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Abstract—Monaural speech separation is a very challenging 

problem in speech signal processing. It has been studied in 
previous, and many separation systems based on computational 
auditory scene analysis (CASA) have been proposed in the last 
two decades. Although the research on CASA has tended to 
introduce high level knowledge into separation process from 
primitive data-driven method, the knowledge of speech quality 
still has not been combined in it. This makes the performance 
evaluation of CASA mainly focused on the SNR improvement. 
Actually, whether the result of the separated speech is good does 
not relevant directly to its SNR. In order to solve this problem, we 
proposed a new method which combined CASA with objective 
quality assessment of speech (OQAS). In the grouping process of 
CASA, we use OQAS as the guide to instruct the CASA system. 
Through this combination, the performance of the speech 
separation can be improved not only in SNR, but also in Mean 
Opinion Score (MOS). Our system is systematically evaluated and 
compared with previous systems, and it yields substantially better 
performance, especially for the subjective perceptual quality of 
separated speech. 
 

Index Terms—Monaural Speech Separation, Computational 
Auditory Scene Analysis (CASA), Objective Quality Assessment 
of Speech (OQAS), Grouping, Segmentation 
 

I. INTRODUCTION 
N a natural world, speech signal is frequently accompanied 
by other sound sources on reaching the auditory systems, yet 

listeners are capable of holding conversations in a wide range 
of listening conditions. This is called the well-known ‘cocktail 
party’ effect [1]. It is much valuable to make computer have the 
ability of human to segregate the object source from other 
interfered sources. An effective system for separating speech 
from interfered sources would greatly facilitate many 
applications, including automatic speech recognition (ASR), 
speaker identification, audio retrieval, digital content 
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management etc. Therefore, the research of speech separation 
gradually catches the researchers’ attentions and it becomes an 
increasingly popular theme in the field of signal processing.  
 General methods for signal separation, such as blind source 
separation using independent component analysis [2] or sensor 
arrays for spatial filtering [3] require multiple sensors. 
However, many applications such as telecommunication and 
audio retrieval need a monaural solution. Since in monaural 
separation cases only one sensor signal can be used, it is much 
harder and still-open problem for researchers to solve it.  
 While monaural speech separation remains a challenge, the 
human auditory system shows a remarkable capacity for 
monaural speech segregation, which spurs the researchers to 
study human auditory perception much deeply. In 1990, 
Bregman first proposed the concept of auditory scene analysis 
(ASA) [4]. In his book, he argues that the auditory system 
segregates the acoustic signal into streams, corresponding to 
different sources, according to ASA principles. His study on 
ASA offers a new way to deal with the monaural speech 
separation. It has also inspired considerable work on 
computational auditory scene analysis (CASA). Many CASA 
system have been built for speech segregation which is adhere 
to the known principles of ASA [5], [6], [7], [8], [9], [10], [11]. 
Such systems generally approach speech segregation without 
making strong assumptions about the acoustic properties of 
interference, and it can also separate speech with only one or 
two channel signals. Generally, CASA system follows two 
main stages: segmentation (analysis) and grouping (synthesis) 
[4]. In segmentation, the acoustic input is decomposed into 
sensory segments, each of which should originate from a single 
source. In grouping, those segments that likely come from the 
same source are grouped together. 
 At the beginning of the research on CASA, researchers are 
concentrated on the primitive data-driven method. This type of 
CASA system usually extract cues such as pitch, onset and 
offset, AM rate, etc., from the input data; and use them to 
separate the target speech from the mixture. In last decade, the 
focus of CASA is changing from primitive data-driven method 
to knowledge-based schema-driven method. More and more 
knowledge in higher level such as acoustic model using in ASR, 
source character, source location and so on, is introduced into 
the primitive CASA system to guide the separation [7], [12], 
[13]. Although the knowledge-based CASA research has 
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achieved great achievement recently with many new types of 
knowledge being introduced into CASA systems, the 
knowledge directly relevant to speech perceptual quality has 
not been included in them yet. 
 On the other hand, in most CASA systems, the performance 
evaluation of CASA system is always based on SNR. Although 
the SNR of speech after separating is improved and CASA 
system surely reduce the noises, it does not mean that the 
speech quality in perception improved with it, too. It is not 
absolutely right that the higher the SNR of a signal is, the better 
the perceptual quality of that signal is. So, in order to improve 
both SNR and perceptual quality of the separated speech, we 
attempt to seek an effective way to combine the subjective 
perceptual quality of speech with CASA systems.  
 As we all know, the speech quality is a subjective opinion, 
based on the user’s reaction to the speech signal they actually 
heard. Subjective methods make use of a listener panel to 
measure speech quality on an integer scale from 1 to 5, with 1 
corresponding to unsatisfactory speech quality and 5 
corresponding to excellent speech quality. The average of the 
listener scores is the subjective Mean Opinion Score, MOS [14]. 
This has been the most reliable method of speech quality 
assessment but it is very expensive and time consuming, 
making it unsuitable for frequent or rapid application. These 
shortcomings can be overcome by using objective 
measurement methods, which replace the listener panel with a 
computational algorithm. Objective methods aim to deliver 
MOSs that are highly correlated with the MOSs obtained from 
subjective listening experiments.  
 Objective quality assessment tests can be classified as 
intrusive or non-intrusive. Intrusive measurement depends on 
some form of distance metric between the input (clean) and 
output (degraded) speech signals to predict the subjective MOS. 
Non-intrusive measurement depends only on the degraded 
speech signal and is a more challenging approach to objective 
speech quality estimation. Non-intrusive models have been 
proposed in [15], [16], [17], but only recently has ITU-T 
released P.563 as its non-intrusive objective quality 
measurement standard algorithm [18]. In speech separation 
application, an intrusive approach may not be applicable 
because the reference speech signal may be unavailable, so the 
non-intrusive method is recommended. Just for this reason, we 
select the P.563 algorithm to help our speech quality 
assessment finally. 
 Having confirmed the algorithm of the objective quality 
assessment, what we should do is just to find an appropriate 
way to integrate it with the segregation process. With this 
object and considering the characteristics of primitive CASA 
system, especially the Hu and Wang model [11], we construct 
the link between the speech quality and CASA processing. On 
one hand, we use speech quality assessment to evaluate the 
segments formed by the segmentation of CASA, so that we can 
select the better segments which were not affected deeply by 
interference source and use them to track the pitch contour that 
could be used as the separating cues. On the other hand, in the 
final grouping stage, we can also use speech quality assessment 

to evaluate the segments which can not be divided into 
foreground stream in the former step, judge the accuracy of the 
former classification and then adjust the corresponding 
segments back to foreground to enhance the final performance 
of the separation.  
 The organization of this paper is as below. Section II first 
describes the construction of our model by means of analyzing 
the appropriate selection of OQAS algorithm and CASA 
system;   then, it gives an overview of the new model and 
explains each components of the model concisely. The key 
point of the proposed model, the combination of CASA with 
OQAS, is elaborated in Section III. In Section IV, the proposed 
system is systematically evaluated and compared with other 
systems for speech segregation or enhancement. At last, a 
further discussion is given in Section V.  

 

II. SYSTEM CONSTRUCTION AND OVERVIEW 
 As discussions above, the object of our study is to use OQAS 
to improve the performance of CASA system. So, the most 
important problem of our research is what kind of CASA 
system and OQAS algorithm should be selected, and how to 
combine the selected CASA system with the selected OQAS 
algorithm tightly so as to get better separation performance not 
only in SNR, but also in perceptual quality. 

A. Selection of OQAS Algorithm 
 In Section I, we have discussed that in speech separation 
application, because of the absence of input reference signal, 
we have to select non-intrusive method of objective quality 
assessment of speech. So the ITU-T P.563 algorithm is 
selected.  
 The reason why we select the P.563 algorithm is that, it is 
recommended by ITU as the standard for objective quality 
assessment in narrow-band telephony applications. The P.563 
algorithm is resulted from a collaboration of Psytechnics’ 
NiQA algorithm [19], SwissQual’s NiNA [20], and Opticom’s 
P3SQM. Its signal parameterization is divided in three 
independent functional blocks corresponding to the main 
classes of distortion; they are: vocal tract analysis, high 
additional noise, and speech interruptions, muting and time 
clippings. A total of 51 characteristic signal parameters are 
calculated. Based on a restricted set of 8 key parameters, a 
dominant distortion class is selected. The key parameters and 
the selected distortion class are used for adjusting the speech 
quality model. Furthermore, for each distortion class, a linear 
combination of parameters is used to generate an intermediate 
quality rating that, together with other additional signal features 
are combined to calculate the (raw) objective quality score.  
 OQAS algorithms are usually used to test the quality of 
narrow-band telephone speeches; therefore, the speeches that 
need to be processed by our model should be telephone 
speeches with 8 kHz sampling frequency and 16 bit PCM 
amplitude resolution. 
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Fig. 1. Schematic diagram of the proposed multistage system 

B. Selection of CASA System 
 The CASA system we employed in proposed model is based 
on the model of Hu and Wang, which was presented in [11]. Hu 
and Wang model is a typical primitive CASA model; it uses 
different segregation methods for resolved and unresolved 
harmonics. For resolved harmonics, the system generates 
segments based on temporal continuity and cross-channel 
correlation, and groups them according to their periodicities. 
For unresolved harmonics, it generates segments based on 
common amplitude modulation (AM) in addition to temporal 
continuity and groups them according to AM rates. Underlying 
the segregation process is a pitch contour that is first estimated 
from speech segregated according to dominant pitch and then 
adjusted according to psychoacoustic constraints. Based on the 
above processing, the separation performance of Hu and Wang 
model is almost the best in primitive CASA system at present, 
and also better than many other knowledge-based CASA 
systems in dealing with the voiced speeches.  
 Another reason why we select Hu and Wang model is that it 
uses the notion of time-frequency mask. The ideal binary mask 
is very effective for human speech intelligibility. It is 
well-defined no matter how many intrusions are in the scene or 
how many targets need to be segregated and provides an 
excellent front-end for robust automatic speech recognition. All 
of these make it easier to combine CASA system with OQAS 
algorithm.  

C.  Overview of the Combination System 
 The main idea of our model is to employ objective quality 
assessment of speech to guide the separation of distorted 
speech. The most obvious characteristic is that, in our model, 
the ITU-T P.563 standard, which is used to evaluate the 
objective speech quality, is introduced into the separation 
model. The overall model proposed by us is a multistage system, 
as shown in Fig.1.  
 In the first stage, an input mixture is analyzed by an auditory 
filterbank in consecutive time frames. This processing results 
in a decomposition of the input into a two-dimensional 
time–frequency map. Each unit of the map is called a T-F unit, 
corresponding to a certain filter at a certain time frame. Then 
the following features are extracted: autocorrelation of a filter 
response, autocorrelation of the envelope of a filter response, 

cross-channel correlation, a coarse dominant pitch within each 
time frame. These features are used in the following stages.  
 In the initial segregation stage, T-F units are merged into 
segments [5], [6], [9]. A segment is a larger component of an 
auditory scene than a T-F unit; it is composed of a spatially 
contiguous region of T-F units. This segment structure encodes 
the basic proximity principle in human ASA that applies to both 
frequency and time dimensions. Segments are then grouped 
into an initial foreground stream and a background stream 
based on coarse dominant pitch extracted in the previous stage; 
the two streams roughly correspond to target speech and 
intrusion, respectively. Due to the intrusion, the coarse 
dominant pitch may not be an accurate description of the target 
pitch. As a result, the foreground stream will usually miss some 
target speech and include some intrusion. In order to weaken 
the effect caused by the inaccurate dominant pitch, the 
objective quality assessment of speech is introduced into the 
CASA system. It is used as a criterion to judge the segments set 
in the foreground by the former division. After being processed 
by this step, the segments in the foreground are more like 
coming from the target source so we can employ them to track 
the more accurate dominant pitch from the foreground 
segments at the later stage. 
 In the third stage, the pitch of target speech is estimated from 
the initial foreground stream, and it is used to label units as 
speech dominant or interference dominant. In the final 
segregation stage, according to unit labels, segments formed in 
the initial segregation stage are regrouped into foreground and 
background stream. This stage corrects some errors of initial 
grouping due to the inaccuracy of the dominant pitch. In 
addition, some T-F units are merged into segments that 
correspond to unresolved harmonics of target speech, and these 
segments are added to the foreground stream. Here, we also 
introduced the objective quality assessment of speech. As in the 
initial segregation stage, we still use objective quality 
assessment of speech as the criterion to judge whether the 
relevant segments, which were composed by units that can not 
be confirmed as the foreground, can be grouped into 
background or not.  Then the foreground stream expands to 
include neighboring T-F units labeled as speech dominant.  
 Finally, a speech waveform is resynthesized from the 
resulting foreground stream using a method described by 



LI et al.: MONAURAL SPEECH SEPARATION BASED ON CASA AND OQAS 
 

4

Weintraub [10]. Here, the foreground stream works as a binary 
mask, where 1 indicates T-F units within which target speech 
dominates and 0, otherwise. The mask is used to retain the 
acoustic energy from the mixture that corresponds to 1’s in the 
mask and reject the mixture energy corresponding to 0; for 
more details of this stage, see [5], [9], [10].  
 Since there are many processing steps are similar to Hu and 
Wang model, here, we do not explain our model in detail at the 
corresponding part. To see more detailed depiction, please refer 
to the Section III to VI of paper [11]. In this article, we would 
only introduce how to combine the objective speech quality 
assessment into the Hu and Wang model. 
 For ease of comparison, let us reiterate the terms that have 
been introduced so far. A T-F unit is a very local 
time-frequency region corresponding to a certain filter at a 
certain time frame. We use to refer to the T-F unit 
corresponding to filter channel at time frame. A segment is a 
contiguous time-frequency region that corresponds to a 
component of a single sound source, and it is a set of connected 
T-F units. A stream is a group of segments that corresponds to 
an entire sound source. The target speech, or the target stream, 
is an utterance we aim to segregate from an acoustic mixture. 
What constitutes target speech is obviously task-dependent. In 
this study, target speech refers to an entirely voiced utterance in 
a sound mixture. 
 

III. COMBINE CASA WITH OQAS 
 In this section, we will pay attention to state the method 
which helps to joint the CASA and OQAS in one system. As a 
whole, the combination of CASA and OQAS is realized by 
selecting the segments which are more similar to come from the 
same source in perception sense. Since in the initial segregation 
stage of CASA, the segments which have been judged and 
distributed to one stream only using a simple decision are not 
accurate and do not reflect the level of perception [11], we 
adopt the ITU-T P.563 algorithm to test the segments that 
having been distributed by the simply decision of CASA, this 
effectively improved the perceptual quality of the separated 
speech.  

Concretely, in our model, there are two places where the 
objective quality assessment of speech is directly linked to the 
CASA system. One is in the initial segregation stage; the other 
is in the final segregation stage. The detailed method is cited as 
below. 

A. OQAS in the Initial Segregation Stage 
 In the initial stage, after the decomposition and extraction 
processing has been finished, an initial grouping will be 
executed to give a primitive grouping result. 
 In Hu and Wang model, this grouping is done by comparing 
the dominant pitch contour with the periods computed from all 
the T-F units in a segment. For any segment, if more than half 
of its units at a certain frame agree with the dominant pitch, the 
segment would be said to agree with the dominant pitch at this 
frame. For the segments of target speech, if the dominant pitch 

at a certain frame is much closed to the true pitch of target 
speech, all of these segments tend to agree with the dominant 
pitch at this frame. Hence, segments can be grouped into two 
streams as follow. First, the longest segment is selected as a 
seed stream. Since the target speech in this study is all voiced, 
the longest segment extends through most of the frames of the 
entire utterance duration. At a certain frame, a segment is said 
to agree with the longest segment if both segments agree or 
both disagree with the dominant pitch. If a segment agrees with 
the longest segment for more than half of their overlapping 
frames, its T-F units within the duration of the longest segment 
is grouped into the seed stream. Otherwise, this segment is 
grouped into the competing stream. The longest segment is also 
used to determine which stream corresponds to target speech. If 
it agrees with the dominant pitch for more than half of its 
frames, it is likely to contain dominant target speech. In this 
case, the stream containing the longest segment is referred as 
the foreground stream, while the competing stream as the 
background stream. Otherwise, the names of the two streams 
are swapped. 
 From the description above, we can find that, the initial 
grouping stage is executed only by a simple decision. Although 
the grouping result of simple decision can be adjusted by the 
following stage through iterative estimation and linear 
interpolation so as to give an acceptable prediction of pitch 
contour, it yet does not satisfied the requirements of the 
segregation and would also set some segments which are 
dominated by the intrusions into the foreground. This will 
certainly affect the accuracy of the result of pitch tracking. 
 In order to get more reliable grouping result of foreground 
and background streams that correspond to the target source 
and interference sources respectively, a method consists of two 
steps processing is employed in our model.  
 In the first step, a simple decision as Hu and Wang used is 
adopted. Through employing a more conservative plausible 
pitch range  [11], which is set to 0.90 (corresponding to the 
threshold

'
Pθ

pθ , which is 0.95, in Hu and Wang model), the most 

improbable segments, in which the intrusion is dominant, 
would be filtrated. After this processing, a coarse classification 
is acquired, but this grouping must be treated further. This will 
be executed by the second step. 
 In the second step, the objective quality assessment is 
employed to give more accurate predictions in classifying the 
foreground and background. Considering that the former 
processing has selected many T-F units with some response 
energy and sufficiently high-cross-channel correlations to form 
the segments which are directly relevant to the perceptual 
quality of speech, and already divided them into foreground 
and background streams, we decided to use the ideal binary 
masking method to resynthesize a temporary speech, then adopt 
the P.563 algorithm to evaluate its quality. Fig. 2 gives a 
schematic diagram of this combination step. From Fig.2 we can 
see that, the whole evaluation process can be divided in two 
steps: First, we select the speech which is resynthesized by 
preserved all the segments in the foreground while masking all 
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the T-F units which are not in the foreground as the reference 
signal and evaluate its quality MOSr by P.563 algorithm. Then, 
in order to judge the reliable segments in which the target 
speech is dominant, a comparison is introduced into the process. 
Through masking a certain segment while preserving all other 
segments in the foreground (here, the units not in the 
foreground are always masked in the resynthesis step), we can 
get a temporary speech. Using the P.563 algorithm to assess the 
resynthesized speech’s quality, and comparing its MOS with 
the reference speech’s MOS in turn, we can easily confirm the 
effects to the perceptual quality caused by the masked segment. 
These means that if there are N segments after primitive 
grouping in the foreground, well then, we should use P.563 
algorithm N+1 times to assess the quality of speeches 
resyntheisized by masking corresponding segment of the 
foreground. If MOSi of a speech, which was synthesized by 
masking the ith segment in foreground, is higher than the 
quality of the reference speech, MOSr, then, it will mean that, if 
this segment was set to background, the synthesized speech’s 
quality will be improved. So we can adjust this segment to the 
background, vice versa. The judgment above can be 
represented as the equation below: 

         (1) 
⎩
⎨
⎧

=
≤−
>−

= N,,i
Mos, if Mos
Mos, if Mos

iMask
ri 

ri L21
00
01

)(

Here, Mask (i) is the masking value of the ith segment in 
foreground, 1 represents foreground, while 0 background. 

 
Fig. 2. Sketch map of the combination in initial segregation stage 

In real practice, because of the accuracy of the quality 
assessment algorithm and the complexity of the sources 
mixture, the adjustment of the segments needs to be more 
conservative. Here a threshold Aθ  is introduced into the 
judgment, and the number of it is set to be 0.02. Then, Eq.(1) 
could be modified as: 

⎩
⎨
⎧

=
≤−
>−

= N,,i
Mos, if Mos
Mos, if Mos

iMask
Ari 

Ari L21
0
1

)(
θ
θ

   (2) 

This conservative processing can alleviate the error adjustment 
caused by the objective quality assessment and yet avoid 
deleting too many useful segments from the foreground. After 
this adjustment, the segments which are still kept in the 
foreground would be more like coming from the target source. 
Followed by the pitch tracking and unit label steps described in 
Hu and Wang model, the dominant pitch estimated from the 

segments staying in the foreground would be more closed to the 
real pitch of the target speech, and it will also help the further 
grouping of the foreground and background streams. 

B. OQAS in the Final Segregation Stage 
 In the final segregation stage, since the spectra of target 
speech and intrusion often overlap and, as a result, some 
segments generated in the former segmentation still contain 
units where target dominates as well as those where intrusion 
dominates. Given unit labels generated in pitch label, a segment 
in foreground can be further divided into smaller ones so that 
all the units in a segment have the same label. Then the 
segments in the foreground are adjusted as follows: 
 1) Segments with the target label are retained in foreground 
if they are no shorter than 50 ms; 
 2) Segments with the intrusion label and no shorter than 
50ms are evaluated by OQAS and those caused the speech 
quality decreased segments are sent to background; 
 3) Remaining segments are removed from foreground, and 
they become undecided. 
 A point need to be emphasized is that, the combination way 
of OQAS and CASA in Step 2) is similar to that in the initial 
segregation stage. Through masking every segment no shorter 
than 50ms with the intrusion label in foreground, and 
evaluating the corresponding resynthesized speech’s 
perceptual quality, these segments are added into foreground or 
background to form new streams, respectively. But there is a 
little difference between them. In this step, the judgment 
threshold is 0, while in the initial segregation stage, it is 0.02. 

After the processing above, background expands iteratively 
to include undecided segments in its neighborhood. Then, all 
the remaining undecided segments are added back to 
foreground. 
 Finally, individual units that do not belong to either stream 
are grouped into the foreground stream iteratively if they are 
labeled as target speech and in the neighborhood of the 
foreground stream. The result of this is the final segregated 
stream of target speech. The remaining units are added to the 
background stream. 

The segregated stream from the speech and intrusion mixture 
contains most of the units where target speech is dominant. In 
addition, only a little number of units where intrusion is 
dominant are grouped into foreground incorrectly. Fig. 3 
illustrates the segregation result in waveform format for the 
speech and cocktail party mixture. The clean speech is shown 
in Fig. 3(a), the mixture in Fig. 3(b), and the segregated speech 
in Fig. 3(c). To facilitate comparison between these waveforms, 
an all-one mask is used to synthesize the waveforms in Fig. 3(a) 
and 3(b). One can easily see that the segregated speech 
waveform is much more similar to the clean speech than the 
mixture waveform. 

IV. EVALUATION AND COMPARISON 
 In this section, we will elaborate the evaluation of our model 
in SNR and MOS on a standard corpus and compare its 
performance with other models. 
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Fig. 3. Waveform results of “Why were you weary?” 

(a) Clean Speech. (b) Mixture of the speech and cocktail-party noise. (c) Speech segregated from the mixture 
 

A. Evaluation 
 Our model is evaluated with a corpus of 100 mixtures 
composed of 10 voiced utterances mixed with 10 intrusions 
collected by Cooke [9], which has been used to test CASA 
systems [5], [6], [7], [9], [21] and, hence, facilitates our 
comparison. The intrusions have a considerable variety. 
Specifically, the 10 intrusions are: N0, 1-kHz pure tone; N1, 
white noise; N2, noise bursts; N3, “cocktail party” noise; N4, 
rock music; N5, siren; N6, trill telephone; N7, female speech; 
N8, male speech; and N9, female speech [22]. We use both 
SNR and MOS as the criterion to quantitatively assess the 
performance of our new separation system.  
     The original sampling frequency of the corpus is 16 kHz. 
Because the OQAS algorithm we employed here is only used to 
evaluate narrow-band telephone speech, we downsampled the 
corpus created by Cooke to 8 kHz. Besides this, there are also 
some requirements need to be satisfied before using the ITU-T 
P.563 algorithm to test speech quality. These requirements 
include that the minimum active speech in test speech is 3 
second, the maximum signal length is 20 second, the minimum 
speech activity ratio is 25%, the maximum speech activity ratio 
is 75%, etc. Since the duration of the speech in Cooke’s corpus 
is mainly about 1.5 second, it is easy to conclude that they could 
not fulfil the requirements of the P.563 algorithm. In order to 
successfully apply the P.563 algorithm, we repeat the test 

speech three times with an interval of 0.5 second between each 
time. This processing not only makes the test speech fulfil the 
requirements of OQAS, but also almost have nothing effect on 
the assessment result. A key point need to be emphasized here 
is that the P.563 algorithm could not give correct result in some 
intrusion conditions, such as the music, male speech, female 
speech, etc. Although it is a limitation we can not cancel, we 
still adopt the P.563 algorithm in all the test intrusion 
conditions because of the characteristic that the test speech in 
our applications is often the signals which have been processed 
by masking a large part of the intrusion signals.  
 In order to measure SNR before and after segregation, we 
use target speech before mixing as signal. To compensate for 
amplification and distortion effects introduced in the 
resynthesis process, we use resynthesized target speech with an 
all-one mask as signal to compute SNR for evaluation cases 
that involve masks. Table I gives a variety of SNR results, 
including those of our model and original mixtures. Each value 
in the table represents the average SNR for one intrusion mixed 
with 10 target utterances. A further average across all 
intrusions is shown in the last column of the table. As can be 
seen in the table, our system improves the SNR for every 
intrusion, producing a gain of 9.75 dB over the original 
mixtures. Large SNR improvements are obtained for intrusions 
whose spectra do not significantly overlap with those of target 
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TABLE I    
 SNR RESULT 

SNR N0 N1 N2 N3 N4 N5 N6 N7 N8 N9 Ave 

Mixture -7.380 -8.269 5.474 0.803 0.679 -9.999 -1.609 3.842 9.526 2.749 -0.418

SS 7.568 -3.879 6.207 2.651 3.154 -9.609 0.950 4.709 9.968 3.513 2.523

Proposed 11.129 3.507 14.411 5.218 6.669 12.933 14.662 9.391 11.506 3.964 9.339

Hu Wang  10.330 3.346 14.251 5.094 1.095 12.869 15.213 9.040 12.556 5.100 8.889

True Pitch 13.044 4.239 14.286 6.147 9.585 12.822 14.855 11.019 13.914 7.226 10.714

Ideal Mask 20.001 5.963 18.438 8.122 11.598 17.283 18.992 13.948 17.484 11.176 14.301

 
TABLE II    

 MOS RESULT OF P.862 
MOS N0 N1 N2 N3 N4 N5 N6 N7 N8 N9 Ave 

Mixture 2.239 1.288 1.548 1.654 1.507 0.307 2.056 2.010 2.329 2.263 1.720

SS 2.487 1.209 1.046 1.531 1.039 -0.121 2.017 1.386 1.954 1.813 1.347

Proposed 2.673 0.699 2.247 1.087 1.162 2.255 2.372 1.761 1.886 1.306 1.745

Hu Wang  2.630 0.583 2.266 0.922 0.910 2.271 2.459 1.652 2.000 1.673 1.737
True Pitch 2.666 0.840 2.241 1.147 1.527 2.277 2.480 1.843 2.139 2.026 1.919

Ideal Mask 3.203 1.506 2.820 1.787 2.012 2.691 3.103 2.522 2.824 2.857 2.533

 
TABLE III    

MOS RESULT OF P.563 
MOS N0 N1 N2 N3 N4 N5 N6 N7 N8 N9 Ave 

Mixture 1.765 1.000 4.686 1.670 1.967 3.357 2.149 3.835 3.769 3.344 2.754

SS 3.190 1.000 5.000 2.304 3.298 3.272 2.456 4.321 4.344 3.951 3.314

Proposed 4.214 3.720 4.269 3.838 3.783 3.748 3.976 3.628 3.805 3.605 3.858

Hu Wang 4.178 3.076 4.342 3.582 2.804 3.722 3.783 3.845 3.683 4.194 3.721
True Pitch 4.692 3.540 4.228 3.686 4.518 3.909 4.058 4.009 3.898 4.155 4.069

Ideal Mask 4.757 4.311 4.586 3.392 3.985 4.235 3.848 4.263 4.355 4.390 4.210

  
utterances (e.g., N0 and N5), whereas improvements are 
modest for intrusions with significant overlap (e.g., N3, N8, 
and N9). 
 Of course, SNR does not indicate the intelligibility of the 
resynthesized speech signal. For example, the model could 
retrieve a small proportion of the speech energy and totally 
reject the noise; this would give a very high SNR, but the 
resynthesized speech would be unintelligible. Accordingly, we 
complement the SNR metric with a measure of the MOS before 
and after segregation. This measurement is accomplished by 
two means. The first way we used is the ITU-T P.862 algorithm, 
which is an intrusive objective speech quality assessment 
algorithm. In this way, we treated the target speech before 
mixing as the reference input and the separated speech as test 
input. Another way we adopted is the ITU-T P.563 algorithm. 
In this situation, we straightforwardly treat the synthesis signal 
as test speech and get its MOS from the output of the ITU-T 
P.563. 

Table II and III give a variety of MOS results acquired by 

P.862 and P.563 algorithm, respectively, including those of our 
model and original mixtures. Since our model is based on the 
P.563 algorithm, it is unfair to use P.563 algorithm to calculate 
the MOS of test speech, because it’s no doubt that the MOS of 
the speech processed by our model would inevitably be higher 
than other models. Moreover, the output of P.563 would be 
incorrect in some intrusion conditions, especially to the mixture 
in music noises and female speech intrusion. Considering of 
these shortcomings described above, we only list the MOS 
calculated by P.563 as an additive reference. The main 
performance about MOS is referred to the MOS calculated by 
P.862.  
 In Table II and III, each value in the tables also represents the 
average MOS for one intrusion mixed with 10 target utterances. 
A further average across all intrusions is shown in the last 
column of the table, too. As can be seen in the Table II, our 
system improves the MOS for half kinds of intrusions. Large 
MOS improvements are obtained for intrusions whose spectra 
do not significantly overlap with those of target utterances (e.g., 
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N0 and N5), whereas a bit of decreases are also appeared for 
intrusions with significant overlap (e.g., N3 and N9). Although 
the reason why the MOSs for different intrusions do not 
improved conformably is very complex, we still can say that it 
is mainly because that in the condition that intrusions has 
significant overlap with target speech, the separated speech has 
lost too much information due to the masking processing, 
which can not be recovered by synthesis.  

B. Comparison with Other Models 
 We have elaborated the evaluation of our model and showed 
that the proposed model can effectively improve the SNRs and 
partial MOSs of separated speeches. But whether the model we 
proposed is better than others? How well on earth does it is? 
Both of these are need to be proved by comparing with other 
models.  
 In order to answer above two questions, we compare the 
SNRs and MOSs of the original mixtures and the speeches 
separated by our model together with the results of spectrum 
subtraction, true pitch model, Hu-Wang model, and ideal 
binary mask. (To get more definite meaning about these models 
described above, please refer to [11]). The corresponding SNRs 
and MOSs of separated speeches offered by these models are 
listed in Table I, II, and III, respectively. Note that for an 
original mixture and an output from spectral subtraction, an 
all-one mask is used against the corresponding ideal binary 
mask to calculate SNR.  
 First, we compare spectral subtraction [23], [24], which is a 
standard method for speech enhancement, with our model. The 
spectral subtraction method is applied as follows. For each 
intrusion, we find its duration and obtain its average power 
spectrum within the duration. This average is used as the 
estimate of the intrusion. But to N2 intrusion, because it 
contains a sequence of short noise bursts, spectral subtraction is 
applied within each burst. Table I - III show a comparison with 
the spectral subtraction method. With this comparison, we can 
easily conclude that the spectral subtraction method performs 
significantly worse than our system in SNR. This is because of 
its well known deficiency in dealing with nonstationary 
interference. In perceptual quality aspect, the average MOS of 
our model is much better than spectral subtraction too. But the 
MOS on different intrusion condition are not always better than 
spectral subtraction, especially in complex intrusion. This 
could also be attributed to the missing of information caused by 
masking processing.  
 We also compare our model with Hu and Wang model on 
SNR and MOS. The Hu and Wang model is a representative 
CASA system [11] in recent years. Its main processing stages 
are similar to our model except that it dose not combine the 
OQAS algorithm. The SNR and MOS results of Hu and Wang 
model are listed in Table I – III, too. From these tables, we can 
find that SNRs of the speeches separated by our system are 
better than Hu and Wang model not only in average level, but 
also in almost every intrusion. The MOS of our model is also 
better than Hu and Wang model except in the intrusions of male 
and female speeches. This is caused by the inaccurate assess of 

speech quality in the separation stage. We have emphasized 
that, the P.563 algorithm could not be used in the speech 
intrusion condition. Although the binary mask reduces many 
intrusion energy of the test speech, it does not absolutely break 
the limitations. To conquer this difficulty, we should discover 
more appropriate OQAS algorithm to eliminate the gap. 
 Considering that the pitch estimation or pitch-based 
grouping error in practical situation is inevitable, and it may 
result in segregation error, to examine more closely the type of 
error, we employ the use of true pitch information for speech 
segregation. True pitch is obtained from premixing target 
speech and further verified manually to ensure high quality. 
The fifth row of Table I, II, and III give the SNR and MOS 
results for our system using true pitch instead of estimated pitch. 
With true pitch, the system performs only slightly better. This 
suggests that estimated pitch of our system is quite accurate and 
the performance of our model is very good. 
 Given the objective of identifying T-F regions that target is 
dominant, we use an ideal binary mask as the ground truth of 
target stream. An ideal binary mask is constructed as follows: a 
T-F unit in the mask is assigned 1 if the target energy in the unit 
is greater than the intrusion energy and 0 otherwise. With the 
availability of target and intrusion before mixing, as is the case 
for our evaluation corpus, ideal binary masks can be readily 
constructed. We call such a mask “ideal” because it represents 
our computational objective and it is an a priori mask 
constructed using premixing target and intrusion. The use of 
ideal masks is supported by the auditory masking phenomenon: 
within a critical band a weaker signal is masked by a stronger 
one [25]. The SNR and MOS results from ideal binary masks 
are shown in Table I - III, and they are uniformly better than all 
the models mentioned before. Compared with our proposed 
model, the average SNR improvement for the entire corpus is 
about 5.0 dB and the average MOS improvement is about 0.8. 
This gives an indication on how much our model could be 
further improved in terms of conventional SNR and MOS. 
  

V. CONCLUSIONS 
 Our system segregates voiced speech based on the primitive 
CASA system combined with OQAS algorithm. The CASA 
system analyzes temporal information in the input, the temporal 
fine structure of a resolved harmonic and the temporal envelope 
of an unresolved harmonic. There is evidence proving that the 
auditory system uses the temporal patterns of neural spikes to 
code the input sound [7]. Models based on temporal coding of 
the input, such as correlogram, have been employed to model 
auditory perception, especially pitch perception, and have 
successfully explained many observed perceptual phenomena 
[26], [27], [28]. The OQAS algorithm is used to classify 
foreground and background streams. The segments, which are 
still kept in foreground after OQAS processing, would be used 
to estimate the dominant pitch. This effectively increases the 
accuracy of pitch estimation, and surly improves the 
performance of the separation system.  
 Like previous CASA systems, our system exploits the 
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grouping cues of harmonicity and temporal continuity to 
segregate voiced speech [5], [6], [9], [10]. However, our 
system is substantially different from previous studies in the 
following respects. 
 First, by means of combining CASA with OQAS, we 
introduced the speech perceptual quality knowledge into 
separation, and construct a direct link between separated 
speech and its perceptual quality. It is the first attempt to 
introduce knowledge about speech quality assessment into 
CASA systems.  From the results of our system, we can 
conclude that the link between separated speech and its 
perceptual quality would be valuable to solve speech separation 
problem.  
 Second, we find an appropriate representation of speech at 
middle level. Through decomposition and extraction, speech 
signal was divided into many T-F units, these units then form 
many segments. Based on the segments, we resynthesize a 
temporary speech with one segment masked while others 
preserved, and send the temporary resynthesised speech to 
OQAS algorithm to judge its quality. Just because of the 
representation described above, the combination of CASA and 
OQAS comes true.  
 From the comparison with other separation or enhancement 
system, we have drawn a conclusion that our method is 
effective in processing the monaural speech separation problem. 
But, there are also some deficiencies in our research. We must 
pay more attention to them; analyze the reasons which caused 
these problems carefully and employ appropriate method to 
solve them thoroughly. 
 In our research, the performance of the proposed model 
depends greatly on the accuracy of an estimated target pitch 
contour. To get more accurate pitch contour, the segments in 
foreground which was used to estimate the pitch contour is very 
important. Since the classification of the foreground and the 
background in the initial segregation stage is mainly based on 
the OQAS algorithm, how to improve the accuracy of the 
OQAS algorithm seems to be the key problem needed to be 
solved urgently. In additional, because our research on 
combining CASA with OQAS is primary and not mature, we 
only find a method to add the whole OQAS algorithm into 
CASA systems to guide the classification of foreground and 
background. This combination method does not make fully use 
of the knowledge of speech quality, therefore, we need to study 
it further so as to seek the best way in all probable combination 
methods. This perhaps needs to break OQAS algorithm into 
smaller units, and only use some of its basic principles to the 
separation process. Finding an optimal combination method of 
CASA and OQAS will be our objective in the future.     
 The proposed system considers the pitch contour of a target 
source only. However, it is possible to track the pitch contour of 
intrusion if it has a harmonic structure. With two pitch contours, 
one could label a T-F unit more accurately by comparing 
whether its periodicity is more consistent with one or the other. 
Such a method is expected to lead to better performance for the 
two-speaker situation [29], e.g., N7, N8, and N9. As indicated 
in Table I, II, and III, the performance of our system for this 

kind of intrusions is relatively limited. Our model performs 
grouping based only on pitch. As a result, it is limited to 
segregation of only voiced speech. In our view, unvoiced 
speech poses the biggest challenge for monaural speech 
segregation. Other grouping cues, such as onset, offset, and 
timbre, have been demonstrated to be effective for human ASA 
[4], [30], and may play a role in grouping unvoiced speech. 
Also, it appears that one must consider acoustic and phonetic 
characteristics of individual unvoiced consonants. We plan to 
investigate these issues in future works.  
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