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ABSTRACT
End-to-end text image machine translation (TIMT) aims at
translating source language embedded in images into target
language without recognizing intermediate texts in images.
However, the data scarcity of end-to-end TIMT task limits the
translation performance. Existing research explores aligning
continuous features from related tasks of text image recogni-
tion (TIR) or machine translation (MT) to alleviate the prob-
lem of data limitation, but the alignment in continuous vector
space is extremely difficult and it inevitably introduces fit-
ting errors resulting in significant performance degradation.
To better align TIMT features with MT semantic features,
we propose a novel Vector Quantization Knowledge Transfer
(VQKT) method that employs a trainable codebook to quan-
tize continuous features into discrete space. The quantization
distribution of the MT feature is utilized as the teacher distri-
bution to guide the TIMT model to generate similar discrete
codes. Through alignment and knowledge transfer based on
probability distribution, the TIMT model can better imitate
the feature representation of the MT teacher model and gen-
erate high-quality target language translation. Extensive ex-
periments demonstrate VQKT significantly outperforms the
existing end-to-end TIMT performance.

Index Terms— Text image machine translation, vector
quantization, quantization distribution, knowledge transfer.

1. INTRODUCTION

Text image machine translation (TIMT) task has been widely
explored to translate the source language in images into the
target language. Previous applications commonly use the cas-
cade system, which extracts texts in images through the text
image recognition (TIR) model and then translates it into tar-
get language with the machine translation (MT) model [1, 2].
However, cascade systems face the problems of error propa-
gation, parameter redundancy, and long latency [3].

To overcome the shortcomings in cascade methods, re-
searchers turn to exploring end-to-end methods [3], which
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Fig. 1: Diagram of difference between continuous and dis-
crete feature alignment. Discrete feature alignment is more
accurate because the image and text features are quantized to
the same discrete code which has no fitting error.

utilizes an efficient encoder-decoder architecture to map the
text image into the target language text directly. However, the
vanilla end-to-end TIMT model faces the problems of data
scarcity and the cross-modal cross-lingual transformation task
is difficult to optimize. Although various techniques are ap-
plied to utilize external datasets from related tasks or transfer
model knowledge of similar functions [4–12], all these meth-
ods are trying to transfer or align features in the continuous
vector space, which inevitably introduces fitting errors due
to the extreme difficulty for accurate alignment between con-
tinuous features as shown in Figure 1. To ease the difficulty
in continuous space fitting, vector quantization methods have
been widely studied to improve the capacity of hidden repre-
sentation [13–20]. The multimodal codebook is designed for
TIMT task [14], but the vanilla L2-Norm based image-text
code alignment cannot fully transfer the quantization knowl-
edge, causing the limited performance of end-to-end TIMT.

In this paper, we propose a novel Vector Quantization
Knowledge Transfer (VQKT) method for end-to-end TIMT
model. Different from L2-Norm based quantization align-
ment in MC-TIT [14], which only considers the alignment
object of the single discretized code pair, quantization distri-
bution alignment in our work can provide a probability distri-
bution of input features across the entire codebook to provide
more comprehensive alignment supervision. Specifically, fea-
tures encoded by text image encoder are quantized into dis-
crete codes and guided by the teacher distribution supervision
of MT feature quantization during optimization. Thus, the
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Fig. 2: Diagram of the proposed Vector Quantization Knowledge Transfer based Text Image Machine Translation Model.

TIMT discrete features can be more similar to the MT model
and avoid fitting errors. Finally, the TIMT discrete features
are fed into an MT decoder to generate high-quality transla-
tion results. The contributions of this paper are as follows:

• We propose a novel vector quantization knowledge
transfer (VQKT) method for the end-to-end TIMT
model, which effectively aligns the semantic features
of the TIMT model with the MT model by alleviating
the fitting errors in continuous feature space.

• Vector quantization object and quantization distribution
alignment loss functions are jointly utilized to improve
the effectiveness of knowledge transfer.

• Extensive experiments show that the VQKT method
significantly outperforms existing end-to-end TIMT
methods. Furthermore, the effectiveness of fuzing
VQKT with other knowledge transfer methods shows
the good generalization of our proposed method.

2. METHODOLOGY
As shown in Figure 2, our proposed vector quantization
knowledge transfer method aligns the quantization distribu-
tion of TIMT and MT model to guide the TIMT encoder to
obtain a similar discrete code sequence as the MT encoder.

2.1. Image Encoding

Let I ∈ RH×W×C be the text image containing source lan-
guage in it, where H,W, and C represent height, width, and
channel of text image respectively. The segmented patch se-
quence of text image is: IP = {IP,1; IP,2; · · · ; IP,LI

} ∈
RdP×LI , where IP,i ∈ RdP denotes the patch image at i-th
position and it resizes into patch vector of size dP = H × C.
While LI = W/WP means the length of the patch sequence
and WP denotes the width of the column patch. Then, the
image features are encoded by a transformer encoder:

FI = TransformerEncoder(W · IP + PE) (1)

where FI ∈ RdI×LI represents the encoded image feature
sequence and dI denotes the dimension of image features.
W ∈ RdI×dP represents a linear transformation matrix aims
at mapping path image into patch embedding and PE denotes
the sinusoidal position embedding as in [21].

2.2. Text Encoding

Assume T = {T1;T2; · · · ;TLT
} is the source language texts

embedded in image. Ti represents the i-th token in the sen-
tence and LT denotes the length of token sequence. A trans-
former encoder is utilized to extract text semantic features:

FT = TransformerEncoder(Embedding(X) + PE) (2)

where FT ∈ RdT×LT represents the text feature sequence and
dT denotes the dimension of text features. Embedding(·) de-
notes the learnable matrix that maps the token index into to-
ken embedding. To align text features with image features
through the same quantization codebook, the dimensions of
text and image features are set the same: dT = dI .

2.3. Vector Quantization Knowledge Transfer
To better align image features with corresponding text fea-
tures, vector quantization is utilized to transform continuous
features into discrete space, and the quantization distribution
alignment is used to guide the TIMT model to generate sim-
ilar discrete codes as the MT model. Specifically, discrete
codebook C = {C1;C2; · · · ;CN} ∈ RdC×N contains N in-
dependent discrete code with the dimension of dC . The quan-
tization distribution refers to the probability distribution of
input features quantized on the codebook C:

P (Cj |Fi) =
exp(−󰀂Fi − Cj󰀂2)󰁓N
n exp(−󰀂Fi − Cn󰀂2)

Qi = argmax
j

P (Cj |Fi)
(3)

where P (Cj |Fi) denotes the quantization probability of i-th
continuous feature Fi and the final quantized code Qi is the
code with the highest quantization probability. Cj and Cn de-
note the j-th and n-th code in the codebook, respectively. By
changing the conditional dependence of continuous feature
Fi, the quantization probability of the image and text features
are P (Cj |FI,i) and P (Cj |FT,i) respectively. To optimize
the discrete codebook, the straight-through gradient estima-
tion is utilized to copy gradients from the discrete results to
continuous features as in [13]:

LVQ = 󰀂sg(F)− Q󰀂22 + β󰀂F − sg(Q)󰀂22 (4)
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Architecture
Synthetic Subtitle Street

En⇒Zh En⇒De Zh⇒En En⇒Zh Zh⇒En Zh⇒En
ItNet [3] 18.43 15.71 11.38 16.91 10.07 0.94
CLTIR [4] 19.44 16.31 13.52 17.96 11.25 1.74
RTNet [8] 19.63 16.78 14.01 18.82 11.50 1.93
MTETIMT [5] 21.96 18.84 15.62 19.17 12.11 5.84
MHCMM [6] 22.08 18.97 15.66 19.24 12.12 5.87
E2E MC-TIT [14] 22.17 19.21 15.74 19.28 12.14 5.95
MTKD [7] 22.26 19.38 15.84 19.31 12.17 6.08
E2TIMT [9] 22.53 19.67 16.25 19.46 12.39 6.24
Our method: VQKT 23.17 19.85 16.49 19.49 12.43 6.31

Table 1: Comparison of end-to-end text image machine translation models.

where LVQ represents the vector quantization loss function
and sg(·) represents the stop-gradient operation. The first
term in Eq.(4) is utilized to update discrete codes given the
continuous features as ground truth, while the second term is
a commitment loss as in [13] which aims to make sure the
encoder commits to the discrete code space. F and Q denote
continuous feature sequence and quantized code sequence re-
spectively. Note that there are two versions of vector quanti-
zation loss LI

VQ and LT
VQ by changing the continuous features

with image and text features as shown in Figure 2.
Through vector quantization, both image and text continu-

ous features are mapped into discrete space, and the alignment
of quantization probability is conducted to guide the TIMT
encoder to generate similar discrete code as the MT encoder:

LVQKT = −
L󰁛

l=1

N󰁛

n

P (Cn|FT,l) logP (Cn|FI,l) (5)

where LVQKT denotes the vector quantization knowledge
transfer loss function. The quantization distribution given
text continuous features P (Cn|FT,l) is utilized as the teacher
distribution to guide the optimization of quantization distri-
bution given image continuous features P (Cn|FI,l). l denotes
the l-th position in the feature sequence, while n denotes the
n-th code in the discrete codebook. L and N represent the
length of the feature sequence and the size of the codebook.

2.4. Cross-lingual Generation

Different from the vanilla translation model, the cross-lingual
decoder in the VQKT method accepts the discrete feature se-
quence rather than the continuous feature sequence. The auto-
regressively generated target language decoder features are:

FD,t = TransformerDecoder(Q, FD,<t) (6)

where FD,t denotes the decoder feature at t-th generation step,
and FD,<t represents the history of decoder features before
step t. Q represents the quantized discrete code sequence.
The decoder feature of TIMT (F I

D,t) and MT (FT
D,t) tasks are

obtained by changing the conditional dependency of discrete
code Q with QI and QT. Thus the translation probability of
TIMT and MT tasks are P (ŷI

t|I, Ŷ
I
<t) and P (ŷT

t |T, Ŷ
T
<t):

P (ŷI
t|I, Ŷ

I
<t) = softmax(WoF

I
D,t)

P (ŷT
t |T, Ŷ

T
<t) = softmax(WoF

T
D,t)

(7)

where Wo ∈ R|VY|×dD represents the linear matrix, which is
utilized to transform the decoder features into target language
vocabulary space. |VY| and dD represent the size of the tar-
get language vocabulary and dimension of decoder features.
Thus, the translation losses for TIMT and MT tasks are:

LTIMT = −
LY󰁛

t=1

󰁛

ŷI
t∈VY

I(ŷI
t = yt) logP (ŷI

t|I, Ŷ
I
<t)

LMT = −
LY󰁛

t=1

󰁛

ŷT
t∈VY

I(ŷT
t = yt) logP (ŷT

t |T, Ŷ
T
<t)

(8)

where VY denotes the target language vocabulary and yt rep-
resents the translation ground truth at t-th position. I(·) de-
notes the indicator function that takes the value of 1 when the
decoded token by the TIMT or MT decoder is the same as
ground truth and 0 otherwise.

2.5. Training and Inference

2.5.1. Training Process

To better control the training process and increase training
stability, the training process is divided into two stages: (1) A
trainable discrete codebook is incorporated in the middle of
the MT encoder and decoder to achieve vector quantization
based MT training. Thus, the machine translation loss and
vector quantization loss functions are utilized in this stage:
L1 = LMT + LT

VQ. (2) Parameters of the discrete codebook,
end-to-end TIMT model, and MT model are jointly optimized
with vector quantization knowledge transfer loss to improve
the translation performance of the TIMT model. Meanwhile,
MT and TIMT losses are also kept to ensure the stability of
the model training: L2 = LMT+LTIMT+LT

VQ+LI
VQ+LVQKT.

2.5.2. Inference Process

The inference process of the VQKT model just uses the TIMT
image encoder, discrete codebook, and cross-lingual decoder
to generate target language translation given the text image
input. While MT encoder is abandoned because there are no
recognized source language texts in the inference setting of
end-to-end TIMT models.

3. EXPERIMENTS
3.1. Dataset

The public TIMT dataset released by [5] is utilized to train
the VQKT model. The dataset consists of 1 million triple-
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Architecture BLEU ∆

Multi-task based TIMT 22.87 -
w/ VQKT 23.95 ↑ 1.08

Knowledge distillation based TIMT 24.13 -
w/ VQKT 25.88 ↑ 1.75

Modal adapter based TIMT 24.63 -
w/ VQKT 26.29 ↑ 1.66

Table 2: Generalization analysis of vector quantization
knowledge transfer on English-to-Chinese validation set.

aligned training samples. Parallel text pairs are utilized in
stage 1 to optimize the parameters of the MT model and dis-
crete codebook, while the triple-aligned samples are utilized
to train the end-to-end TIMT model and transfer knowledge
from the MT model into the VQKT model. The evaluation
sets have three translation directions: English-to-Chinese
(En⇒Zh), English-to-German (En⇒De), and Chinese-to-
English (Zh⇒En). Three evaluation domains are utilized in
this dataset: synthetic, subtitle, and street-view domains. For
more details of the dataset please refer to [5].

3.2. Experimental Setting

Transformer architecture [21, 22] is utilized as the backbone
for TIMT and MT tasks. The batch size is 64, and the train-
ing steps for stages 1 and 2 are both 300,000. The codebook
size is set to 3,072. Since the parameters of the codebook are
only 1.29% of the total parameters, the optimization for the
discrete codebook is quite efficient, which has little impact on
the training time and memory consumption. Hyper-parameter
β in LVQ is set to 0.25 as in [13]. Trainable parameters are
initialized with Xavier initiation method [23] and optimized
with Adam optimizer [24] with β1 = 0.9,β2 = 0.98. The
dropout rate is 0.1 and the initial learning rate is set to 2e-3.
The whole training process is carried out on a single NVIDIA
V100 GPU. SacreBLEU1 is utilized as the metric to evaluate
the translation performance [25, 26].

3.3. Comparison of TIMT performance

Table 1 shows the translation performance comparison be-
tween existing end-to-end TIMT methods and our proposed
VQKT. To provide a fair comparison, the multimodal code-
book proposed in [14] is reproduced with an end-to-end
architecture (E2E MC-TIT). Different from L2-Norm based
image-text alignment of mean-pooled discrete features [14],
quantization distribution based VQKT in our work signifi-
cantly improves the translation performance by 0.54 BLEU
in average. Furthermore, VQKT outperforms existing best
end-to-end methods (E2TIMT) with an average improve-
ment of 0.35 points in the synthetic domain and an average
improvement of 0.2 BLEU in all translation directions and
domains, revealing the effectiveness of our method.

3.4. Generalization analysis of VQKT

By integrating VQKT with existing work as shown in Table 2,
all end-to-end TIMT models are improved through discrete

1https://github.com/mjpost/sacrebleu

Fig. 3: Analysis of the size of discrete codebook on English-
to-Chinese validation set.

Model En⇒Zh En⇒De Zh⇒En
VQKT 25.74 20.92 18.36

w/o LVQKT 24.03 19.87 17.01
w/o LVQKT, LI

VQ 18.45 11.94 10.38
w/ random discrete code 3.25 3.02 2.99

Table 3: Ablation study on synthetic validation set.

feature space alignment with an average improvement of 1.50
BLEU, indicating VQKT has good generalization by joint op-
timization of continuous and discrete feature alignment.

3.5. Effect of the Size of Discrete Codebook

The size of the discrete codebook is a vital hyper-parameter
for VQKT. We vary the setting of the size of the codebook as
shown in Figure 3. When the size is 256, the representation
capacity of the codebook is limited leading to severe perfor-
mance degradation. As the size increases, the BLEU score
gets better and the optimal size of the codebook is 3,072.
When the size continues to increase, the performance is not
further improved due to the increased redundant codes in a
big discrete codebook.

3.6. Ablation Study

To evaluate the effectiveness of the VQKT and discrete code-
book, we conduct an ablation study on the valid set as shown
in Table 3. By removing VQKT loss, performance signifi-
cantly decreases by 1.37 BLEU on average and further de-
creases 8.08 BLEU by removing VQ loss of image features.
By replacing random discrete codes, the model collapses due
to the random noise in the middle of the encoder and decoder,
indicating the VQKT and discrete codebook are the key fac-
tors for improving translation performance.

4. CONCLUSION
In this paper, we propose a novel vector quantization knowl-
edge transfer (VQKT) method designed for end-to-end TIMT.
The key factor of our approach is to quantize the continuous
feature sequence into discrete sequences and the knowledge
transfer of quantization distribution. Experimental results re-
veal the effectiveness of VQKT. Furthermore, by jointly op-
timization with existing methods, VQKT achieves consistent
improvements indicating our method has good generalization.
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