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PromptDLA: A Domain-aware Prompt Document
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Abstract—Document Layout Analysis (DLA) is crucial for
document artificial intelligence and has recently received in-
creasing attention, resulting in an influx of large-scale public
DLA datasets. Existing works often combine data from various
domains in recent public DLA datasets to improve the generaliza-
tion of DLA. However, directly merging these datasets for training
often results in sub-optimal model performance, as it overlooks
the different layout structures inherent to various domains.
These variations include different labeling styles, document types,
and languages. This paper introduces PromptDLA, a domain-
aware Prompter for Document Layout Analysis that effectively
leverages descriptive knowledge as cues to integrate domain
priors into DLA. The innovative PromptDLA features a unique
domain-aware prompter that customizes prompts based on the
specific attributes of the data domain. These prompts then
serve as cues that direct the DLA toward critical features and
structures within the data, enhancing the model’s ability to
generalize across varied domains. Extensive experiments show
that our proposal achieves state-of-the-art performance among
DocLayNet, PubLayNet, M6Doc, and D*LA. Our codes will be
made public soon.'

Index Terms—Document Layout Analysis, Prompt Learning,
PromptDLA

I. INTRODUCTION

Document Layout Analysis (DLA) aims to distinguish
the physical or logical layout structure of documents [1]-[6],
identifying areas characterized by elements like text, image,
and table. It is fundamental for modern document artificial in-
telligence, which significantly influences subsequent document
understanding tasks, such as document information extraction
and digital transformation [7]-[13].

With the growing research interest in DLA, there is an
influx of large-scale DLA datasets, such as PubLayNet [14],
DocBank [15], DocLayNet [16], M6Doc [17] and D*LA [18].
To enhance generalizability in real-world scenarios, recent
DLA datasets such as DocLayNet [16], M6Doc [17], and
D?LA [18] have increased document diversity by combin-
ing data from various domains, including finance, law, and
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Fig. 1. Examples of different domain differences across (a) Different
document types caused variations in layout structure and element distri-
bution (financial report, manual, patent) (b) different language types, and
(c)Inconsistent labeling styles, Note that the “text” and items in
DocLayNet are labeled with smaller units while they are integrated as a whole
in DocBank.

patents. However, merging data from these diverse domains
introduces substantial distribution differences, both in inter
and intra-dataset scenarios. Figure 1 illustrates three critical
yet overlooked domain differences encountered:

« Different document types. Document images from dif-
ferent types exhibit unique layout structures and label dis-
tribution. Figure 1(a) visually contrasts the typical layouts
of financial reports, technical manuals, and patents, each
exhibiting unique structural arrangements and element
frequencies.For instance, identifying a document as a
’scientific paper’ primes the model via the prompt to
expect elements like “abstract’, ’equations’, and 'multi-
column text’, whereas identifying it as a ’financial report’
might prime it for ’large tables’ and ’summary figures’.
This explicit domain guidance helps resolve ambiguities
that arise when models are trained on mixed data without
such cues.

o Different languages. Document images from various
countries exhibit unique layout structures influenced by
their respective languages. Figure 1(b) demonstrates how
language impacts document layout. Persian documents
predominantly feature dense blocks of text arranged
in continuous paragraphs. In contrast, documents from
Kazakhstan integrate numerous small paragraphs inter-
spersed with images, creating a visually diverse page
layout. These variations highlight the correlation between
language and document layout, as shown in Figure 1.
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+ Inconsistent labeling styles. Different datasets often
adopt disparate annotation guidelines leading to conflict
labeling style, even for semantically similar elements. As
shown in Figure 1(c), DocLayNet annotates individual
list items, whereas DocBank and PubLayNet group entire
lists into single bounding boxes. Similarly, paragraph
segmentation varies significantly across datasets. Such
inconsistencies create conflicts during joint training and
pose obstacles to building scalable, unified models.

These overlooked domain-related discrepancies can ad-
versely affect the learning process and generalization capabil-
ity of DLA models trained on combined datasets. A promising
direction to mitigate these issues involves endowing DLA
models with the capacity to adapt their analysis based on the
specific characteristics of the input document’s domain.

Recent studies in large vision-language models (LVLMs)
like CLIP [19] and large language models (LLMs) like
LLaMA [20] have demonstrated the efficacy of prompt engi-
neering for conditioning model behavior on domain-specific
contexts across various tasks [21]-[26]. Inspired by this,
we propose a novel framework for Domain-aware Prompt
Document Layout Analysis, named PromptDLA. Unlike tra-
ditional pretraining-based DLA methods, PromptDLA inte-
grates domain priors directly into the analysis process using
Large Language Models or Vision-Language Models such
as CLIP [19], BLIP2 [27], and LLAMA [20]. Central to
our approach is a prompted transformer encoder, fine-tuned
with a novel domain-aware prompter (depicted in Figure 3).
This prompter uses descriptive knowledge from the domain
information of corresponding images as cues, guiding the
transformer encoder to recognize and adapt to the variability
across different domains effectively. We evaluate our method
on the DocLayNet, M6Doc, DALA, and the integration of
PubLayNet and DocLayNet datasets. The experimental results
have shown that the domain-aware model has outperformed
the current state-of-the-art method. In addition, due to the
predominance of English in existing datasets, we have intro-
duced a multilingual DLA dataset—MLDLA, which contains
document images in seven different languages. Detailed ex-
periments have demonstrated that our method can effectively
generalize across scenarios where language serves as domain
information. The contributions of this paper are summarized
as follows:

¢ A novel domain-aware DLA framework, named
PromptDLA, is proposed, explicitly introducing the
domain knowledge to the DLA, enabling models to
better handle variability across diverse document domain.

e A unique and modular domain-aware prompter is pro-
posed, capable of generating customised prompts reflect-
ing data attributes via methods ranging from limited to
curated human knowledge, and designed for versatile in-
tegration with different backbone architectures, including
CNNs, ViTs and Swin Transformers.

o We provide an analysis highlighting critical, yet often
overlooked, domain-specific distribution differences in-
trinsic to large-scale DLA datasets, motivating the need
for domain-aware approaches.

Pretraining Detection Pretraining Detection weight
Head Head Head Head initiliaztion
4 4 4 4
Image Image Image Prompted Domain
Encoder Encoder Encoder Image Encoder Prompter
f f f f f
Image Image Image Image Descriptive
Domain Knowledge
(a) Pretraining without Prompt (b) PromptDLA

Fig. 2. Comparisons of pre-training paradigms for DLA.

o We conduct extensive experiments demonstrating the ef-
fectiveness of PromptDLA across multiple domain infor-
mation types and datasets, including the newly introduced
MLDLA benchmark, achieving state-of-the-art results.
Our code will be made publicly

II. RELATED WORK
A. Document Layout Analysis

The current literature on document analysis has redefined
document understanding (DU) as a broad term that covers var-
ious problems and tasks related to document intelligence sys-
tems. Based on whether pre-training on large-scale unlabeled
document images can divide the Document Layout Analysis
method into two categories: traditional object detection frame-
works and document pre-training methods. Traditional object
detection frameworks, such as Faster-RCNN [28], Mask-
RCNN [29], and YOLO [30], typically train models directly
on DLA datasets and may occasionally use ImageNet [31]
pre-trained weights. In comparison, another approach involves
training the transformer using the Self-supervised method on
a vast unlabelled Document dataset and utilizing the pre-
trained transformer as the backbone of a two-stage Object
Detection Framework. LayoutLMv3 [32] and Structextv2 [33]
are critical works in this area. It employs the multi-modal
pre-train method, including Mask Image Modeling (MIM),
Mask Language Modeling (MLM), and Word-Patch Alignment
(WPA), using both the textual information on the image and
the image itself as input of the transformer encoder. Other no-
table works in this area are DiT [34], DocFormer [35], UniDoc
[36], and Self-Docseg [37], which relies solely on a vision
model, closely aligning with the approach of BEiT [2], and
directly applies a general CV pre-training framework to learn
from large-scale document image data. Traditional approaches
focus on enhancing the model’s performance. As depicted in
Figure 2, in contrast to conventional pretraining-based DLA
methods, PromptDLA directly incorporates domain prior from
the large language model or large vision language model into
DLA, offering a novel and distinctive approach.

B. Prompt Engineering

In machine learning, prompt tuning has significantly ad-
vanced the adaptability of large pre-trained models to spe-
cialized tasks. Introducing learnable tokens to the input of
vision transformers (ViTs) can effectively redirect the model’s
focus towards task-relevant features, optimizing performance
with minimal structural modifications [38]. This approach
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Fig. 3. An overview of Domain-Aware Prompt Method. The Domain-Aware Prompter processes the domain information and obtains the prompt vector. The
Image Embedding splits the image into patches. We use MLP to project the prompt vector to the same dimension as the image vector and then connect
them. Next, specific layers of visual output are extracted and passed through the FPN to obtain the feature map. Finally, the feature map is transmitted to the

detection head to predict the layout.

parallels advancements in multi-modal learning, notably the
development of CLIP, which synergizes text and image data
to enhance model robustness and applicability across various
visual recognition tasks in a zero-shot or few-shot manner [19].

Expanding beyond specific model frameworks, the broader
application of prompts in large language models illustrates the
burgeoning field of prompt engineering. This method leverages
pre-trained model capabilities to generate contextually relevant
responses through carefully crafted prompts, showing a sub-
stantial reduction in the need for extensive retraining across
diverse tasks [39].

III. METHODOLOGY

Document layout analysis has unique characteristics that
set it apart from other visual recognition tasks, primarily due
to its strong dependency on the data domain. A model that
can accurately recognize the domain and label characteristics
of the input data can adapt its output format based on a
given prompt, thereby effectively managing variations across
different domains.

To facilitate this, we introduce domain-aware prompters that
enable the model to identify the domain of the input data. As
illustrated in Figure 3, our model is composed of four main
components: an Image Embedding Module F,q¢c1,, a Domain-
aware Prompter J,,ompter, @ Prompted Transformer Encoder
Fencoder, and a Detection Head Fyesect-

Given an input document image & € RC¢*Hin , the
Image Embedding Module extracts patch embeddings as visual
tokens:

X Wl n

V1,02, ..., VN :?patch(m) (D

where {v;}}, represents the sequence of visual tokens. Con-
currently, the Domain-aware Prompter generates a domain-
specific prompt embedding p,,:

2

where d represents descriptive knowledge as explicit domain
information. Both the visual tokens and the prompt embedding
are then processed by the Prompted Transformer Encoder:

fla.fZa'“a.fL:? 3

yielding multi-level feature maps {f;}%~ . Finally, these fea-
tures are passed to the Detection Head, which predicts the
layout structure y:

Y = Faeteet (f1, 2, fL) €]

where y denotes the predicted refined bounding box b and
a class label [.

Dy = prompter(ma d)

encoder('vla V2, ..., VM, pv)

A. Image Embedding

We follow the patch embedding method for image embed-
ding used in ViT [40]. The document image « is divided
into non-overlapping patches to obtain a sequence of patch
embeddings. First, x is resized to H x W and represented
as I € REXHXW where C, H, and W are the channel size,
height, and width of the image, respectively. The image is then
split into a sequence of uniform patches of size P x P, and
the patches are linearly projected to D dimensions by Fpach,
resulting in a flattened sequence of vectors v;. The length of
the sequence is M = HW/P?2. Finally, learnable 1D position
embeddings are added to each patch.
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Fig. 4. Framework of Prompt Generator.

B. Domain-Aware Prompter

As shown in Figure 3, the Domain-aware Prompter
Fprompter consists of two components: Text Encoder J; and
the Prompt Generator J,.

1) Prompt Generator F4 : The Prompt Generator JF; is
designed to dynamically produce natural language prompts
pertinent to the document’s domain. As illustrated in Figure 4,
JF4 supports three distinct operational modes, ranging from
direct utilization of curated human knowledge to automated
generation using large models.:

o« LVLM-based Prompt Generator : This mode lever-
ages the generative capabilities of Large Vision-Language
Models (LVLMs), such as variants based on LLaMA-
Adapter [41]. The input consists of the document image
x paired with a general instruction (e.g., “Please describe
the type of this document” or “Describe the primary
use of this document”). The LVLM analyzes the image
content and generates a textual description capturing
the inferred document domain and characteristics. This
approach offers high automation and zero-shot potential
but incurs significant computational overhead.

o Domain-Heuristic Prompt Generator: This mode re-
lies on curated human knowledge. It utilizes predefined
‘Prompt Sets‘ containing various sentence templates de-
signed to encapsulate domain information. Given an
explicit domain class (e.g., ’invoice’, ’scientific paper’),
relevant templates are selected. We employ a rule-based
mechanism, potentially augmented by CLIP’s zero-shot
classification capability, to refine template selection. For
instance, multiple templates can be instantiated with
specific document type names (e.g., from DocLayNet ),
embedded using CLIP’s text encoder, and evaluated for
their zero-shot classification accuracy on a relevant task.
Templates yielding top-k performance are retained. This
ensures interpretable and consistent prompts based on
explicit rules and domain labels.

o Hybrid Knowledge-Augmented Prompt Generator:
This hybrid approach combines aspects of the MGP and

(a) Fusion Layer in CNN-based Backbone v € ROKHW
Y —
Feature may
° o

> S o o
8 Feature map ™3

%| padding

P € RIS

(b) Fusion Layer in Vit-based backbone
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(¢) Fusion Layer in

Swin-Transformer-based backbone

Fig. 5. Framework of Fusion Layer.

DHP. It uses an LVLM but guides its generation with
more specific, human-provided knowledge compared to
the general instructions in MGP. For example, instead
of asking the LVLM to infer the type, a prompt like
“Please describe the typical layout elements found in a
financial report document” is provided, potentially along
with the image « or just the domain label d. This allows
the LVLM to generate more precise and contextually
relevant descriptions tailored to a known document type,
balancing automation with targeted knowledge injection.

2) Text Encoder (J;): Regardless of the generation mode
used by J,, the resulting natural language prompt (a text
string) is processed by the Text Encoder J;. This module is
instantiated using powerful pre-trained language models, such
as the text encoders from vision-language models O, (e.g.,
CLIP , BLIP2 ) or large language models 6y, (e.g., LLaMA
[41]. During the training of our DLA model, the weights of F;
are kept frozen to preserve the rich semantic representations
learned during pre-training. J; maps the input prompt string
into a fixed-dimensional embedding vector p, € RDprompt
which serves as the domain guidance signal for the subsequent
module.

C. Prompted Transformer Encoder

The Prompted Transformer Encoder F¢j,coqer integrates the
visual tokens {v;}}, with the domain prompt embedding
Ppy. It typically comprises a standard Transformer Encoder
backbone and dedicated Fusion Layers (J ¢,,.) responsible for
injecting the prompt information. As shown in Figure 5, We
explore compatibility with CNN, ViT and Swin Transformer
[42] architectures, requiring slightly different fusion strategies:

e CNN-based Encoder: As illustrated in Figure 5(a), for

a CNN backbone (e.g., ResNet-50 [43]), the prompt
embedding p, is first projected to a target dimension
(e.g., 512 or 768) using an MLP layer. This projected
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prompt vector is then spatially padding to match the
height H and width W of the feature map F(V) at a
specific layer or stage 7. The resulting projection tensor
pP, now having dimensions 1 x H x W, is concatenated
channel-wise with the feature map F() ¢ REXH*W,
In our implementation using ResNet-50 [43], this fu-
sion operation is performed at the input of each of the
four main residual stages, where the spatially expanded
prompt features are concatenated with the stage’s input
feature map.

o ViT-based Encoder: As depicted in Figure 5(b), for
a ViT backbone, the fusion layer JFy,q. typically em-
ploys an MLP (J,,,;,) to project the prompt embedding
P, to match the visual token dimension D. The pro-
jected prompt embeddings, denoted p., are then con-
catenated with the sequence of position-aware visual
tokens {v;}M, (where ¥; = wv; + e;, incorporating
patch embedding v; and positional embedding e;). This
combined sequence serves as the input to the standard
Transformer Encoder layers ().

o Swin Transformer-based Encoder: For the hierarchical
Swin Transformer backbone, illustrated in Figure 5(c),
prompt fusion requires adaptation to its windowed at-
tention and shifting window mechanisms [42]. Inspired
by approaches like VPT [44], the prompt embedding p,
is processed by stage-specific MLPs within the fusion
module Fyys. to generate dimension-matched embed-
dings pgl) for each stage. Within a stage, p,, is typically
replicated N, times (where N, is the number of win-
dows in that stage) and combined with the token sequence
of each respective window before the windowed self-
attention (W-MSA) computation. Appropriate masking
or padding is applied to ensure dimensional consistency
during attention calculations. The outputs from multiple
stages (e.g., corresponding to features at 1/8, 1/16, 1/32
resolutions) are then typically fed into an FPN (F¢,,) to
generate multi-scale features for the detection head.

The output of Fepcoger (potentially via Fppy) is a set of
feature maps fi, fo, ..., fr capturing both visual content and
domain-specific context.

D. Detection Head

The Detection Head F;.:c.: takes the contextualized fea-
tures from the encoder and performs the final layout element
prediction including bounding boxes and class labels. Our
framework is designed to be compatible with two detection
head architectures:

o RCNN-based Heads: Standard two-stage detection
frameworks like Faster R-CNN [28], Mask R-CNN [29],
or Cascade R-CNN [1] can be readily employed. In
this setup, the R-CNN detection head operates on the
generated feature maps by the prompted transformer
encoder, optimizing bounding box regression and classi-
fication objectives using standard loss functions. Specif-
ically, the bounding box regression loss R;,. aims to
minimize the discrepancy between predicted boxes b; =

(biz» biy, biw, bin) derived frgm proposals l;i and features
fi, and ground-truth boxes b;:

N
Rioe = Y Lioe(r(fi,b:), bi), S
i—1

where r(-) is the regression function, NV is the number of
proposals, and L, is typically the smooth L loss. For
Classification, a classifier ¢(-) assigns feature map patches
to one of classes, the classification loss R.;s defined as:

N
Rcls = ZLClS(C(.fi)7li)7 (6)
=1

where f; and l; denote the i-th object feature and class
labelrespectively. And L.;s is usually the cross-entropy
loss. The total loss is a weighted sum:

Rtotal = Rloc + /\Rcls~ (7)

« DETR-based Heads: Our architecture also supports inte-
gration with DETR [45] and its variants. DETR employs
an encoder-decoder structure where a set of learnable
object queries interact with the image features (from
Fencoders 1-€. { fl}lel) via cross-attention mechanisms
within the decoder. Feed-forward networks (FFNs) then
predict the class and bounding box coordinates directly
from the updated object queries. DETR is optimized
end-to-end using a set-based bipartite matching loss that
jointly considers classification and localization costs (e.g.,
cross-entropy for class, and a combination of L; and
GloU loss for boxes).

This flexibility allows leveraging the strengths of different

detection paradigms within our domain-aware DLA frame-
work.

Algorithm 1: The PromptDLA Algorithm.

. ) N ) ) o
Require: D(z(™), (™) )n—1+ Y consists of target bounding boxes b and class labels
b
Ensure: Prediction of layout
I: Initialize  Ft < Oy OF Oryim, Fe < Opretrain_e
2: Prompt Generator &,
3: while t < max iteration do

4: (U?v ng s U?n.) < Fpacch ()

5:  prompt + Fy(x)

6:  po < Fi(prompt)

7: for i=1; i < layer nums do

8: fi = (v1, 5,5 0,,)

9: ing < Fruse(fis Tppip (o))

10: (ot with i p) « Fi(ing)
11: end for

12: f « Fppn(fa, fo, fs, f12)

13: Loss < Rioc(Faetect (f10),0) + ARcis (Faetect (f), 1)
14: freeze T

15: update Fryse, Fe, Faetect

16: t+—t+1

17: end while

IV. EXPERIMENTS

This section validates PromptDLA’s effectiveness through
three sets of experiments. First, we examine the efficacy
of PromptDLA in comparison with the state-of-art methods.
Next, we evaluate our approach generalization ability. Lastly,
we perform extensive ablation studies and discussions on the
design of the model.
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TABLE I
THE DETAIL OF DOCUMENT TYPES IN DIFFERENT DL A DATASETS.
Dataset Document Type A.M. Format #Class Language #Images
PubLayNet [14] Articles Automatic PDF 5 English 364232
Financial Reports, Manuals, Enelish. German
DocLayNet [16] Scientific Articles, Laws & Regulations, Manual PDF 11 SIS, ’ 80863
French, Japanese
Patents, Government Tenders.
Scientific articles, Textbooks, Books, . .
Mé6Doc [17] . Manual PDF, Scanned, Photographed 74 English,Chinese 9080
Test papers, Magazines, Newspapers, Notes
Scientific report, Email, Form, Invoice, Letter,
D4LA [18] Specification, News article, Presentation, Resume, Manual PDF, Scanned, 27 English 11092
Scientific publication, Budget, Memo
. Hindi, Kazakhstan, Vietnam,
MLDLA (ours) Magazine, Newspaper, Government Reports Manual PDEF, Scanned, Photographed 5 . 17505
Turkey, Persia, Laos, Khmer
TABLE 11
COMPARISON WITH STATE-OF-THE-ARTS ON DOCLAYNET. USING DOMAIN PROMPTS FROM HUMAN KNOWLEDGE AND PROMPT ENGINEERING, VIT
BACKBONE, CLIP TEXT ENCODER, CASCADE-MASK R-CNN DETECTION HEAD AS BASIC MODEL
Method | Pretraining | Caption Footnote ~Formula  List-item  Page-footer — Page-header  Picture — Section-header ~Text Table Title | mAP
Mask R-CNN [17] X 71.5 71.8 63.4 80.8 59.3 70.0 72.7 69.3 829 85.8 80.4 73.5
Faster-RCNN [17] X 70.1 73.7 63.5 81.0 58.9 72.0 72.0 68.4 822 85.4 79.9 73.4
YOLOVS [17] X 71.7 712 66.2 86.2 61.1 67.9 77.1 74.6 86.3 88.1 82.7 76.8
TransDLANet [17] X 68.2 74.7 61.6 81.0 54.8 68.2 68.5 69.8 82.4 83.8 81.7 72.3
SwinDocSegmenter [5] X 83.6 64.8 62.3 82.3 65.1 66.4 84.7 66.5 87.4 88.2 63.3 76.9
SelfDocSeg [5] v - - - - - - - - - - 74.3
LayoutLmV3 [32] v 73.1 71.5 69.0 79.8 61.3 61.3 74.0 69.0 86.3 85.9 84.4 75.7
DiT [34] v 75.0 76.2 68.1 83.5 62.1 74.0 74.5 71.2 86.4 86.6 83.0 76.4
PromptDLA(ViT, CLIP, Cascade) v 76.6 83.0 724 84.9 63.8 76.9 752 73.8 87.1 879 841 | 787
PromptDLA(ResNet, CLIP, DETR) v 91.8 84.1 54.7 69.4 82.9 39.5 82.0 87.3 70.3 83.0 91.3 71.7
PromptDLA(SwinTran, CLIP, DETR) v 92.5 85.5 57.6 71.3 84.2 40.2 83.1 88.5 73.1 83.8 92.1 79.6

A. Experimental Settings

Datasets. We conduct extensive experiments to validate the
proposed PromptDLA on 5 DLA benchmark datasets, includ-
ing different document types, different languages, and different
layer styles,

PubLayNet [14] consists of 5 typical document layout
elements: text, heading, list, graphic, and table. It contains
over 364232 page samples, where the annotations were
automatically generated by matching PDFs and XML
formats of articles from the PubMed Central Open Access
subset.

DocLaynet [16] contains 6 document types (Financial
Reports, Manuals, Scientific Articles, Laws & Regula-
tions, Patents, Government Tenders.) with 11 categories
of annotations and 4 languages (English documents close
to 95%). It contains about 80863 manually annotated
pages.

Mé6Doc [17] contains a total of 9,080 modern document
images, which are categorized into 7 document types
(Scientific articles, Textbooks, Books, Test papers, Mag-
azines, Newspapers, Notes) with 74 detailed categories.
D*LA [18] contains a total of 11092 document images,
which includes 12 diverse document types (Scientific
report, Email, Form, Invoice, Letter, Specification, News
article, Presentation, Resume, Scientific publication, Bud-
get, Memo) with 27 detailed categories.

MLDLA is a Multi-Language DLA (MLDLA) dataset
we constructed to evaluate the model generalization on
more different languages. It comprises 175,000 images,
which are manually labeled through a uniform labeling

style including 7 different languages, such as Persian,
Khmer, Kazakh, Lao, Turkish, Hindi, and Vietnamese
languages.

Evaluation Metric. Our experiments are evaluated using
the category-wise and overall mean average precision (mAP)
@IOUJ[0.50:0.95] of bounding boxes following the litera-
ture [1]. This curve describes the relationship between preci-
sion and recall and is the most widely used evaluation metric
for document layout analysis.

Implementation Details. We train our model on 8 3090 GPUs
with a batch size 16 using a cosine learning rate schedule and
a warm-up strategy with a 0.01 warm-up factor. We set the
basic learning rate to 2e-4. Additionally, we adopt the AdamW
optimizer. For our study, we use DiT [34] pre-trained weights
and the Cascade-RCNN [1] detection head as our baseline
method. The detail training process is shown in Algorithm 1.

B. Generalization Ability

Generalization on Different Document Domains. We evalu-
ate the performance of PromptDLA on different DLA datasets
with more diverse document domains in Table VII. The results
show that the promptDLA can get consistent improvements
on datasets with different domains, such as DocLayNet with 6
domains (2.3% over DiT), M6Doc with 7 domains( 2.0% over
DiT) and D4LA (1.4% over DiT), validating the generalization
of PromptDLA on different document types.

Generalization on Multi-Language Datasets. MLDLA fea-
tures seven distinct languages: Persian, Khmer, Kazakh, Lao,
Turkish, Hindi, and Vietnamese. It is manually labeled using
a uniform labeling style. Based on MLDLA, we investigate
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the effects of a domain-aware prompt by using different
language types as domain information. Firstly, we validate
that CLIP can provide prior knowledge even for documents
in different languages, including minority languages, through
a zero-shot document Classification task. More specifically,
we insert the document’s language into a prompt template as
text and utilize CLIP to identify similarities between it and the
associated image. Our experiments indicate that CLIP achieves
a zero-shot classification accuracy of 47.53% across 7 diverse
languages in MLDLA. Furthermore, we apply PromptDLA to
MLDLA and present a comparison in Table III. Following
the same method described in Section 3.2 of the paper to
construct prompt sets.Our approach improves precision by
+1.0 compared to the DiT model without a prompt. We
observe that DiT without a prompt achieves higher mAPs
in categories like List,” which are less domain-relevant. We
think that it may lack sufficient domain-specific information
for accurate detection. On the contrary, our PromptDLA
significantly improves other domain-specific details, such as
“Figure” (from 54.5% to 57.3%) and “Table” (from 76.1% to
77.9%).

TABLE III
EXPERIMENTS ON REAL MULTI-LANGUAGE DATASET.
Method Text Title Figure  List Table mAP
DiT 77.9 58.6 54.5 75.6 76.1 68.5
PromptDLA  78.7 59.1 57.3 74.5 77.9 69.5
A +0.8 +0.5 +2.8 —1.1 +1.8 +1.0

Generalization on Inconsistent Labeling Style. We inves-
tigate the impact of inconsistent labeling styles. We perform
experiments to jointly train different datasets to enhance the
model’s performance in practical applications. However, we
encounter challenges due to the inconsistent labeling styles
observed in public Document Layout Analysis (DLA) datasets,
particularly between DocLayNet and PubLayNet. As depicted
in Figure 6, the labeling styles of PubLayNet and DocLayNet
exhibit notable differences. While PubLayNet’s image and
table align with DocLayNet’s counterparts, PubLayNet’s text
corresponds to the set of DocLayNet’s caption, footnote, and
text. Similarly, PubLayNet’s title matches the set of Do-
cLayNet’s title and section header. Notably, PubLayNet’s list
and DocLayNet’s list items differ, with PubLayNet integrating
multiple list items as a whole list, while DocLayNet labels
each list item separately. Additionally, PubLayNet omits page-
footer, page header, and formula, whereas DocLayNet includes
these elements. To address these differences, we perform label
mapping, which aligns DocLayNet labels with PubLayNet
and retains the page footer, page header, and formula. As
shown in Table IV, joint training of the datasets, even after
label mapping, does not improve performance on DocLayNet.
Instead, there is a decrease in performance attributed to
annotation conflicts. To overcome this issue, we introduce
domain prompts, observing a consistency improvement on
both DocLayNet and PubLayNet. This confirms the model’s
adaptive learning capability to handle conflicts and effectively
learn models tailored to the target domain. Notably, our
method enhances mAP from 76.0 to 77.1 for DocLayNet and

from 94.8 to 94.9 for PubLayNet.

Label Mapping

Caption Text

Footnote X
List

Title

List-item

Section-header Figure

Table

Picture
Table

Page-footer

Page-footer Page-header

Page-head
age-header Formula

(a) DocLayNet

(b) PubLayNet

(c¢) Joint Label

Fig. 6. Inconsistent labeling relationship between DocLayNet and PubLayNet.

TABLE IV
EXPERIMENTS ON INCONSISTENT LABELING STYLES.
DocLayNet PubLayNet

Baselines Joint PromptDLA | Baselines Joint PromptDLA
Text 86.9 87.0(+0.1) 87.5(+0.6) 94.4 94.5(+0.1) 94.5(+0.1)
Title 71.2 72.1(+0.9) 73.7(+2.5) 83.9 89.4(+0.5) 89.5(+0.6)
List 84.0 83.5(-0.5) 84.4(+0.4) 94.8 95.5(+0.7) 95.6(+0.8)
Table 87.1 87.2(+0.1) 87.7(+0.6) 97.6 97.8(+0.2) 97.8(+0.2)
Figure 77.2 75.7(-1.5) 76.3(-0.9) 96.9 96.9(+0.0) 97.0(+0.1)

Formula 68.4 69.1(+0.7) 68.9(+0.5) - - -

Page-footer 64.0 61.7(-2.3) 64.1 (+0.1)

Page-header 74.0 72.1(-1.9)  74.3 (+0.3) - - -

mAP 76.6 76.0(-0.6)  77.1 (+0.5) 94.5 94.8(+0.3) 94.9(+0.4)

Generalization on Out of Distribution Prompt. We explored
the performance of PromptDLA in out-of-distribution (OOD)
scenarios by splitting the DocLayNet dataset by document
category, using ‘manuals’ as the test set, and training on the
remaining categories of documents. As shown in Table V, the
prompt also works effectively in OOD situations.

TABLE V
OOD RESULT ON MANUALS FROM DOCLAYNET
Tag Method mAP A
(a) DiT 62.68
(b) | DiT + Human knowledge 64.23  +1.55
(c) DiT + LVLM 63.93  +1.25

Generalization Across Different Backbone Architectures.
To evaluate the adaptability and robustness of our proposed
PromptDLA framework, we integrated and tested it with
diverse backbone architectures commonly used in vision tasks.
Specifically, we assessed its performance with a standard
Vision Transformer (ViT-Base), a hierarchical Vision Trans-
former (Swin-Transformer Base), and a widely adopted Con-
volutional Neural Network (ResNet-50). For the Transformer-
based models (ViT and Swin-Transformer), the domain-aware
prompts were incorporated as detailed in *Figure*. For the
CNN-based ResNet-50, the prompt embeddings were inte-
grated by concatenating them with the pooled features be-
fore the final classifier. The performance, measured by mean
Average Precision (mAP), was evaluated on the DocLayNet
dataset. Table VI presents a comparison of these backbones
with and without the PromptDLA module. PromptDLA con-
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sistently enhances the performance across all tested archi-
tectures. Notably, it yielded an improvement of +2.3 mAP
points for ViT-Base, +1.0 mAP points for Swin-Base, and
+0.7 mAP points for ResNet-50 compared to their respective
baselines. These consistent gains underscore the versatility of
PromptDLA, demonstrating its effectiveness is not confined
to a specific architectural paradigm and that it successfully
leverages domain cues to benefit both Transformer and CNN
models in document layout analysis.

TABLE VI
PERFORMANCE COMPARISON OF DIFFERENT BACKBONE ARCHITECTURES
WITH AND WITHOUT PROMPTDLA ON THE DOCLAYNET DATASET. A
INDICATES THE ABSOLUTE MAP IMPROVEMENT ACHIEVED BY ADDING
PROMPTDLA COMPARED TO THE RESPECTIVE BASELINE MODEL

Tag Method mAP A
(a) ViT 76.4

(b) ViT + PromptDLA 78.7 +2.3
(c) Swin 787  -0.12
(d) Swin + PromptDLA 79.7 +1.0
(e) ResNet50 77.0

) ResNet50 + PromptDLA  77.7 +0.7

C. Comparison with State-of-the-arts

We compare the proposed PromptDLA with (1) the DLA
frameworks without pretraining: Faster-RCNN [28], Mask-
RCNN [29], YOLOVS [46], SwinDocSegmenter [5], and
TransDLANet [17], (2) the DLA framework with different
pretraining models: DiT [34], LayoutLMv3 [32], and Self-
DocSeg [5]. This section evaluates the model’s performance
on Doclaynet [16]. The DocLayNet dataset includes docu-
ment images from six different disciplines: financial reports,
manuals, laws and regulations, government tenders, patents,
and scientific articles. Our approach utilizes document type
as a domain class for the domain prompt. Table II presents
that our PromptDLA outperforms both the DLA framework
with and without pretraining methods. We can observe that
the promptDLA outperforms state-of-the-art SwinDocSeg-
menter [5] with 1.8% mAP. Although SwinDoc gets better
mAPs in a few rows like ”Table” and “Picture,” we think these
discernible categories are less relevant to the domain. Nev-
ertheless, our PromptDLA exhibits substantial improvement
over other domain-related detail categories, such as "Footnote”
(from 64.8 to 83.0) and ”Section-Header” (from 66.4 to 76.9).

D. Performance on Different Pretrained Model

We assess the performance of PromptDLA upon differ-
ent pre-trained DLA models and datasets, validating that
PromptDLA is easily plugged to enhance different DLA
frameworks. As shown in Table VII, our method can be
applied to different pre-trained frameworks, including Lay-
outlmV3 and DiT. The performance of the PromptDLA is a
further improvement on the pre-trained model. The stronger
the performance of the pre-trained model, the better our
method performed based on it. Excitingly, PromptDLA outper-
forms state-of-the-art models such as SwinDocSegmenter [5],
TransDLA [17], and VGT [18] by 1.8%, 5.4%, and 0.3%
on DocLayNet, M6Doc, and D*LA, respectively. Notably,

TABLE VII
PERFORMANCE OF THE PROMPTDLA WITH DIFFERENT PRE-TRAINED
MODELS ON DOCLAYNET, M6DoC, AND D4LA, AND COMPARISON WITH
CURRENT STATE-OF-ART METHOD

Model mAP@IOU[0.50:0.95]
DocLayNet ~ M6Doc D*LA
TransDLA [17] 72.3 63.8 -
SwinDocSegmenter [5] 76.9 - -
VGT [18] - - 68.8
LayoutLMv3 75.7 60.5 62.6
+PromptDLA 76.4(+0.7)  61.3(+0.8) 63.1(+0.5)
DiT 76.4 67.2 67.7
+PromptDLA 78.7(+2.3)  69.2(+2.0) 69.1(+1.4)
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Fig. 7. Different pre-trained text encoder for PromptDLA.

compared to tailored models like SwinDocSegmenter and
VGT, DiT with PromptDLA stands out for its simplicity and
effectiveness.

E. Different Prompter

Different pre-trained text encoder for PromptDLA we
delve deeper into the extent of prior knowledge that various
large pre-trained models can provide about document images.
We evaluate the performance of text encoders derived from
different large pre-trained models, which fall into two main
categories: those originating from vision-language pre-trained
models and those from language-only pre-trained models.
Specifically, we explore the capabilities of CLIP [19], BLIP2
[27], and LLAMAZ2 [20]. Notably, CLIP and BLIP2 are vision-
language models, while LLAMA?2 exclusively operates as a
language model.

As illustrated in Table VIII, first, compared to the baseline
model DiT without any domain-aware prompt, “w/o Pre-
trained Text Encoder” reduces the model’s accuracy by 0.1.
This suggests that utilizing domain information but randomly
initializing them without a pre-trained text encoder doesn’t
effectively guide the model to differentiate between various
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domain documents. Conversely, utilizing weights from pre-
trained models improves performance for all three models,
emphasizing a solid correlation between document images in
DLA datasets and their respective domains. It highlights the
ability of the Text Encoder from Pre-trained models to provide
valuable prior knowledge.

TABLE VIII
EXPERIMENTS ON DIFFERENT PRE-TRAINED MODEL TEXT ENCODERS
(W/0 PRE-TRAINED TEXT ENCODER MEANS RANDOM INITIALIZING
PROMPT WITHOUT USING A PRE-TRAINED TEXT ENCODER).

mAP A
DiT [34] 76.4
w/o Pre-trained Text Encoder  76.3 —0.1
CLIP Text Encoder [19] 78.7 +2.3
BLIP2 Text Encoder [27] 79.0 +2.6
LLAMA?2 Text Encoder [20] 77.8 +1.4

Moreover, both CLIP and BLIP2 outperform LLAMAZ2,
indicating that the Text Encoder from vision-language pre-
trained models is superior to language-only pre-trained mod-
els. A vision-language pre-trained model can offer prior
knowledge about both the relationship between document
images and their corresponding text descriptions and general
text representation. In contrast, a language-only pre-trained
model only possesses knowledge concerning understanding
human language.

Furthermore, BLIP2 outperforms CLIP by 0.3 when using
the same prompt, suggesting that BLIP2 can more accu-
rately find the relationship between document images and
their text descriptions. Consequently, a visual language pre-
training model with superior performance could provide an
even greater boost to my approach. In our paper, we uniformly
use CLIP to explore the role of other modules, but we can
replace it with BLIP2 or other superior visual language pre-
training models for more accurate results.

Human Knowledge vs Large Vision Language Model As
shown in Figure 4, our Prompter comes in three types: one
derived from human prior knowledge, another from a Large
Vision Language Model, and the final one being a hybrid.
Additionally, we have independently trained a classifier using
human prior knowledge to categorize document types for use
in real-world applications where the document category is
not provided. For the six document categories of DocLayNet,
the ViT-base classifier achieves an accuracy of 90%, and the
classifier’s error has a very minimal impact on the overall
detection performance, as shown in Table XII. The results from
the Large Vision Language Model are similar to those derived
from human prior knowledge. The advantage of the Large
Vision Language Model is that it does not require predefined
document categories, making it more general. However, the
drawback is that it consumes more computational resources.
The introduction of an additional classifier slightly reduces
mAP by 0.12, so the impact is minimal. In addition, we
explore using both human knowledge and LVLM to generate
prompts, as shown in Figure 4(c). With human knowledge,
the LVLM can generate more accurate prompts, leading to a
0.33 improvement in results. Furthermore, we explore using
two prompts simultaneously, as shown in Table XII(e). With

nearly no improvement compared to (d), this demonstrates that
a better prompt is more effective than using multiple prompts.

TABLE IX
HUMAN KNOWLEDGE VS LARGE VISION LANGUAGE MODEL, RESULT ON
DOCLAYNET

Tag Method mAP A

(a) Human Knowledge 78.69

(b) LVLM 78.68  -0.01

(©) + extra classifier 78.57 -0.12

(d) | hybrid Prompt output  79.02  +0.33

(e) (a)+(b) 78.71  +0.02

FE. Multi-Modalities

We finally explore whether the text of a document can
improve layout analysis accuracy. We use Optical Character
Recognition (OCR) to extract the text information from the
document and then use the CLIP text encoder to retrieve text
tokens. These tokens are concatenated into the PromptDLA
backbone. The results, shown in Table X, indicate that the text
modality does not improve the layout analysis performance.

TABLE X
COMPARISON OF VISUAL-ONLY VS TEXTUAL AND VISUAL MODALITIES
Tag Method mAP A
(a) PromptDLA 78.69
(b) PromptDLA + OCR 7853  -0.16

G. Ablation Studies

This section investigates the impact of different pretraining
methods and the model’s design.
Effect of Pretraining Methods. We analyze the model’s
accuracy in three situations: without pretraining on document
images, with self-pretraining on document images using the
single vision model, and with the DiT model being self-
pretrained using a vision-language approach. Our baseline
uses the pre-trained transformer encoder of DiT and the text
encoder of CLIP. Compared to the baseline, the transformer
encoder without pretraining reduces the mAP by 8.03, as
illustrated in Table XI. Therefore, self-pretraining on large-
scale document data can significantly enhance model accuracy
by allowing the model to learn the generative document image
representation via self-pretraining. Furthermore, the multi-
modal pre-trained model from Layoutlmv3 is less effective
than the single-model self-pre-trained transformer from DiT.
Therefore, the single vision model’s self-pre-training method
is most suitable for dealing with layout analysis problems.
Additionally, the CLIP text encoder is well-pre-trained and can

TABLE XI
ABLATION STUDY FOR PRETRAINING METHODS.
Tag Method mAP A
(a) PromptDLA 78.69
(b) w/o pretraining 70.66  -8.03
() VLP-pretraining(Layoutlmv3)  76.38  -2.31
(d) w/o CLIP text encoder 76.33  -2.36
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provide a prior textual representation. Table XI demonstrates
that removing the CLIP text encoder and randomly initializing
the prompt vector decreases 2.36 in mAP. The CLIP text
encoder is already trained on large-scale image-text pairs.
Thus, it can provide prior knowledge and generate texts
effectively.
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Fig. 8. Details of the shallow and deep prompt.

Effect of Prompt Location. We explore the impact of prompt
location in the transformer encoder, employing two distinct
prompt methods illustrated in Figure 8: Shallow Prompted
Encoder (SPE) and Deep Prompted Encoder (DPE). SPE
exclusively incorporates a prompt at the first layer of the
transformer encoder, whereas DPE integrates a prompt at every
layer. As shown in Table XII, both SPE and DPE models
exhibit improvements compared to the baseline model without
a prompt. Notably, the DPE method surpasses the baseline
by 2.26 mAP. In the case of DPE, the CLIP text encoder
generates 512-dimensional vectors, requiring MLP projection
to the same 768-dimensional feature space as the image patch.
We explore the design of the MLP for each transformer
layer, specifically whether to use a shared MLP layer. Our
observations indicate that the DPE method with a shared MLP
layer results in an improvement of 2.01.

TABLE XII
ABLATION STUDY FOR PROMPT LOCATION.
Tag Method mAP A
(a) Baselines 76.43
(b) SPE 78.41  +1.98
(c) DPE 78.69  +2.26
(d) DPE with share MLP Layer 78.44  +2.01

Effect of Prompt Design. This study aims to investigate how
to design prompts for document domain priors, exploring the
correlation between prompts and DLA model performance
on DocLayNet. Table XIII presents various prompt templates
in the first column, the zero-shot document classification
accuracy via CLIP in the second column, and the DLA results
in the third column. The experiments demonstrate that prompts
achieving higher accuracy in the CLIP classification task also
lead to superior performance in our DLA model. This validates
the rationale of our approach to creating prompt sets, focusing
exclusively on the top-k accuracy rankings for the CLIP zero-
shot classification task.

H. Discussions

Results on Each Document Type in DocLayNet. As il-
lustrated in Table XIV, we trained PromptDLA and DiT

TABLE XIII

ABLATION STUDY FOR DIFFERENT DOMAIN PROMPT.
Prompt Accuracy mAP
w/o prompt - 76.43
A page comes from {Domain Class} 44.05 77.49
A document page of {Domain Class} 44.05 77.53
A piece of paper concerning with {Domain Class} 44.44 77.55
A piece of paper comes from {Domain Class} 46.99 77.97
A document page comes from {Domain Class} 48.45 78.12

using DocLayNet’s entire training dataset and evaluated their
performance separately on each document type in the test
dataset. Compared to the baseline DiT model without any
domain-aware prompt, the model with Prompt outperforms
it in terms of mAP, except for "Laws and Regulations” and
“Patents”. Despite a decrease in our model’s mAP in the
“Patents” domain, it still surpassed the baseline model in most
categories, such as ”Caption” and "Page-header.” We attribute
the decline in the Formula and Picture categories to the limited
correlation between Formula and Picture in the field of patents.
Effectiveness of CLIP on Document. The motivation be-
hind using CLIP as a prompter is its impressive ability to
learn visual and textual representations. In this section, we
validate CLIP’s ability to provide prior knowledge for doc-
uments through zero-shot document classification. Excitingly,
as shown in Table XV, CLIP achieves 48.45% accuracy across
6 different domains in DocLayNet and 54.55% accuracy across
7 different domains in M6Doc. This indicates that CLIP
possesses prior information about the document layout image.
Computational Overhead. To evaluate the tradeoffs between
the speed and accuracy of our PromptDLA, we test the
PromptDLA with different pre-trained DLA models on various
datasets. As shown in Table XVI, the average inference time
on DiT is 6.75 FPS, while with the PromptDLA, it is 6.62
FPS with only 0.13 FPS decrease.

Visualization. Figure 9 presents the visualized results on
the Financial Reports and Laws domain from DocLayNet.
A comparison between ground truth, DiT, and PromptDLA
is presented. For the sample of Financial in the Ist row,
DiT misidentifies the background as “Figure” and recognizes
the whole “Table” as two separates. At the same time, the
PromptDLA removes the misclassification of “Figure” and
produces a precise box of “Table.” Moreover, the sample of
Laws in 2nd row shows that our method precisely excludes
the text box and identifies only the text inside it when pro-
cessing manuals with text boxes. In contrast, DiT incorrectly
identifies the text box as a complete figure. These qualitative
results demonstrate the ability of the PromptDLA to recognize
ambiguous objects by domain prior. (We provide additional
visualization examples at the end of the paper, shown in
Figure 10 and Figure??).

V. CONCLUSIONS

We propose a novel PromptDLA framework, which can
explicitly introduce domain prior into the DLA frameworks
and steer DLA automatically distinguishing the variability of
different domains. The PromptDLA features a unique domain-
aware prompter that could customize prompts according to
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(a) Ground Truth (b) DiT

(¢) PromptDLA

Fig. 9. Qualitative comparison between DiT and PromptDLA on Financial Reports (1st row) and Laws (2nd row) domain from DocLayNet. It is best viewed

in color and zooming out.

TABLE XIV

EXPERIMENTS RESULT ON EACH DOCUMENT TYPE IN DOCLAYNET(“W/0” AND “W” DENOTE DIT BASELINE AND PROMPTDLA, RESPECTIVELY).

Caption Footnote Formula List-item Page-footer Page-header Picture Section-header Table Text Title| mAP
Finacial |w/o 55.7 10.6 - 69.4 52.6 46.1 64.0 64.4 90.4 85.1 54.5(59.3
reports w 554 23.9 - 73.8 60.2 55.4 67.7 67.6 91.4 86.2 60.5|64.2
Government|w/o  15.0 82.0 65.3 90.0 51.5 75.6 75.3 78.0 954 85.1 39.1|/68.4
tenders w271 88.3 100.0 91.8 50.9 80.4 77.8 81.7 95.0 88.3 61.3|76.6
Laws and |w/o 28.0 91.6 16.7 81.6 42.9 71.8 49.5 68.0 70.4 84.1 84.4]|62.6
regulations | w  28.5 96.1 18.5 82.0 42.4 64.4 50.4 69.5 67.7 84.7 84.6|62.6
Manuals wlo  85.7 33.8 - 82.0 76.1 87.6 76.7 78.3 70.3 83.5 59.4|73.3
w 895 434 - 82.5 77.3 91.9 77.9 81.4 71.7 85.9 69.2|77.1
Patents w/o  78.0 - 61.6 90.4 85.8 91.1 89.8 91.8 92.9 93.1 88.5|86.3
w 811 - 51.8 91.7 87.3 92.0 87.7 91.9 92.8 93.6 86.6|85.7
Scientific |{w/o 92.9 70.5 69.8 94.6 87.4 87.3 93.9 90.0 98.3 91.8 96.2| 88.4
articles | w  94.2 81.2 74.6 95.4 90.2 89.9 93.9 90.8 98.2 92.8 96.0|90.7
TABLE XV domain-aware prompter is easily plugged in to enhance differ-
ZERO-SHOT DOCUMENT CLASSIFICATION PERFORMANCE OF CLIP. ent DLA frameworks.While PromptDLA demonstrates strong
DocLayNet  M6Doc performance and adaptability, several avenues for future work
#Document Types 6 7 remain. A key direction is efficiency optimization.** The
Accuracy 48.45% 54.55% integration of large language or vision-language models, par-
ticularly in the prompter component, introduces computational

TABLE XVI overhead compared to baseline DLA models.

COMPUTATIONAL OVERHEAD OF PROMPTDLA. ALL THE MODELS ARE
INFERRED ON AN RTX 24G 3090.

Model mAP@I0OU[0.50:0.95] FPS
DiT-Base 76.4 6.75
+PromptDLA 78.7(+2.3) 6.62(-0.13)

LayoutLMv3 75.7 4.44
+PromptDLA 76.4(+0.7) 4.41(-0.03)

the specific attributes of the data domain. Through exten-
sive experiments, we underscore the significance of utilizing
domain priors in DLA through extensive experiments. The
results show a new state-of-the-art performance across mul-
tiple datasets, including DocLayNet (78.7), M6Doc (69.2),
and D*LA (69.1). It’s worth mentioning that the proposed
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