)
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illustration: machine translation

• interaction between
three models (or
knowledge sources):
– alignment model p(A|E)

– lexicon model p(E|F,A)

– language model p(E)

• handle interdependences,
ambiguities and conflicts
by Bayes decision rule
as for speech recognition

KNOWLEDGE SOURCES

ALIGNMENT
MODEL

BILINGUAL
LEXICON

SENTENCE IN
SOURCE LANGUAGE

GENERATION: INTERACTION OF
KNOWLEDGE SOURCES

SENTENCE IN
TARGET LANGUAGE

LANGUAGE
MODEL

WORD POSITION
RE-ORDERING

SYNTACTIC AND
SEMANTIC ANALYSIS

LEXICAL CHOICE

ALIGNMENT
HYPOTHESES

SENTENCE
HYPOTHESES

WORD+POSITION
HYPOTHESES
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From Words to Phrases

phrase-based approach:

• training: extraction
of phrase pairs (= two-dim. ’blocks’)
after alignment/lexicon
training

• translation process:
phrases are the smallest units

source positions

ta
rg

et
 p

os
iti

on
s
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Source Language Text

Target Language Text

f1 
J

Global Search:

    Pr(f1  J  |  e1
I )   Pr(    e1

I )maximize

 over    e1
I

Language Model
)   Pr(    e1

I

 Lexicon Model
   Pr(f1  J  |  e1

I )

 Alignment Model

Analysis &
Transformation

Analysis &
Transformation
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Preprocessing

Global Search

F

Source Language Text

Postprocessing

Target Language Text

Ê

Ê = argmax
E

{p(E|F )}

= argmax
E

{
∑

m
λmhm(E, F )}

Word Models

Reordering Models

Language Models

Phrase Models

Models

. 
. 

.

. . .
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