
Deep Semantic Hashing with Multi-Adversarial Training
Bingning Wang∗

Institute of Automation, Chinese
Academy of Sciences

University of Chinese Academy of
Sciences

bingning.wang@nlpr.ia.ac.cn

Kang Liu∗
Institute of Automation, Chinese

Academy of Sciences
University of Chinese Academy of

Sciences
kliu@nlpr.ia.ac.cn

Jun Zhao
Institute of Automation, Chinese

Academy of Sciences
University of Chinese Academy of

Sciences
jzhao@nlpr.ia.ac.cn

ABSTRACT
With the amount of data has been rapidly growing over the recent
decades, binary hashing has become an attractive approach for
fast search over large databases, in which the high-dimensional
data such as image, video or text is mapped into a low-dimensional
binary code. Searching in this hamming space is extremely effi-
cient which is independent of the data size. A lot of methods have
been proposed to learn this binary mapping. However, to make
the binary codes conserves the input information, previous works
mostly resort to mean squared error, which is prone to lose a lot
of input information [11]. On the other hand, most of the previous
works adopt the norm constraint or approximation on the hidden
representation to make it as close as possible to binary, but the
norm constraint is too strict that harms the expressiveness and
flexibility of the code.

In this paper, to generate desirable binary codes, we introduce
two adversarial training procedures to the hashing process. We
replace the L2 reconstruction error with an adversarial training
process to make the codes reserve its input information, and we
apply another adversarial learning discriminator on the hidden
codes to make it proximate to binary. With the adversarial training
process, the generated codes are getting close to binary while also
conserves the input information. We conduct comprehensive exper-
iments on both supervised and unsupervised hashing applications
and achieves a new state of the arts result on many image hashing
benchmarks.

CCS CONCEPTS
•Computingmethodologies→Neural networks; • Security and
privacy → Hash functions and message authentication codes;

KEYWORDS
Semantic Hashing; Generative adversarial network; Auto-encoder;
Unsupervised Learning

∗Bingning and Kang have equal contributions to this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’18, October 22–26, 2018, Torino, Italy
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6014-2/18/10. . . $15.00
https://doi.org/10.1145/3269206.3271735

ACM Reference Format:
Bingning Wang, Kang Liu, and Jun Zhao. 2018. Deep Semantic Hashing
with Multi-Adversarial Training. In The 27th ACM International Conference
on Information and Knowledge Management (CIKM ’18), October 22–26, 2018,
Torino, Italy. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3269206.3271735

1 INTRODUCTION
Similarity search has many important applications such as docu-
ment clustering, multimedia retrieval, and collaborative filtering
[46]. In practical scenarios, especially when the data is very large,
scalable retrieval is needed to accelerate the searching process.
However, searching is very challenging since the feature space of
data, such as images, usually span very high dimension. Operation
such as calculating cosine distance in this high dimension is ex-
tremely computationally expensive, which requires a more efficient
scheme for searching. To this end, semantic hashing, one of the
most effective ways to accelerate the searching process through
approximate matching based on binary code representation, has
been widely studied and became the mainstream technique [14].

The basic idea of hashing is to map high dimensional data into
low-dimension binary codes through a series of hash functions.
Based on such binary representation, similarity could be efficiently
calculated. Traditionalmethods for hashing such as locality-sensitive
hashing (LSH) [5, 22], semantic hashing [39], spectral hashing [48]
have been proved to be very useful for constructing such hash
functions. However, they are either data-independent or requiring
specific assumptions about the underlying distributions of the data,
which hinder their applications in large-scale scenario [46].

Recently, with the renaissance of the neural networks in artifi-
cial intelligence, some deep learning based auto-encoder have been
proposed for semantic hashing [3, 10, 32]. They usually adopt a
neural network based encoder to embed the input x into a low-
dimensional continuous hidden representation h. And a decoder
is used to build a reconstruction x̃ from h. As a result, h could be
served as a surrogate of the input and used for hashing. Basically,
these methods are based on two objectives: (I) the hidden represen-
tation h should preserve the semantic information of x as much as
possible. (II) h should be as close as possible to binary.

In order to preserve the semantic information of input data, previ-
ous methods usually adopt norm constraint to make the reconstruc-
tion similar with the input, such as L2 norm (mean squared error)
or L1 norm [3, 10]. The objective of reconstruction is | |x̃ − x| |1/2 .
However, it has been proved that simply employing the L1 or L2
norm is unable to capture the structure information of the input
[12, 30], so the reconstruction is similar with the input only in a
global view and loses a lot of details [11].

https://doi.org/10.1145/3269206.3271735
https://doi.org/10.1145/3269206.3271735
https://doi.org/10.1145/3269206.3271735

On the other hand, to approximate the hidden representations
(h) to binary codes, most previous approaches also adopt norm-
constraint. For example, Binary Auto-encoders [3] use the L2 norm
tominimize the distance betweenh and its siдn value (i.e. | |siдn(h)−
h| |2). However, the sign function is non-differentiable, it needs
to be fine-tuned and unstable when the code size is large [7]. To
overcome such problem, some methods directly set a hard threshold
to h to derive the binary codes [4, 47]. This strategy simplifies the
optimization greatly but usually yield low-quality solutions [8].

In this paper, to generate better binary codes without any norm
constraint, we propose a deep semantic hashing model based on
generative adversarial networks (GANs) [17]. The whole architec-
ture is based on an auto-encoder, which served as the generator in
GANs. Then we use two discriminators as the adversarial compo-
nents for the auto-encoder to learn the distance information, which
bypasses the traditional norm constraints. We refer our model as
generativemulti-adversarial networks (GMANs).

Specifically, tomake the reconstruction of auto-encoder hasmore
fidelity, we use a discriminator to determine whether the input is
fake (generated by the auto-encoder) or real (original input), and
the output from such discriminator could be used as the distance
information for training the auto-encoder. In this way, rather than
employing the inefficient L2 or L1 loss, the auto-encoder is trained
to minimize the Jensen-Shannon divergence as the reconstruction
objective [17].

Secondly, we apply another discriminator to the hidden repre-
sentation h of the auto-encoder to make h as close as possible to
be binary. We randomly sample a binary code from a specified
Bernoulli distribution and treat it as the real data for this discrimi-
nator. Meanwhile, the generated codes h are served as the fake data
to the discriminator. In this case, the objective of the discriminator
is to determine whether the input is binary or not. With such ad-
versarial training, the generated codes from the auto-encoder are
expected to get close to the real binary data.

Unfortunately, the GANs are notorious for training [40]. One of
the most challenging problems is the mode collapse issue [42, 45].
Therefore, in this paper, we employ the variance of the generated
codes as an additional regulator to train the generator, which could
effectively alleviate the mode collapse problem. Besides, to make
the adversarial training process more smooth and stable, we fur-
ther propose a self-controlling scheme where the generator and
discriminator are trained dynamically so that the generator could
get the most substantial gradient from discriminator.

Our proposed model is based on auto-encoder which is purely
unsupervised. However, it is straightforward to apply our model to
a supervised scenario. We apply GMANs on the widely used image
and text hashing datasets. Experimental results show the effective-
ness of the proposed approach. We conduct further experiments
to demonstrate the specific advantage of each adversarial network
in our model. The results show that GMANs could yield better
reconstructions compared with the previous method trained with
the norm constraint. Moreover, the codes generated by GMANs
could preserve the input information and are very close to binary.
Although the proposed model is based on auto-encoder which is
purely unsupervised, we further prove that it is straightforward to
apply our model on supervised scenario. Briefly, the contributions
of this paper can be summarized as follows:

• We proposed a novel semantic hashing model based on a
generative multi-adversarial network. It uses two adversarial
training to replace norm constraint to generate high-quality
hashing codes.

• We proposed a variance control criteria and self-controlling
training scheme on our GMANs to stabilize the training
process.

• We conduct comprehensive experiments on several retrieval
applications. The results show that our model achieves better
results than state-of-the-art models on both supervised and
unsupervised setups.

2 RELATEDWORKS
Hashing has been regarded as an essential component in a vari-
ety of large-scale information retrieval systems. Locality-Sensitive
Hashing (LSH) [22] is one of the most widely used unsupervised
hashing methods with asymptotic theoretical properties of hashing
guarantees. It constructs the hash functions based on many random
linear projections. However, LSH is data-independent and usually
requires many hashing bits to prevent the collision. To deal with
this problem, several data-dependent hashingmethods based onma-
chine learning has been proposed. For example, Spectral Hashing
(SpH) [48] explored the data distribution by preserving the similar-
ity among the input data and adding the balanced and uncorrelated
constraints into the learned codes. Iterative quantization [16] in-
troduced structure and orthogonal constraints on the parameters,
which could yield better results but also increase the computation
complexity. Vector quantization and its generalizations [24, 52]
constrained the binary representation to be 1-of-K coding, so that
the corresponding optimization is simplified. However, with these
extra constraints, the models become too restricted to generate
proper binary codes and thus lose some important information of
the inputs. Many deep learning based models have been proposed
to reconstruct the data through an auto-encoder (AE). The hidden
representation of the AE could be utilized as the hashing codes.
Salakhutdinov and Hinton [39] proposed a deep learning model
by using Restricted Boltzmann Machines (RBMs). This idea was
then extended to more general auto-encoders which remove the
Boltzmann constraints. For example, Liong et al. [33] proposed a
model to learn the binary bits with auto-encoder jointly. However,
there are too many norm constraints on the models which make
the learning process extremely difficult to converge. Yu et al. [49]
used circulant constraints and Zhang et al. [51] introduced Kro-
necker Product structure to achieve the binary constraints. These
constraints could alleviate the convergence problem but substan-
tially reduce the model flexibility. Other methods such as [7, 8]
proposed some machine learning techniques to learn good hidden
codes, but it necessitates the meticulous hyper-parameter tuning.
Chaidaroon and Fang [4] approximated a Gaussian prior on the
hidden codes through variational inference. However, the Gaussian
distribution is not appropriate for hashing applications where the
desiderata of the codes are binary. Qiu et al. [38] is related to our
model. They also proposed a GANs based hashing model. Their
method is supervised where they use GANs to generate the fake
image for pairwise learning. By contrast, the GANs in our model is

introduced to the hashing process directly, which act as regulators,
to make the latent code as binary as possible.

Generative Adversarial Networks GANs [17] is a recently
proposed framework for estimating generative models via an ad-
versarial process. In GANs, two types of models are simultaneously
trained: a generator G is trained to estimate the data distribution
and generate a fake sample; a discriminator D is trained to discrim-
inate the real sample from the fake one. GANs corresponds to a
minimax two-player game where there exists a unique solution
that G recovers the data distribution, and D equals to 1

2 every-
where. Many applications and improvement have been proposed
to GANs, LAPGAN [9] generated images in a coarse-to-fine fash-
ion by generating and upsampling in multiple steps; InfoGAN [6],
an information-theoretic extension to the GANs that could learn
disentangled representations. [50] extended the GANs to gener-
ating texts by policy gradient. WGAN [1] and BSGAN [21] were
two typical ameliorations to vanilla GANs that had better training
stabilities and theoretical advantages. Compared with other gen-
erative models such as variational auto-encoder [26], GANs could
generate higher quality images without any distribution hypothesis.
Thus it removes the inference process which is very hard to resolve
in other generative models. The GANs have also shown advan-
tages to replace or enhance the traditional metric-based methods
in generative models. For example, Larsen et al. [30] found that the
traditional L1 or L2 objective may cause the reconstruction be too
blurred to be recognized. They also adopt the GANs on the learning
process, but it was achieved based on a variational-auto-encoder.
Dosovitskiy and Brox [11] extended their model by applying the
GANs to the raw input. However, due to incomplete information,
it must resort to L1 or L2 to learn the input-output correspondence.
Most related method often adopts the adversarial learned inference
[12], where the hidden state combined with the data is fed to the
discriminator. However, their main motivation is to learn a better
inference process. In this paper, our objective is to learn a better
auto-encoder. Larsen et al. [30] also proposed a GANs framework
that contains more than one discriminator, but these discriminators
are applied to the same output of the generator. In this paper, the
two discriminators are applied to different parts of the generator.

3 SEMANTIC HASHINGWITH
MULTI-ADVERSARIAL TRAINING

Our semantic hashingmodel is based on generativemulti-adversarial
networks. There is a generator which is built upon an auto-encoder.
Two adversarial training processes are applied to the auto-encoder:
the first one is an auto-encoder-GAN(AE-GAN) and the second one
is a binary-GAN(B-GAN). AE-GAN is proposed to replace the tra-
ditional norm based reconstruction loss to make the hidden codes
reserve the input information. B-GAN is proposed to make the
generated codes approximate to binary.

We denote the raw input as x, the generated hidden representa-
tion as h ∈ Rb , we use h as the hashing codes for the input. The
conceptual architecture of GMANs is illustrated in Figure 1. In the
following sections, we will refer the h as hidden representation or
hidden codes interchangeably, next we detail the components of
GMANs.

encoder decoder

B-GAN

0

1

AE-GAN

0
1

Figure 1: The architecture of the proposed model. 0 repre-
sents the fake data while 1 denotes the real data. The B-GAN
tries to recognize whether the input is a binary (upmost) vec-
tor or a generated hidden codes. The AE-GAN tries to rec-
ognize whether the input is the real input (x) or generated
(x̃). With the adversarial learning proceed, x̃ is more and
more similar with x. Meanwhile the hidden representation
is more approximate to be binary.

3.1 Generator
In GMANs the generator corresponds to the auto-encoder which
consists of two separate models, namely the encoder and decoder.
The encoder e embed the raw input x into a low-dimensional hidden
representation h and the decoder f tries to decode x from h:

h = e(x) x̃ = f (h) (1)

We utilize the convolutional neural networks (CNNs) as the
building block for our encoder. CNNs have shown great advantages
in many applications [35, 43]. We convolute 5 × 5 filters W on the
input, so the hidden representation of each layer could be denoted
as:

hi, j = Relu(W ⊗ Xi−2:i+2, j−2:j+2 + b) (2)
where b is the bias vector. We did not adopt any pooling operation
but apply CNN several times to the hidden representation to embed
the input into a vector. The encoding process is illustrated below:

3

64

64

64

128

256

b

4

4

16

16

32

32

conv

conv

conv
linear

The decoder architecture can be viewed as the reversed pro-
cess of the encoder. However, the CNN in the decoder is not the
original convolutional operations but the transposed convolution1
that maps the low-dimensional hidden representation to high-
dimensional simulated data x̃.

1also known as stride-convolution or de-convolution.

3.2 Auto-Encoder GAN
Traditional hashing methods based on auto-encoder often resort
to the Euclidean distance between the input and output, which is
more commonly referred as mean squared error, as the training
objective:

Lr ec = d(x, x̃) = | |x − x̃| |2 (3)

We call this objective the norm loss. In AE-GAN, we replace
this norm loss with an adversarial training loss. A discriminator in
AE-GAN tries to discriminate the original data x from the fake data
x̃ generated by the generator. So we can regard the discriminator
as a metric function to provide distance2 information.

In AE-GAN, the generator is the auto-encoder itself that tries to
reconstruct the input. The discriminator in AE-GAN (denoted as
DAE) has two inputs: the first one is the hidden representation h
of the generator, and the second one is the real or fake input (x or
x̃). The architecture of the DAE is illustrated in Figure 2. During
training, the objective of the DAE is to minimize the probability of
x̃ while increase the probability of x, which can be denoted as:

LAE
D = − Ex∼p(x),h=e(x)[logDAE (x,h)]

− Ex∼p(x),h=e(x), x̃=f (h)[log(1 − DAE (x̃,h))]
(4)

p(x) is the data empirical distribution. In this manner, we could use
the output of DAE as the objective for the generator to optimize.
The objective of the generator is:

LAE
G = −Ex∼p(x),h=e(x), x̃=f (h)[logDAE (x̃,h)] (5)

This objective is minimized only when the reconstructed x̃ match
the original input x. However, in practice, the discriminator is a
two-class classifier, so it prone to get too far ahead. Because the
discriminator’s output is sigmoidal that the gradient of the value
function with respect to the discriminator’s output vanishes to
zeros, the generator may have a hard time minimizing the value
function above. As a workaround, we train the generator of AE-
GAN similar with [12] that maximize:

LAE
G = − Ex∼p(x),h=e(x)[log(1 − DAE (x,h))]

− Ex∼p(x),h=e(x), x̃=f (h)[logDAE (x̃,h)]
(6)

With the training proceed, the reconstruction x̃ could be more and
more similar with the input x at the guidance of discriminator DAE .

3.3 Binary GAN
While the AE-GAN focuses on minimizing the reconstruction error,
the objective of the B-GAN is to approximate the hidden represen-
tation into binary codes that could be utilized for hashing. Similar
to the AE-GAN, the generator in the B-GANs corresponds to the
auto-encoder itself 3. Denote the discriminator in B-GAN as DB .
We use a multi-layer perceptron (MLP) as the building block for

2More mathematically. It could be regarded as the divergence between the distribution
supported by data manifold and the density of the generator. The original GANs[17]
cast it as Jensen-Shannon divergence while some other works [37] extended this to
more general f -divergences.
3Although we can use the output of auto-encoder as the input for the generator to
generate the binary code, it has a trivial difference with the proposed strategy. The
generator has already involved in the auto-encoder, so we use the auto-encoder as the
generator.

𝒙

h

sigmoid
𝐷𝐴𝐸(𝒙, 𝒉)

𝒙 or

Figure 2: The architecture of DAE . (1) The input has two
parts: the hidden representation h of the auto-encoder, (2)
the high-dimensional data x or its reconstruction x̃. The out-
put undergone a sigmoid function to clamped to [0,1].

b ~ 𝐵 𝑏, 0.5 0

1

0

1

1

0

1

0

h=e(x)

1

0

𝐷𝐵

fake

real

𝜖~𝑁(0, 𝜎2𝐼)

Figure 3: The architecture of DB . The input could be either
the generated codes h from auto-encoder (orange) or ran-
dom sampled binary codes b (blue).

DB . In this paper, we adopt scaled exponential linear units (SELU)
[27] as the activation function for DB :

д(x) = γ

{
x i f x > 0
αex − α i f x ≤ 0 (7)

Where the γ and α are two hyper-parameters of SELU. The SELU
shows the advantage in convergent speed of the MLP compared
with other activation functions such as Tanh or Relu.

For B-GAN, the preferred input is the binary codes, so the real
input to DB is a binary vector drawn from a Bernoulli distribution:

b ∼ B(b,p) (8)

where b is the number of the bits to be sampled and p is the proba-
bility that corresponding bit being 1. Previous works on hashing
usually assume the balanced bit, so it is trivial to set p to 0.5 which
means half of the bits to be fired, but we can set p to any value
between 0 and 1 for different applications. DB acts as a critic that
output higher score when the input is closer to binary. As the ad-
versarial opponents, the generator has to generate more binary
codes to achieve a higher score. Similar to AE-GAN, the objective
for B-GAN can be denoted as:

LB
D = − Eb∼B(b,p)[logDB (b)]

− Ex∼p(x),h=e(x)[log(1 − DB (h))]

LB
G = − Ex∼p(x),h=e(x)[logDB (h)]

(9)

Thus LB
G is minimized only when h is binary. However, using

Equation 9 to train the generator may be problematic. The real
input is binary vector, so the difference between the real and fake
input is trivial to be discriminated. In other words, it is unlikely that
the model manifold and the true Bernoulli distribution’s support
have a non-negligible intersection. To alleviate this problem, we
add a noise term to the model distribution. In this case, the fake
examples fed to DB could be formulated as:

h′ = e(x) + ϵ, ϵ ∼ N(0,σ 2I) (10)

Where σ is the standard deviation of the Gaussian noise which
was set to 0.1 in the experiment. The main difference is that we will
move our generated codes towards the noised data manifold, which
can be thought of as transfer a small neighbourhood of samples
towards it. This will protect the discriminator against measure
zero adversarial examples, and thus push the generator towards a
better manifold. More importantly, the gradient of the generator
would correspond with the original one (i.e. two times derivative
of the Jensen-Shannon divergence)[1]. The architecture of B-GAN
is illustrated in Figure 3.

3.4 Mode Collapse Elimination
In experiments, we observe that the B-GAN is prone to mode col-
lapse problem, in which the generated codes collapse to few points
that are very similar to binary. Thus the binary score of the gener-
ated codes DB (h) is very high, but the variance of different codes
is very small. In another word, no matter what the input is, their
corresponding codes generated by the auto-encoder is very close
to each other. In theory, this problem is attributed to the fact that
the minor mode of the data seldom (approaches to zero probability)
getting reward from the discriminator. To eliminate this problem,
we add another criterion to the auto-encoder to control the variance
of the generated codes:

LV = EB,H[(Var (B) −Var (H))2] (11)

where B and H are batch of real binary codes and generated repre-
sentations respectively. The variance of the code is:

Var (H) = trace(HTH) (12)

As we sampled the real binary vector randomly and independently,
we can trivially set Var (B) to mb where m is the batch size. In
this way, the generated codes would be as variable as the sampled
binary codes, and could somewhat bypass the mode collapse prob-
lem. Adding the variance loss to the original loss we get the final
objective of the generator (auto-encoder):

LG = λ1 · L
AE
G + λ2 · L

B
G + λ3 · LV (13)

where λ1,2,3 are three hyper parameters to determine the weight
of each objective in training.

3.5 Self-Controlled Training procedure
Previous works of GANs carry the adversarial training process
under a situation of nearly-perfect discriminator, so they update
the discriminator more often than the generator4 which is claimed
to push the generator to the optimal region. However, we find
4Most previous works updated the discriminator 5 times while only update the gener-
ator once in each step.

Generator gets
maximum gradient

Generator gets
lower gradient

(D>>G)

Generator gets
lower gradient

(G>>D)

g
ra

d
ie

n
t

discriminator output

Figure 4: The gradient of the discriminator w.r.t. its output.
If the output value larger than 0.5, which denotes the gener-
ator (G) overtake the discriminator (D), andwhen the output
value smaller than 0.5, G falls behind the D.

that this mechanism would lead to unstable training process. If the
discriminator gets to its optimal situation that it could correctly
discriminate the real from the fake data, then the output from the
discriminator lies in the saturated region of the sigmoid, so the
gradient of from the discriminator to the generator has a large vari-
ance. Such high variance may seriously infect the training process
and make the generator hardly, if not impossible, to be optimized.

In this paper, to make the generator get gradient from the dis-
criminator consistently, we proposed a training strategy where
the generator is updated at the best guidance of the discrimina-
tor, i.e. the generator could get the largest gradient from the dis-
criminator. Remember that the gradient of the sigmoid function is:
f ′(x) = f (x) · (1 − f (x)), so it peaks on the value of 0.5. When the
output value of discriminator is larger or smaller than 0.5, then it’s
gradient will decrease. The gradient of the discriminator could be
illustrated in Figure 4.

To keep the discriminator at the best situation that could provide
good gradient for the generator, we just utilize the score of the
fake example D(h) or DAE (x̃,h) to determine whether we should
train the generator or discriminator. When the fake data score is
larger than 0.5, we train the discriminator. Otherwise, the generator
is trained. From this self-controlled process, the generator and
the discriminator could be improved synchronously. The overall
training process of GMANs is illustrated in Algorithm 1.

4 EXPERIMENTS
In this section, we show the overall results of our GMANs on several
images and textual retrieval tasks. In the next section, we will make
a detailed analysis of the advantages of the proposed model.

4.1 GMANs vs. State-of-the-arts
4.1.1 Datasets. We apply the GMANs to three image datasets
and two text datasets that are widely used as the unsupervised
benchmarks for semantic hashing [46]. The image datasets include:

• CIFAR10 [28]: a dataset of 32x32 color images, each images
contains one of ten objects. The training set contains 50k
images, and the query (testing) set contains 10k images. We
use the training set as the retrieval set.

CIFAR10 MNIST SIFT1M
b 8 16 24 32 48 8 16 24 32 48 8 16 24 32 48

SH [48] 0.39 4.23 14.37 15.12 16.23 0.44 6.51 27.08 36.69 39.22 3.67 15.32 27.25 32.40 42.23
ITQ [16] 0.51 5.21 17.77 17.46 16.99 0.51 5.87 23.92 36.35 38.99 5.18 19.23 30.15 46.23 48.22
SPH [20] 0.43 3.45 13.47 14.67 15.23 0.44 5.02 22.24 30.80 33.29 2.25 18.98 31.09 44.42 51.26
KMH [18] 0.53 5.49 19.55 15.90 14.58 0.50 6.36 25.68 36.24 36.77 3.74 19.85 28.86 46.04 52.28
BA [3] 0.55 5.65 20.23 17.00 16.35 0.51 6.44 27.65 35.29 34.28 3.18 19.35 22.42 40.28 50.85

BDNN [10] 0.55 5.79 22.14 18.35 20.28 0.53 6.80 29.38 38.50 37.48 3.75 18.96 33.83 48.12 53.39
VDSH [4] 0.61 5.99 23.41 19.17 21.05 0.55 6.99 25.36 38.12 36.28 3.99 18.96 33.10 46.82 52.36

w/o AE-GAN 0.59 5.87 22.18 18.81 20.79 0.51 5.91 28.76 37.99 35.78 3.99 19.21 33.52 48.95 53.98
w/o B-GAN 0.56 5.89 23.38 18.95 21.70 0.52 5.99 27.98 38.21 36.03 4.01 18.52 30.19 46.36 52.74
GMANs 0.62 6.06 25.25 20.17 22.86 0.53 7.35 30.26 40.26 39.32 4.04 19.98 34.26 50.16 55.39

Table 1: Precision at hamming distance less than 2 on several image datasets.

Algorithm 1 Deep Semantic Hashing with Generative Multi-
Adversarial Networks
Require: weight for each objective λ1,2,3 and fixed learning rate λ .
1: Pre-training auto-encoder by Equation 3.
2: for number of training iterations do
3: Random sample a training data x.
4: Calculate h and x̃ from Equation 1.
5: if DAE (x̃,h) > 0.5 then
6: Calculate LAE

D using Equation 4.
7: ▷ Update the discriminator of AE-GAN:

8: ∇θAED
=
dLAE

D

dθAED

θAED = θAED + λ∇θAED

9: if DB (h) > 0.5 then
10: Calculate LB

D using Equation 9.
11: ▷ Update the discriminator of B-GAN:

12: ∇θBD
=
dLB

D

dθBD

θBD = θ
B
D + λ∇θBD

13: Calculate LAE
G ,L

B
G and LV using Equation 5,9 and 11.

14: LG = λ1 · LAE
G + λ2 · LB

G + λ3 · LV
15: ▷ Update the generator (auto-encoder):

16: ∇θG =
dLG

dθG
θG = θG + λ∇θG

RCV1 20Newsgroups
b 8 16 32 64 8 16 32

SH [48] 42.71 55.22 72.36 48.46 14.37 23.67 41.00
SPH [20] 44.31 65.26 68.17 47.90 12.41 26.12 29.38
BA [3] 73.87 75.32 82.83 81.67 15.18 42.23 39.13

BDNN [10] 75.38 81.52 83.31 75.90 18.44 41.56 43.61
VDSH [4] 71.32 83.99 83.01 79.12 22.46 46.84 40.29

w/o AE-GAN 77.35 84.46 83.77 78.03 23.18 47.22 44.01
w/o B-GAN 75.07 82.98 83.38 78.91 23.09 46.51 43.82
GMANs 79.31 85.17 84.76 83.81 23.23 47.93 44.59

Table 2: Precision at hamming distance less than 2 on several
text datasets. For 20Newsgroups as the data size is compara-
tively small, so we did not experiment with code length 64.

• MNIST [31]: It contains 70k handwritten digit images of 10
classes. The training set contains 60k images and the testing
set contains 10k images. Each image is a 28x28 greyscale
matrix. We use the 60k training set as the retrieval set.

• SIFT1M [24]: It contains 128-d SIFT [34] descriptors. The
training set contains 100k images and there are 10k for test-
ing. We use the provided 1m images as the retrieval set.

Moreover, we select the following two text classification datasets to
evaluate our model, which have been widely adopted in previous
works [4, 39]:

• Reuters Corpus Volume I (RCV1): A large collection of man-
ually labelled 800k newswire stories provided by Reuters
with totally 103 classes. We use the full-topics version that
had been transformed to LIBSVM format5.

• 20Newsgroups: It is a collection of 18,828 newsgroup posts
that have been partitioned across 20 categories. We select
the popular byte-data and use the stemmed version6 pre-
processed by Ana Cardoso-Cachopo [2]. We further truncate
the length of the text to 300.

4.1.2 Experimental Settings. For CIFAR10 and MNIST, as the
input is raw images, we use the CNN with stride size 2 as the
building block for auto-encoder. For SIFT1M, the input is the hand-
crafted SIFT [34] features, so we use the MLP for the auto-encoder,
which is similar to the setting in the compared baselines. For CNN
architecture, we initialize all the weight parameters by MSRA [19]:
an extension to Xavier and suited for ResNet setting. Batch nor-
malization [23] is added to the encoder and decoder CNN layer to
accelerate the training process. For MLP, we initialize their weights
by Xavier [15]. We train our model based on Adam [25] algorithms.
Batch size is set to 16 for CIFAR10 and MNIST, 32 for SIFT1M. For
MLP, the layer size L is set to 3 for both encoder and decoder. λ1
λ2 is set to 0.2 and 0.5 respectively. For all setup, we set the code
length (i.e. b) to be 8, 16, 24, 32 and 48, respectively.

For the text data, as the input is the tf-idf features, we build the
GMANs based on MLP, the hidden layer size is halved every layer
from 128 to 32. As the input size is relatively large (vocab size was
set to 2000), we gradually increasing λ1, λ2 from 0 to 0.1, which

5https://github.com/JohnLangford/vowpal_wabbit/wiki/Rcv1-example
6http://web.ist.utl.pt/acardoso/datasets/

https://github.com/JohnLangford/vowpal_wabbit/wiki/Rcv1-example
http://web.ist.utl.pt/acardoso/datasets/

1

3

5

7

9

11

13

15

17

19

8 16 24 32 48

DMANs

SH

ITQ

SPH

KMH

BA

BDNN

VDSH

1

5

9

13

17

21

25

29

33

8 16 24 32 48

1

4

7

10

13

16

19

22

25

28

31

34

37

8 16 24 32 48

mAP@5000 mAP@5000 mAP@2000

CIFAR10 MNIST SIFT1M

Figure 5: Mean Average precision of top-N retrieved results
on several image datasets. For SIFT1m we set N to 2000 as it
has relatively large size. X-axis is the code length.

means that we first learn a good auto-encoder and then impose the
binary constraint on it.

4.1.3 Evaluation Metrics. For image hashing evaluation, we fol-
low the standard setting in unsupervised hashing that used Eu-
clidean space nearest neighbors of each query as the ground truths
[3, 10, 46]. For CIFAR10 and MNIST datasets, we use 50 Euclidean
nearest neighbors as the ground truths. For SIFT1M we use 5000
Euclidean nearest neighbors as the ground truths. For the document
data, the ground truths documents are those that share the same
label with the query document.

We adopt three widely used metrics for evaluation: 1) mean
Average Precision of top N retrieved item (mAP@N); 2) precision
of Hamming radius 2 (precision@2-bit). It measures precision on
retrieved images having Hamming distance to query less than 2 (if
no images satisfy we set it to zero); 3) Precision of top N (P@N)
retrieved items, which measures whether the system could retrieve
the ground-truth items in the top-N retrieved items. We apply
mAP@N to image and P@N to text, precision@2-bit is evaluated
on both text and image. All experiments have been gone through
the significant test, i.e., one-tailed paired t-test with a default 95%
significance level is used here.

4.1.4 Baselines. We compare GMANs with seven competitive
baselines which have been extensively used for unsupervised se-
mantic hashing, including: Spectral Hashing (SH) [48], Iterative
Quantization (ITQ) [16], Spherical Hashing (SPH) [20], K-means
hashing (KMH) [18], Binary Auto-encoder (BA) [3], Binary Deep
Neural Network (BDNN) [10], Variational deep semantic hash-
ing (VDSH) [4]. In addition, to make specific comparison, we also
conduct several ablation studies where we: (1) minimizing the re-
construction error by L2 instead of the AE-GAN (w/o AE-GAN) (2)
Optimizing the hidden codes to their corresponding binary vector
by L2 norm constraints (w/o B-GAN).

The result is shown in Table 1, 2 and Figure 5 and 6.

4.2 Main Results
It could be seen from table 1, 2 and figure 5, 6 that our proposed
GMANs consistently outperform previous methods. Especially,

50

55

60

65

70

75

80

85

90

8 16 32 64

20

25

30

35

40

45

8 16 32

DMANs

SH

BA

BDNN

VDSH

RCV1 20News
groups

Figure 6: Precision@200 for RCV1 and 20Newsgoups.

from figure 5 we could observe that the advantage is more sig-
nificant when the code length increase. This is attributed to the fact
that when the code length (i.e. the hidden representation size) is
large, it becomes more and more difficult for traditional norm con-
straint to optimize the hidden codes [46]. However, in our GMANs,
the distance information is provided by the discriminator which is
less vulnerable to the increasing code length.

The ablation study in table 1 and 2 shows that our proposed
adversarial training strategy outperforms the traditional models
based on norm constraint. For example, in CIFAR10, the perfor-
mance of the model without AE-GAN drops a lot. The input in
CIFAR10 is 32*32 colored image which lies in high space, so the re-
construction by L2 norm in Equation 3 may put no attention on the
specific area of the input. On the contrary, our model utilizes deep
neural networks to measure this distance, which would capture
more important information of the input image. In addition, the
model without B-GAN behaves poorly. We find in the experiment
that when using the norm loss | |siдn(h) − h| |2 to optimize the hid-
den code, the auto-encoder became very hard to be optimized, and
the generated codes quickly collapse to some point. Thus in some
previous works, they also add extra regulation terms to prevent the
collapse, such as the orthogonality regulation on projection matrix
[13]. By contrast, our model alleviates this optimization difficulty by
the two discriminators, which is more flexible and achieves better
results.

5 ANALYSIS
5.1 The Advantage of AE-GAN
In this subsection, we try to prove that the proposed AE-GAN could
reconstruct the input with better fidelity. However, evaluating the
quality of synthesized images is an open difficult problem [40]. In
the auto-encoder setting, the output lies on continues feature space,
so the likelihood of the generated image is difficult to calculate.
Traditional metrics such as per-pixel Euclidean distance do not
assess joint statistics of the result, and therefore do not measure
the very structure and information that we want to capture in the
input.

Some recent works [1, 12, 36] have tried to use pre-trained image
semantic classifiers to measure the quality of the generated stimuli
as a pseudo-metric. The intuition is that if the generated images are
realistic, classifiers trained on real images will be able to identify

1.5

1.7

1.9

2.1

2.3

2.5

2.7

2.9

8 16 32 64 128

Number of bits

L1

L2

AE-GAN

L1+AE-GAN

L2+AE-GAN

In
ce

p
ti

o
n

 S
co

re

Figure 7: Inception score of the different loss for auto-
encoder. The lower the better. Best viewed in color.

the synthesized image correctly as well. Similar to them, we adopt
a popular Inception7 [44] model. For the input x, the output of
the Inception could be denoted as p(y|x) that corresponding to
the distributions of the input categories, and p(ỹ|x̃) is the output
distribution of generated image x̃ going through the Inception
model. Then we can use the divergence between p(y|x) and p(ỹ|x̃)
to evaluate the quality of the reconstructed image, which is referred
as the Inception score:

Ex(KL(p(y|x)| |p(ỹ|x̃))) =
∑
x

L∑
i
p(yi |x) log

p(yi |x)
p(ỹi |x̃)

(14)

Thus if the reconstructed image is more similar to the input, the
Inception score will be lower. For this comparison, we conduct the
experiment on ILSVRC2012 dataset with 1,000 categories. We select
two baselines for comparison, namely L1 and L2. L1 minimize the
reconstruction error by |x − x̃| and L2 minimize the reconstruction
error by Equation 3. The Inception score compared with different
auto-encoder objective is shown in Figure 7.

It could be seen from the figure that AE-GAN performs better
than the L1 or L2 loss. Besides, when the AE-GAN is pre-trained
with traditional L2 objective (L2+AE-GAN), our model obtains the
best Inception score. We think the reason is: the objective of the
auto-encoder is to encode the information of the input, however,
the objective of traditional L1 or L2 norm loss is to minimize the
summation of per-pixel feature distance, which results in a recon-
structed image that looks similar with the input only at a global
view. In AE-GAN the distance metric is measured by a deep neural
network (discriminator). Thus it is flexible to capture both global
and local information of the input [12, 30]. We plot some examples
in Figure 8, and we can see that the reconstruction by L1 or L2 loses
a lot of details. By contrast, in the AE-GAN the reconstruction is
more clear.

5.2 Advantage of B-GAN
Another contribution of the proposed methods is to approximate
the binarization by introducing the adversarial objective LG . On
the contrary, most previous methods [3, 10, 13] apply the norm

7We use the off-the-shelf public Inception-v3 model from https://download.pytorch.
org/models/inception_v3_google-1a9a5a14.pth.

Input

𝐿1

𝐿2

AE-GAN

AE-GAN+𝐿1

AE-GAN+𝐿2

Figure 8: Reconstruction samples with different training cri-
teria. L1 or L2 result in too blurred images that lose a lot of
edge information, while only using AE-GAN will generate
unrealistic images. Combine the norm constraint and AE-
GAN together yield best results.

constraint on the hidden codes to make it approximate to binary:

Lb = | |siдn(H) −H| |2 (15)

where H is the codes and siдn function maps the input to ±1.
In order to compare LG and Lb quantitatively, inspired by

Precision-Recall curve in the evaluation of traditional informa-
tion retrieval tasks, we proposed the Fidelity-Binarization (F-B)
curves. The fidelity could be the similarity between the input and
output, and the binarization could be regarded as the distance be-
tween the hidden codes and its binary vector. The two metrics are
opponent just like the precision and recall: If we want to increase
the fidelity, we must relax the binary constraint on the hidden codes
and vice versa. Fidelity could be calculated by the L2 distance be-
tween reconstruction and the input. To evaluate the binarization
property, we consider three aspects of the hidden codes:

b1 = − log(
1
nb

n∑
i=1

b∑
j=1

(1 − |Hi j |)
2)

b2 = − log(
1
nb

trace(HT ·H))

b3 = − log(
1
n
|HT · 1|)

(16)

where n is the data size and b is the code length. The b1 considers
hidden codes approximation to binary. b2 considers the indepen-
dence of the hidden codes, and the b3 considers the balance of the
codes, which is equal to the proportion of the hidden codes to be
fired. These three metrics has been adopted as the training criteria
in some previous works [20, 33]. As the elements ofH lies in (−1, 1),
there exist upper bound for the three metrics. We use this upper
bound to normalize the three term to restrict each of them to [0, 1]
(b ′1,b

′
2,b

′
3), and then combine this three metrics linearly to form the

quality of the binarization.

binarization = b ′1 + b
′
2 + b

′
3 (17)

As the only focus of this section is to measure the improvement of
B-GAN, we adopt the L2 norm loss as the reconstruction objective.

https://download.pytorch.org/models/inception_v3_google-1a9a5a14.pth
https://download.pytorch.org/models/inception_v3_google-1a9a5a14.pth

1.3

1.5

1.7

1.9

2.1

2.3

2.5

2.7

2.9

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

1.1

1.3

1.5

1.7

1.9

2.1

2.3

2.5

2.7

2.9𝐿1
𝐿2

B-GAN

32-bit 64-bit

128-bit

𝛽 = 0 𝛽 = 1 𝛽 = 0 𝛽 = 1

𝛽 = 0 𝛽 = 1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

𝛽 = 0 𝛽 = 1

256-bit

Fidelity

B
in
ar
iz
at
io
n

Figure 9: F-B curve for different bits on CIFAR10. The X-axis
is the reconstruction value that has been normalized to [0,1].
β = 0 means we only optimize for binary loss, β = 1 means
we only optimize the reconstruction loss. L2 refers to Equa-
tion 15 and L1 replace the Euclidean norm with L1 distance.

Thus the overall object could be formulated as:

L = β · Lr ec + (1 − β) · Lbinary (18)

where Lbinary denotes LG or Lb . β is the weight of the two
objective. When we set β to 1, we only minimize the reconstruction
error, and setting it to 0 means we only optimize the binarization.
Tuning this weight we can plot the binarization curve at different
fidelity value. We use the CIFAR10 dataset and tuning the hidden
codes size from 32 to 256, the results are shown in Figure 9.

It could be seen from the figure that our proposed model could
achieve a better result than traditional L1 or L2 loss. To minimize
the reconstruction error, the model with norm constraints has to
sacrifice the binarization to obtain good fidelity. As a result, when
we increase the weight of fidelity, the binarization curves drop
quickly. For the proposed model, the binarization error stays rela-
tively stable, which means our model could reduce the reconstruc-
tion error and binarization error simultaneously and efficiently. The
advantage of our model is more significant when the code length
increase. In the experiment, we found that the gradient of the L1 or
L2 became unstable with the code length increasing, and requires a
meticulous hyper-parameter calibration. By contrast, in GMANs
we relax the norm constraint with the GAN and the binarization
is achieved by reducing discriminator error, so it is relatively in-
sensitive to the code length. This demonstrates the advantage of
applying adversarial training for hidden codes generation.

5.3 GMANs on Supervised Setting
The proposed model is based on unsupervised setting, and it could
be trivially extended to the supervised scenario. In the supervised
setting, not only the raw-sample but also the corresponding labels
are given, such as the data category, pairwise distance etc. Image
similarity in the original feature space may not fully reflect the

CIFAR10 MNIST

d 8 16 32 8 16 32
SDH [41] 31.60 62.23 67.63 36.49 93.00 94.11
BRE [29] 23.84 41.11 44.89 37.67 69.80 84.61
BDNN [10] 54.12 67.32 69.62 84.26 94.67 94.52
SVDSH [4] 45.41 59.59 69.18 55.43 92.48 95.01

SGMANs 58.48 69.20 69.75 85.91 95.81 96.33
RCV1 20newsgoup

d 8 16 32 8 16 32
SDH [41] 53.31 82.39 79.54 28.44 37.73 39.51
BRE [29] 49.34 88.48 85.32 30.18 52.89 55.48
BDNN [10] 51.45 89.45 88.18 32.59 61.45 66.43
SVDSH [4] 80.45 96.48 90.28 30.58 65.32 69.18

SGMANs 77.85 96.56 92.54 34.38 68.28 70.43

Table 3: Supervised results of Precision at hamming distance
less than 2.

semantic relationship between them, and it has been revealed that
the extra labels could enrich the semantic capacity of the auto-
encoder based hashing model [3, 4, 10].

In this paper, suppose the label or tag information associated
with the input x is y, which is a one-hot vector indicating the class
of the input. Similar with previous works on semantic hashing that
utilizing the label information [4, 10], we build a classifier on the
hidden representation h. The classifier is based on MLP and we
adopt the cross-entropy to optimize the classifier:

h̃ = MLP(h)

ỹ = So f tmax(h̃)

LS = −

C∑
j=1

yj · log ỹj

(19)

where C is the number of classes. Adding this term to Equation 13
we obtain the supervised objective of the generator:

LG+s = λ1 · L
AE
G + λ2 · L

B
G + λ3 · LV + λ4 · LS (20)

where λ4 is the parameter to tune the weight of the classifier.
Similar to the unsupervised setting, we apply the supervised

GMANs (SGMANs) on two images and two texts datasets: 1) CI-
FAR10; 2)MNIST; 3) RCV1; 4) 20Newsgroups. For the supervised
weight λ4 in Equation 20, we gradually increase it from 0 to 1, which
means we first learn a good auto-encoder and then embed the label
supervision into the learning process. For all setups, the classifier
is a two-layer MLP with the hidden size equal to 64. We adopt
four supervised hashing models for comparison. 1) Supervised Dis-
crete Hashing (SDH) [41]. 2) Binary Reconstructive Embedding
(BRE) [29]. 3) BDNN [10]. 4) Supervised VDSH (SVDSH) [4]. For
all datasets, we evaluate the SGMANs by precision@2. The result
is shown in Table 3.

We can see from table 3 that similar with the unsupervised
application, our proposed GMANs also excels on supervised setting.
The extra label information is embedded to the hashing process, and
dynamically tuning the training process of hidden representation.
Compared to unsupervised result in table 1 and 2, the supervised

model could obtain higher precision on the retrieval task, which
confirms the previous observation that the semantic information is
important for hashing [3, 4, 10]. In addition, different from previous
methods such as SDH [41] or Deep-SDH [32] that directly utilize
the label for training, our model treat the label as an additional
criterion in Equation 20, which is more flexible to apply.

6 CONCLUSION
In this paper, we proposed a deep semantic hashing model based on
multiple adversarial training. The proposed architecture is based
on auto-encoder, however, different from previous methods that
using L1 or L2 norm constraint, we use two GANs to optimize the
generated codes to make it as close as possible to binary and con-
serves the input information. Furthermore, we proposed a variance
control method to eliminate the mode collapse problem and design
a self-controlled mechanism to stabilize the training process of
GANs. Several supervised and unsupervised experiments in text
and image datasets reveal the advantage of the proposed GMANs.
In addition, we do a comprehensive analysis to show the advantage
of the two adversarial training process of the proposed model. In
the future, we want to extend the GMANs to other hashing models
rather than auto-encoder to improve the generated codes.

7 ACKNOWLEDGEMENTS
The research work was supported by the National Science Foun-
dation of China (No. 61533018, 61502493). This work was also sup-
ported by a grant from Ant Financial Services Group and supported
by the independent research project of National Laboratory of Pat-
tern Recognition.

REFERENCES
[1] Martín Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein GAN.

CoRR abs/1701.07875 (2017).
[2] Ana Margarida de Jesus Cardoso Cachopo. 2007. Improving methods for single-

label text categorization. Instituto Superior Técnico, Portugal (2007).
[3] Miguel A Carreira-Perpinán and Ramin Raziperchikolaei. 2015. Hashing with

binary autoencoders. In CVPR. 557–566.
[4] Suthee Chaidaroon and Yi Fang. 2017. Variational Deep Semantic Hashing for

Text Documents. In SIGIR.
[5] Moses Charikar. 2002. Similarity estimation techniques from rounding algorithms.

In STOC.
[6] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter

Abbeel. 2016. InfoGAN: Interpretable Representation Learning by Information
Maximizing Generative Adversarial Nets. NIPS (2016).

[7] Bo Dai, Ruiqi Guo, Sanjiv Kumar, Niao He, and Le Song. 2017. Stochastic Gener-
ative Hashing. CoRR abs/1701.02815 (2017).

[8] Qi Dai, Jianguo Li, Jingdong Wang, and Yu-Gang Jiang. 2016. Binary Optimized
Hashing. In ACM Multimedia.

[9] Emily L Denton, Soumith Chintala, Rob Fergus, et al. 2015. Deep Generative
Image Models using a Laplacian Pyramid of Adversarial Networks. In NIPS.

[10] Thanh-Toan Do, Anh-Dzung Doan, and Ngai-Man Cheung. 2016. Learning to
Hash with Binary Deep Neural Network. In ECCV.

[11] Alexey Dosovitskiy and Thomas Brox. 2016. Generating Images with Perceptual
Similarity Metrics based on Deep Networks. In NIPS.

[12] Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Alex Lamb, Martín Arjovsky,
Olivier Mastropietro, and Aaron C. Courville. 2017. Adversarially Learned Infer-
ence. ICLR (2017).

[13] Venice Erin Liong, Jiwen Lu, Gang Wang, Pierre Moulin, and Jie Zhou. 2015.
Deep hashing for compact binary codes learning. In CVPR. 2475–2483.

[14] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. 1999. Similarity Search in
High Dimensions via Hashing. In VLDB.

[15] Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training
deep feedforward neural networks. In AISTATS. 249–256.

[16] Yunchao Gong and Svetlana Lazebnik. 2011. Iterative quantization: A procrustean
approach to learning binary codes. In CVPR.

[17] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. In NIPS. 2672–2680.

[18] Kaiming He, Fang Wen, and Jian Sun. 2013. K-Means Hashing: An Affinity-
Preserving Quantization Method for Learning Binary Compact Codes. CVPR
(2013), 2938–2945.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In CVPR. 770–778.

[20] Jae-Pil Heo, Youngwoon Lee, Junfeng He, Shih-Fu Chang, and Sung-Eui Yoon.
2012. Spherical hashing. In CVPR. IEEE, 2957–2964.

[21] R. DevonHjelm, Athul Paul Jacob, Tong Che, Kyunghyun Cho, and Yoshua Bengio.
2017. Boundary-Seeking Generative Adversarial Networks. ArXiv (2017).

[22] Piotr Indyk and Rajeev Motwani. 1998. Approximate Nearest Neighbors: Towards
Removing the Curse of Dimensionality. In STOC.

[23] Sergey Ioffe and Christian Szegedy. 2015. Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift. In ICML.

[24] Herve Jegou, Matthijs Douze, and Cordelia Schmid. 2011. Product quantization
for nearest neighbor search. PAMI 33, 1 (2011), 117–128.

[25] Diederik Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980 (2014).

[26] Diederik P Kingma and Max Welling. 2013. Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114 (2013).

[27] Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter.
2017. Self-Normalizing Neural Networks. In NIPS.

[28] Alex Krizhevsky. 2009. Learning Multiple Layers of Features from Tiny Images.
[29] Brian Kulis and Trevor Darrell. 2009. Learning to Hash with Binary Reconstruc-

tive Embeddings. In NIPS.
[30] Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle, and Ole

Winther. 2016. Autoencoding beyond pixels using a learned similarity metric. In
ICML.

[31] Yann LeCun. 1998. The MNIST database of handwritten digits. http://yann. lecun.
com/exdb/mnist/ (1998).

[32] Qi Li, Zhenan Sun, Ran He, and Tieniu Tan. 2017. Deep Supervised Discrete
Hashing. NIPS (2017).

[33] Venice Erin Liong, Jiwen Lu, Gang Wang, Pierre Moulin, and Jie Zhou. 2015.
Deep hashing for compact binary codes learning. CVPR (2015), 2475–2483.

[34] David G Lowe. 1999. Object recognition from local scale-invariant features. In
Computer vision, Vol. 2. 1150–1157.

[35] Emmanuel Maggiori, Yuliya Tarabalka, Guillaume Charpiat, and Pierre Alliez.
2017. Convolutional neural networks for large-scale remote-sensing image
classification. TGRS 55, 2 (2017), 645–657.

[36] Xudong Mao, Qing Li, Haoran Xie, Raymond Y.K. Lau, Zhen Wang, and
Stephen Paul Smolley. 2016. Least Squares Generative Adversarial Networks.

[37] Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. 2016. f-GAN: Training
Generative Neural Samplers using Variational Divergence Minimization. In NIPS.

[38] Zhaofan Qiu, Yingwei Pan, Ting Yao, and Tao Mei. 2017. Deep Semantic Hashing
with Generative Adversarial Networks. In SIGIR.

[39] Ruslan Salakhutdinov and Geoffrey E. Hinton. 2009. Semantic hashing. Int. J.
Approx. Reasoning 50 (2009), 969–978.

[40] Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford,
and Xi Chen. 2016. Improved Techniques for Training GANs. In NIPS.

[41] Fumin Shen, Chunhua Shen, Wei Liu, and Heng Tao Shen. 2015. Supervised
Discrete Hashing. CVPR (2015), 37–45.

[42] Akash Srivastava, Lazar Valkov, Chris Russell, Michael Gutmann, and Charles Sut-
ton. 2017. VEEGAN: Reducing Mode Collapse in GANs using Implicit Variational
Learning. NIPS (2017).

[43] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.
Going deeper with convolutions. In CVPR. 1–9.

[44] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew
Wojna. 2016. Rethinking the inception architecture for computer vision. In CVPR.

[45] Ilya Tolstikhin, Sylvain Gelly, Olivier Bousquet, Carl-Johann Simon-Gabriel, and
Bernhard Schölkopf. 2017. Adagan: Boosting generative models. arXiv (2017).

[46] Jingdong Wang, Ting Zhang, Jingkuan Song, Nicu Sebe, and Heng Tao Shen.
2017. A Survey on Learning to Hash. PAMI (2017).

[47] Qifan Wang, Dan Zhang, and Luo Si. 2013. Semantic hashing using tags and
topic modeling. In SIGIR.

[48] Yair Weiss, Antonio Torralba, and Rob Fergus. 2008. Spectral Hashing. In NIPS.
[49] Felix X. Yu, Sanjiv Kumar, Yunchao Gong, and Shih-Fu Chang. 2014. Circulant

Binary Embedding. In ICML.
[50] Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. 2017. SeqGAN: Sequence

Generative Adversarial Nets with Policy Gradient. In AAAI.
[51] Peichao Zhang, Wei Zhang, Wu-Jun Li, and Minyi Guo. 2014. Supervised hashing

with latent factor models. In SIGIR.
[52] Ting Zhang, Chao Du, and Jingdong Wang. 2014. Composite Quantization for

Approximate Nearest Neighbor Search. In ICML.

	Abstract
	1 Introduction
	2 Related Works
	3 Semantic Hashing with Multi-Adversarial Training
	3.1 Generator
	3.2 Auto-Encoder GAN
	3.3 Binary GAN
	3.4 Mode Collapse Elimination
	3.5 Self-Controlled Training procedure

	4 Experiments
	4.1 GMANs vs. State-of-the-arts
	4.2 Main Results

	5 Analysis
	5.1 The Advantage of AE-GAN
	5.2 Advantage of B-GAN
	5.3 GMANs on Supervised Setting

	6 Conclusion
	7 Acknowledgements
	References

