
Local Intensity Order Pattern for Feature Description

Zhenhua Wang Bin Fan Fuchao Wu
National Laboratory of Pattern Recognition, Institute of Automation

Chinese Academy of Sciences, 100190, Beijing, China
{wzh,bfan,fcwu}@nlpr.ia.ac.cn

Abstract

This paper presents a novel method for feature descrip-
tion based on intensity order. Specifically, a Local Inten-
sity Order Pattern(LIOP) is proposed to encode the local
ordinal information of each pixel and the overall ordinal
information is used to divide the local patch into subregion-
s which are used for accumulating the LIOPs respectively.
Therefore, both local and overall intensity ordinal informa-
tion of the local patch are captured by the proposed LIOP
descriptor so as to make it a highly discriminative descrip-
tor. It is shown that the proposed descriptor is not only in-
variant to monotonic intensity changes and image rotation
but also robust to many other geometric and photometric
transformations such as viewpoint change, image blur and
JEPG compression. The proposed descriptor has been eval-
uated on the standard Oxford dataset and four additional
image pairs with complex illumination changes. The exper-
imental results show that the proposed descriptor obtains
a significant improvement over the existing state-of-the-art
descriptors.

1. Introduction
Local image features have been widely used in many

computer vision applications such as object recogni-

tion [13] , texture recognition [12], wide baseline match-

ing [24], image retrieval [18] and panoramic image stitch-

ing [3]. The basic idea is to first detect interest points or

interest regions and then compute invariant feature descrip-

tors on each of them. Once the feature descriptors are com-

puted, the feature correspondences between different im-

ages can be automatically established under some similarity

measure, e.g. the Euclidean distance.

Many methods have been proposed to detect interest

points or interest regions that are covariant with a class

of transformations(e.g. affine transformation). For ex-

ample, Harris corner [10] and DoG(Difference of Gaus-

sian) [13] for interest point detection, and Harris-affine [15],

Hessian-affine [17], MSER(Maximally Stable Extremal Re-

gion) [14], IBR(Intensity-Based Region) and EBR(Edge-

Based Region) [24] for affine covariant region detection.

Concerning feature description, a number of meth-

ods have been proposed in the literature. The most

popular methods are those based on histograms. For

example, SIFT(Scale Invariant Feature Transform) [13],

GLOH(Gradient Location-Orientation Histogram) [16] and

DAISY [23] create a histogram of gradient orientations and

locations, spin image [12] creates a histogram of pixel lo-

cations and intensities, and shape context [2] creates a his-

togram of edge point locations and orientations. This kind

of descriptors usually obtains better performance than other

kinds of descriptors such as filter-based descriptor [5, 20],

derivative-based descriptor [21] and moment-based descrip-

tor [6] etc. However, while the above descriptors have been

shown to be fully or partially robust to many of the vari-

ations and distortions, they can not handle more complex

illumination changes including gamma correction, smal-

l specular reflections, changes in exposure time etc. Recent-

ly, to alleviate the problem of complex illumination change,

some researchers have proposed to use the intensity order

rather than the raw intensities for feature description. Gupta

and Mittal [8] presented a new feature descriptor by calcu-

lating a weighted sum of the order flips between point pairs

chosen from the extremal regions. Tang et al. [22] created a

2D histogram encoding both the ordinal distribution and the

spatial distribution. Heikkila et al. [11] proposed a CS-LBP

descriptor which combines the strength of the SIFT descrip-

tor and the LBP [19] texture operator. Goswami et al. [7]

proposed another LBP-based method which computed pair-

wise ordinal information from adjacent circular neighbor-

hoods. Gupta et al. [9] presented a more robust method

which contains two part: a histogram of relative intensities

and a histogram of CS-LTP codes. These methods generally

obtained good performance vis-a-vis illumination changes.

In this paper, we propose a novel method for feature de-

scription based on intensity order. The basic principle of

the proposed method is that the relative order of pixel in-

tensities remains unchanged when the intensity changes are

monotonic. In order to effectively exploit the ordinal infor-



Figure 1. The workflow of our method.

mation, a Local Intensity Order Pattern(LIOP) is proposed

to encode the local ordinal information and the overall or-

dinal information is used to divide the local patch into sub-

regions which are used for accumulating the LIOPs respec-

tively. Since both the region division and LIOP computa-

tion are based on the relative relationships of intensities, the

proposed descriptor is inherently invariant to image rotation

and monotonic intensity changes. According to the experi-

mental results, it is also robust to many other geometric and

photometric transformations such as view point change, im-

age blur and JPEG compression.

The rest of this paper is organized as follows: Section

2 gives a detailed description of our method, the experi-

mental evaluation is carried out in Section 3, and finally we

conclude the paper in Section 4.

2. Our Method

We use the ordinal information in a novel way for de-

scriptor construction. Firstly, the overall intensity order is

used to divide the local patch into subregions called ordi-

nal bins. Next, a Local Intensity Order Pattern (LIOP) of

each point is defined based on the relationships among the

intensities of its neighboring sample points. The LIOP de-

scriptor is constructed by accumulating the LIOPs of points

in each ordinal bin respectively, then by concatenating them

together. The workflow of out method is shown in Figure 1.

2.1. Pre-processing, Feature Detection and Normal-
ization

First, the image is smoothed by a Gaussian filter with

sigma σp since the relative order is sensitive to noise. Then,

an affine covariant region detector(such as Harris-Affine or

Hessian-Affine) is used to localize the feature position and

estimate the affine shape of its neighborhood. Since the de-

tected regions usually have varying sizes and shapes, they

are normalized to circular regions of a fixed diameter for

feature description. Finally, a Gaussian smoothing with sig-

ma σn is carried out again to remove noise which is intro-

duced by interpolation in the normalization step. In this

work, we refer to this resulting patch as a local patch.

It is worth noting that different from other methods such

as [13, 11, 22, 9], we do not rotate the local patch according

to the local consistent orientation(e.g. the dominant gradi-

ent orientation suggested by Lowe [13]) to achieve rotation

invariance. The proposed descriptor is constructed in an

orientation independent way which makes it inherently in-

variant to rotation. Detailed discussion will be presented in

the following subsections.

2.2. Region Division

In order to improve the distinctiveness, the histogram-

based methods usually divide the local patch into several

subregions, and the descriptors are constructed by creating

a histogram over each subregion respectively, then by con-

catenating them together.

Most of the previous methods for region division is based

on the spatial location. For example, SIFT quantizes the s-

patial location into a 4×4 squared gird and GLOH uses a

log-polar location grid with 3 bins in the radial direction and

8 in the angular direction. The disadvantage of such meth-

ods is that they have to estimate a local consistent orienta-

tion for each local patch and construct the descriptor relative

to this orientation to achieve rotation invariance. Therefor,

the performance of such methods heavily depends on the ac-

curacy of the local consistent orientation estimation which



Figure 2. The construction of the proposed LIOP descriptor.

is usually not robust to noise and distortion [4, 25]. To avoid

the local consistent orientation estimation, spin image [12]

divides the local patch into 5 rings. However, since it only

quantizes the spatial location in radial direction, its discrim-

inative power is lower than the grid-shaped region division.

In our work, we use the intensity order based region di-

vision proposed by Fan [4]. Specifically, all the pixels in

the local patch are first sorted by their intensities in a non-

descending order. Then, the local patch is equally quantized

into B ordinal bins according to their orders. Figure 1(c)

gives an illustration of such an intensity order based region

division where each ordinal bin is marked with a different

color. Note that it is not only invariant to monotonic intensi-

ty changes and image rotation, but also contains much more

spatial information than the ring-shaped region division

2.3. Local Intensity Order Pattern Descriptor

The local information to be used for feature descrip-

tion varies from method to method. For example, spin im-

age creates the histogram of intensity distribution, SIFT

and GLOH create the histogram of gradient orientation.

More recently, the local binary pattern [19] based methods

are proposed and achieve high performance comparable to

SIFT. CS-LBP [11] creates a histogram of central symmet-

ric local binary pattern and CS-LTP [9] creates a histogram

of central symmetric ternary pattern. Since the CS-LBP and

CS-LTP only compare the intensities of central symmetric

neighboring sample points, they do not effectively capture

the relationships among the intensities of the neighboring

sample points. In addition, they also need to sample the

neighboring points relative to the local consistent orienta-

tion to achieve rotation invariance, which makes them vul-

nerable to the orientation estimation errors.

To overcome these problems, here we propose a nov-

el Local Intensity Order Pattern(LIOP) for feature descrip-

tion. It effectively exploits the local information by using

the intensity order of all the sampled neighboring points.

What is more, it makes use of a rotation invariant sampling

to avoid the estimation of the local consistent orientation.

Thus, higher discriminative power is expected.

2.3.1 The Definition of LIOP

Before the formal definition of LIOP, some mappings are

introduced. Let PN = {(p1, p2, · · · , pN ) : pi ∈ R} be the

set of N -dimensional vectors and ΠN the set of all possible

permutations of integers {1, 2, · · · , N}, the mapping γ :
PN −→ ΠN is defined to map an N -dimensional vector

P ∈ PN to a permutation π ∈ ΠN based on the order of

the N elements of P . More specifically, the mapping γ sorts

the N elements of P into a non-descending order, pi1 ≤
pi2 ≤ · · · ≤ piN , and uses the subscript list (i1, i2, · · · , iN )
as the permutation. To avoid ambiguity, we define ps ≤
pt if and only if (i)ps < pt, or (ii)ps = pt but s < t.
Mathematically, the mapping γ is defined as:

γ(P ) = π, P ∈ PN , π ∈ ΠN (1)

where π = (i1, i2, · · · , iN ) and pi1 ≤ pi2 ≤ · · · ≤ piN .

Since there are a total of N ! permutations in ΠN , the

mapping γ divides the set PN into N ! partitions and each

partition corresponds to a unique permutation. For a per-

mutation π ∈ ΠN , its corresponding partition of PN is:

S(π) = {P : γ(P ) = π, P ∈ PN} (2)

According to this definition, the following equivalence re-

lation holds:

P, P ′ ∈ S(π)
π = (i1, i2, · · · , iN )

⇐⇒ pi1 ≤ pi2 ≤ · · · ≤ piN
p′i1 ≤ p′i2 ≤ · · · ≤ p′iN

(3)

It means that the N -dimensional vectors which are in the

same partition have the same order relationship among their

N elements, and vice versa.

The partitions of PN can be encoded by setting up an

index table of all the possible permutations in ΠN due to



the one-to-one correspondence between the partition and

the permutation. Figure 2(d) shows such an index table in

the case of N = 4. With the index table, a feature map-

ping function φ is defined to map a permutation π to an

N !-dimensional feature vector V i
N ! whose elements are all

0 except for the i-th element which is 1. The mathematical

definition of φ is:

φ(π) = V
Ind(π)
N ! , π ∈ ΠN (4)

where Ind(π) is the index of π in the index table and

V
Ind(π)
N ! = (0, · · · , 0, 1

(Ind(π))
, 0, · · · , 0).

With the above definitions, let P (x) be an N -

dimensional vector which consists of the intensities of N
neighboring sample points of a point x in the local patch,

the LIOP of the point x can be defined as:

LIOP (x) = φ(γ(P (x)))

= V
Ind(γ(P (x))
N !

= (0, · · · , 0, 1
(Ind(γ(P (x))))

, 0, · · · , 0)
(5)

where P (x) = (I(x1), I(x2), · · · , I(xN )) ∈ PN and

I(xi) denotes the intensity of the i-th neighboring sample

point xi. Since there are a total of N ! different LIOPs, the

local patch is divided into N ! partitions, each of which is

represented by an LIOP.

The N neighboring sample points of the point x are e-

qually distributed on a circle of radius R centered at x. To

obtain a rotation invariant sampling, the first point is sam-

pled along the radial direction which is from the center of

the local patch to the point x. Since there are two points

along the radial direction on the circle, the one which is far-

ther from the center of the local patch is selected as the first

sample point. Then, the rest N − 1 points are sampled on

the circle in an anticlockwise direction. An example of such

a rotation invariant sampling in the case of N = 4 is shown

in Figure 2(a) and (b). It can be seen that the 4 neighboring

sample points x1, x2, x3 and x4 of the point x remain the

same in the rotated patch, i.e. x′
1, x′

2, x′
3 and x′

4 respectively.

2.3.2 Descriptor Construction

The descriptor is constructed by accumulating the LIOPs of

points in each ordinal bin respectively, then by concatenat-

ing them together. The construction of the LIOP descriptor

is shown in Figure 2. Mathematically, the LIOP descriptor

of the local patch is computed as:

LIOP descriptor = (des1, des2, · · · , desB)
desi =

∑
x∈bini

LIOP (x)
(6)

where B is the number of the ordinal bins. The dimension

of the descriptor is N !×B.

It is worth noting that the LIOP descriptor is both in-

variant to monotonic intensity changes and image rotation.

Suppose x denotes a point in the local patch, x′ denotes

the point x after a monotonic intensity change and image

rotation, P (x) = (I(x1), I(x2), · · · , I(xN )) and P (x′) =
(I(x′

1), I(x
′
2), · · · , I(x′

N )) are their N -dimensional vectors

respectively. Since the intensity order of I(x1), I(x2),
· · · , I(xN ) and I(x′

1), I(x
′
2), · · · , I(x′

N ) are the same un-

der monotonic intensity changes, P (x) and P (x′) will be-

long to the same partition of PN according to the equiva-

lence relation shown in Eq.(3). In other words, γ(P (x)) =
γ(P (x′)). Thus, we obtain LIOP (x) = LIOP (x′) ac-

cording to Eq.(5). As discussed before, the intensity or-

der based region division is invariant to monotonic intensity

changes and image rotation. Thus, the point x and x′ will

belong to the same ordinal bin, which makes the the LIOP

descriptor unchanged.

Since the order of similar intensities is less reliable than

that of dissimilar ones due to Gaussian noise, the LIOP of

point which has more dissimilar neighboring sample points

is more stable and should be given a larger weight. A

weighting function is proposed to improve the robustness

of the LIOP descriptor, which is defined as:

w(x) =
∑

i,j

sgn(|I(xi)− I(xj)| − Tlp) + 1 (7)

where sgn() is the sign function and Tlp is a preset thresh-

old. This weighting function measures the intensity dissim-

ilarities among the neighboring sample points of point x by

counting the number of dissimilar sample pairs. Thus, the

descriptor becomes:

LIOP descriptor = (des1, des2, · · · , desB)
desi =

∑
x∈bini

w(x)LIOP (x)
(8)

Experiments show that this weighting scheme performs bet-

ter than the naive uniform weighting and Gaussian weight-

ing(see Figure 5).

3. Experiments
3.1. Dataset and Evaluation Criterion

We have evaluated our descriptor on the standard Ox-

ford dataset [1]. It contains images with different geometric

and photometric transformations of structured and textured

scenes. The six different transformations are: viewpoint

change, scale change, image rotation, image blur, illumi-

nation change, and JPEG compression. In order to study

in more detail about the performance of our descriptor to

complex illumination changes, we captured two additional

image pairs ’desktop’ and ’corridor’ which have even more

drastic illumination changes(see Figure 3). We also synthe-

sized two images by performing a square root and square



(a) desktop

(b) corridor

Figure 3. Two captured image pairs with drastic illumination

changes.

(a) square (b) square root

Figure 4. Two synthesized images from the second image of Fig-

ure 3(a).

operation on the second image of ’desktop’. Such nonlinear

transformations produce images with a monotonic intensity

change. Figure 4 shows these two synthesized images.
We used the evaluation criterion proposed by Mikola-

jczyk and Schmid [16] which is based on the number of
correct and false matches between two images. The match-
ing strategy is the nearest neighbor distance ratio(NNDR)
which declares a match if the distance ratio between the
first and second nearest neighbors is below a threshold.
The number of correct matches and ground truth correspon-
dences is determined by the overlap error [17]. A match is
correct if the overlap error < 0.5. The results are presented
with recall versus 1-precision curves:

recall=
#correct matches

#correspondences
1−precision=

#false matches

#all matches

where #correspondences is the ground truth number of

matches.

3.2. Parameters Selection

There are six parameters in our method: 1) the smooth-

ing sigma σp before region detection, 2) the smoothing sig-

ma σn after region normalization, 3) the number B of ordi-

nal bins, 4) the number N of the neighboring sample points,

5) the sampling radius R, 6) the threshold Tlp of the weight-

ing function.

Two image sequences of the standard Oxford

dataset(’graf’ and ’wall’) were used to investigage the

effect of the parameters. We simply tried all combinations

of these parameters and compared the matching perfor-

mance of them. Due to the space limit, we only show the

results between the 1st and the 4th images in Figure 6 by

varying N (3 and 4) and B(4, 6 and 8). As can be seen,

N = 4 got a better performance than N = 3 while both

B = 8 and B = 6 got a better performance than B = 4. To

obtain a smaller dimension, B = 6 is selected. Thus, the

dimension of the proposed LIOP descriptor is 4!×6 = 144.

All the selected parameters are shown in Table 1 and kept

unchanged in our subsequent experiments.

Parameters σp σn N B R Tlp

Values 1.0 1.2 4 6 6 5

Table 1. The selected parameters

We also compared the performance of the three weight-

ing schema: uniform weighting, Gaussian weighting and

the weighting function proposed in Eq.(7). It can be seen

from Figure 5 that, the proposed weighting function obtains

the best performance.
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Figure 5. Performance comparison of the three weighting

schema: uniform weighting, Gaussian weighting and the proposed

weighting(Eq.(7)).Note that the scales are different for different

figures to improve the clarity of the plot.

3.3. Performance Evaluation

Experiments have been carried out on five popular

affine covariant regions: Harris-Affine(haraff), Hessian-

Affine(hesaff), MSER, EBR and IBR. According to the re-

sults, the ranking of descriptors almost remains the same

on different affine regions as indicated by [16]. Due to

space limit, we only show the results on haraff and hesaff

regions since they provide more interest regions than others.

The hesaff detects blob-like structures while haraff detects

corner-like structures, and both of them output elliptic re-

gions of varying size. These elliptic regions are normalized

to circularz regions of a fixed diameter as described in sub-

section 2.1. To make the comparison fair and representa-
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(c) haraff - wall 1-4
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Figure 6. Performance comparison of the LIOP descriptor on the Harris-Affine and Hessian-Affine regions under different parameter

configurations, by varying the number of ordinal bins B and the number of neighboring sample points N . Note that the scales are different

for different figures to improve the clarity of the plot.
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(b) hesaff - leuven 1-2
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(c) haraff - leuven 1-4
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(d) hesaff - leuven 1-4
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(f) hesaff - desktop

0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

1−precision

re
ca

ll

SIFT
DAISY
HRI−CSLTP
LIOP

(g) haraff - corridor
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(h) hesaff - corridor
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(k) haraff - square root
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(l) hesaff - square root

Figure 7. Experimental results for illumination changes. (a)-(d) are the results of ’leuven’ in the Oxford database. (e)-(h) are the results of

images shown in Figure 3. (i)-(l) are the results of synthesized images shown in Figure 4. Note that the scales are different for different

figures to improve the clarity of the plot.

tive, we use the same diameter(41 pixels) as the evaluation

paper [16].

We have compared our descriptor with SIFT [13],

DAISY [23] and HRI-CSLTP [9] since SIFT and DAISY

are the well known state-of-the-art feature descriptors while

HRI-CSLTP is the recently proposed order based descriptor

similar to ours. In our experiments (Intel Core2 Quad CPU

2.83GHz), the average time for constructing a feature de-

scriptor is: 2.1ms for SIFT, 3.8ms for DAISY, 5.3ms for

HRI-CSLTP and 5.5ms for LIOP. The evaluation results are
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(a) haraff - bikes 1-2

0 0.1 0.2 0.3 0.4 0.5
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1−precision

re
ca

ll

SIFT
DAISY
HRI−CSLTP
LIOP

(b) hesaff - bikes 1-2
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(k) haraff - graf 1-4
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(m) haraff - wall 1-2
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(o) haraff - wall 1-4
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Figure 8. Experimental results for (i) image blur (a)-(d), (ii) image rotation and scale change (e)-(h), (iii) viewpoint change (i)-(p), and (iv)

JPEG compression (q)-(t). Note that scales are different for different figures to improve the clarity of the plot.



shown in Figure 7 and Figure 8. For the Oxford database,

we only show the results of two image pairs(the 1st vs. the

2nd and the 1st vs. the 4th) for each case here since they

represent small and large image transformation respective-

ly.

For illumination changes(see Figure 7), the LIOP de-

scriptor performs consistently better than all the other tested

descriptors in all cases. It significantly improves the perfor-

mance on illumination changes due to the novel usage of

intensity order. For other image transformations(see Fig-

ure 8), the LIOP descriptor also outperforms SIFT in all

cases, and it outperforms DAISY and HRI-CSLTP in al-

most all cases except for hesaff - boat 1-4(Figure 8(h)) and

haraff - wall 1-4(Figure 8(o)). As can be observed, the pro-

posed LIOP descriptor obtains a high discriminative power

while stays robust to many image transformations.

4. Conclusion
This paper proposed a novel Local Intensity Order Pat-

tern(LIOP) for feature description. Compared with the

previous proposed intensity order based methods, LIOP is

quite different in the sampling strategy, comparison rule

and encoding scheme. More specifically, it employs a rota-

tion invariant sampling and fully explores the local intensity

relationships by considering the intensity order among all

the sample points. Meanwhile, a permutation-based encod-

ing scheme is proposed to compress the dimension which

makes LIOP more suitable for constructing local descriptor.

By accumulating the LIOPs of points in each ordinal bin re-

spectively, the descriptor is constructed totally based on the

relative relationships of intensities, which makes it invari-

ant to image rotation and monotonic intensity changes. Ex-

perimental results on various image transformations have

shown that the proposed LIOP descriptor outperforms the

state-of-the-art methods.
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