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Abstract

Tokenization serves as a foundational step for
Large Language Models (LLMs) to process
text. In new domains or languages, the ineffi-
ciency of the tokenizer will slow down the train-
ing and generation of LLM. The mismatch in
vocabulary also hinders deep knowledge trans-
fer between LLMs like token-level distillation.
To mitigate this gap, we propose an efficient
method named TokAlign to replace the vocab-
ulary of LLM from the token co-occurrences
view, and further transfer the token-level knowl-
edge between models. It first aligns the source
vocabulary to the target one by learning a one-
to-one mapping matrix for token IDs. Model
parameters, including embeddings, are rear-
ranged and progressively fine-tuned for the new
vocabulary. Our method significantly improves
multilingual text compression rates and vocab-
ulary initialization for LLMs, decreasing the
perplexity from 3.4e2 of strong baseline meth-
ods to 1.2e2 after initialization. Experimental
results on models across multiple parameter
scales demonstrate the effectiveness and gener-
alization of TokAlign, which costs as few as 5k
steps to restore the performance of the vanilla
model. After unifying vocabularies between
LLMs, token-level distillation can remarkably
boost (+4.4% than sentence-level distillation)
the base model, costing only 235M tokens. 1

1 Introduction

Large language models (Touvron et al., 2023a;
OpenAI, 2023; Yang et al., 2024) first tokenize
text input into several tokens during inference and
training, which compresses text and addresses the
out-of-vocabulary problem (Sennrich et al., 2016;
Wu et al., 2016; Kudo, 2018). However, the low
compression rate of vanilla tokenizers on new lan-
guages or domains decelerates the training and in-
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1Our codes and model are available at https://github.com/
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Figure 1: The compression rates of tokenizers across
different domains and languages, which are still low in
the code domain and low-resource languages for most
of tokenizers. Refer to Table 6 in Appendix B.1 for
more details.

ference process. As shown in Figure 1, the com-
pression rate of capable large language models like
LLaMA3 (Meta, 2024) on low-resource languages
still largely lags behind the others. For example, Ar-
menian text is 3.95x longer in tokens than English
text under the same byte size with the LLaMA3
tokenizer. On the other hand, each LLM has spe-
cific strengths and weaknesses, which arise from its
pre-training corpus and method. The mismatch in
the vocabulary impedes the deep knowledge trans-
fer between them like token-level distillation and
ensemble (Xu et al., 2024; Lu et al., 2024). Consid-
ering the huge cost of re-training LLM for a new
tokenizer, it is important to investigate efficient
vocabulary adaptation methods.

To address the problems above, we introduce a
novel method called TokAlign for large language
models from a view of token-token co-occurrences.
It is motivated by the general process of train-
ing an LLM: the pre-training corpus is first tok-
enized into tokens, and then input into the model.
Given the same pre-training corpus, different tok-
enizers result in various sequences of token IDs,
while the semantic and syntactic information is
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preserved in the token-token co-occurrence. There-
fore, TokAlign strives to align token IDs from the
original vocabulary and the target ones based on the
global token-token co-occurrence matrix (Penning-
ton et al., 2014) and learns a token-token alignment
matrix. We further propose two metrics to evaluate
the performance of the token-token alignment ma-
trix based on text matching and semantic similarity.
Given the learned alignment matrix, the new target
embedding and language modeling head of LLM
(“lm_head” in the Transformers (Wolf, 2019)) are
initialized from the parameters of the most simi-
lar source token. Further vocabulary adaptation
process is divided into a progressive two-stage pro-
cedure to improve the stability of convergence.

Given a target multilingual vocabulary for sub-
stitution, the model trained on the English corpus
obtains a good initialization, decreasing the per-
plexity from 3.4e2 to 1.2e2, and improves 29.2%
compression rates across 13 languages on average.
The training process of TokAlign is 1.92x faster
than strong baseline methods, and does not require
additional hundreds of GPU hours to train a hyper-
network for embedding initialization (Minixhofer
et al., 2024). Experimental results on models across
different scales show that as few as 5k steps are
needed for our method to recover the performance
of vanilla models on the general domain. Moreover,
unifying vocabulary between models further facil-
itates the token-level distillation, which is 4.4%
better than the sentence-level distillation on the
same corpus. The performance of the 1B model is
comparable with the vanilla 7B model after token-
level distillation from a capable LLM. In summary,
our contributions are as follows:

• We propose an unsupervised method to align
token IDs between two vocabularies and re-
place the vocabulary of LLMs from the token-
token co-occurrence view.

• We introduce two metrics to evaluate the per-
formance of the token-level alignment matrix
learned, which are proportional to the initial
loss of pre-training.

• Experimental results on ten datasets show that
our method promotes the cross-lingual knowl-
edge transfer among multiple languages and
deep knowledge transfer between models like
token-level distillation.

2 Related Works

Our work is related to word representation, large
language models, and vocabulary adaption, which
will be briefly introduced below.

Word Representation Based on the distribu-
tional semantic hypothesis, Bengio et al. (2003)
introduced the neural probabilistic language model
to learn word representation. Researchers mainly
focus on improving the effectiveness during learn-
ing word representations (Mikolov et al., 2013a,b;
Bojanowski et al., 2017; Li et al., 2017; Wang
et al., 2018), which provide a good initialization
for neural networks like LSTM and GRU (Hochre-
iter, 1997; Chung et al., 2014). GloVe (Penning-
ton et al., 2014) provides a method to train word
representations from a view of global word-word
co-occurrence matrix decomposition. It motivates
us to train a word representation for each token and
align tokens from statistical co-occurrence infor-
mation in the pre-training corpus.

Large Language Model Through scaling in the
parameters and pre-training corpus (Kaplan et al.,
2020; Hoffmann et al., 2022), large language mod-
els like GPT-4 and LLaMA3 (Radford et al., 2018,
2019; Brown et al., 2020; OpenAI, 2023; Touvron
et al., 2023a,b; Meta, 2024; GLM et al., 2024)
demonstrate impressive performance across mul-
tiple tasks. However, the mismatch in the vocab-
ulary greatly hinders the deep knowledge transfer
between different models. We aim to mitigate this
problem by introducing an efficient method to re-
place the tokenizer of a large language model.

Vocabulary Adaption is investigated mainly
in the multilingual domain, especially the cross-
lingual knowledge transfer problem (Scao et al.,
2023; Muennighoff et al., 2023; Yang et al., 2023;
Zhu et al., 2023; Üstün et al., 2024; Li et al., 2024;
Liu et al., 2024; Minixhofer et al., 2024; Yam-
aguchi et al., 2024; Mundra et al., 2024; Balde et al.,
2024). It aims to improve the encoding effective-
ness of tokenizer on corpora from new languages
or domains, and is often implemented by extending
the original vocabulary (Tran, 2020; Chau et al.,
2020; Minixhofer et al., 2022; Dobler and de Melo,
2023; Downey et al., 2023). Most methods, like
Focus (Dobler and de Melo, 2023), rely on the
tokens belonging to both source vocabulary and
target vocabulary to initialize the other new tokens
in the target vocabulary. Our method differs from
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Figure 2: Illustration of TokAlign to align token IDs from different vocabularies. We train token representations on
the tokenized corpus, and align token IDs by the cosine similarity. It is noted that the IDs of tokens belonging to
both vocabularies are directly replaced without alignment.

these studies for the whole replacement of vocabu-
lary and does not rely on the tokens in both source
vocabulary and target vocabulary.

The pipeline of TokAlign to adapt vocabulary
is similar to WECHSEL(Minixhofer et al., 2022),
while the main difference lies in the representa-
tion and alignment of tokens. WECHSEL requires
a bilingual dictionary and word representation to
align tokens and calculates the similarity between
tokens by tokenizing all words in the dictionary
and linearly composing word representations. In
contrast, TokAlign conducts token representation
learning and alignment in an unsupervised way,
which can apply to languages without bilingual
dictionaries.

3 Method: TokAlign

3.1 Vocabulary Alignment

As shown in Figure 2, there are three steps for
TokAlign to align two vocabularies from the token-
token co-occurrence information. We denote the
source tokenizer as Tokenizers, which has Vs to-
kens, and the target tokenizer as Tokenizert with
Vt tokens, correspondingly.

Step 1: Tokenization The comprehensiveness
of the pre-training corpus is important to obtain a
well-trained token representation. An unbalanced
corpus makes it hard to learn the representation of
tokens in the tail of vocabulary. Thus, the corpus
used in this work is empirically composed of mul-
tilingual corpus “CulturaX” [40%] (Nguyen et al.,
2024), code corpus “The Stack” [30%] (Kocetkov

et al., 2023), and math corpus “Proof-Pile-2” [30%]
(Azerbayev et al., 2024). We tokenize the mixed
corpus using various tokenizers and obtain multiple
sequences of token IDs for the same corpus. The
default amount of tokens used in this step is 1B,
which is investigated in Appendix B.2.

Step 2: Token Representation Learning We
adopt GloVe (Pennington et al., 2014) to learn
the representation of tokens from the first step.
The main reason is that GloVe considers more
global statistical information than those slide win-
dow methods like CBOW and FastText (Mikolov
et al., 2013a,b; Bojanowski et al., 2017). The de-
tails of training settings for GloVe vectors refer to
Appendix A.

Step 3: Token Alignment Based on the assump-
tion that token representations capture the semantic
information in the token, we align token IDs us-
ing the pair-wise cosine similarity of learned token
representations. It should be noted that the IDs of
tokens belonging to both vocabularies are directly
replaced without the need to align. Ms→t denotes
the learned token-token alignment matrix, which
records the pair-wise similarity of each source to-
ken and target token. It can serve as the one-to-one
mapping function for each source/target token to
find the most similar token from the target/source
vocabulary.

3.2 Alignment Evaluation

Figure 3(a) illustrates our metrics to evaluate the
performance of alignment matrix Ms→t. We first
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Figure 3: (a) We choose BLEU-1 and BERTScore to evaluate the performance of alignment matrix Ms→t (b)
Embedding and lm_head are tuned at the first half part of the process, followed by full parameter tuning. * indicates
the parameter of each target token is first initialized from the most similar source token by alignment matrix Ms→t.

tokenize the test corpus C using different tokenizers,
which results in Cs and Ct. The token ID corpus Cs
from the source tokenizer is converted to its most
similar target token ID by alignment matrix Ms→t,
and comes to the corpus C′

t. From the view of token
ID matching, the higher BLEU-1 score between C′

t

and the corpus Ct from the Tokenizert, the better
alignment matrix Ms→t is.

We further propose a semantic evaluation met-
ric: It de-tokenizes the target token ID corpus C′

t

using Tokenizert into the recovered text corpus
C′

, and evaluates the semantic similarity between
C′

and original corpus C using BERTScore. The
better alignment matrix Ms→t learned preserves
more semantics in the test corpus C, bringing higher
BERTScore of the recovered C′

and C.

3.3 Progressive Adaptation
Given the alignment matrix Ms→t, the parameters
of each token in the target vocabulary are initial-
ized from the ones of the most similar source to-
ken. We find that these re-arranged embeddings
and lm_head provide a good initialization for the
new model (Section 4.2.1). Figure 3(b) illustrates
the two-stage tuning for an LLM to adapt to the
new vocabulary. The re-arranged embedding and
lm_head are tuned first to avoid loss spike and im-
prove the training stability (Figure 6). The other
parameters of internal layers are further tuned to-
gether in the last half-part process.

4 Experiments

4.1 Experiments Settings
Large Language Models We adopt the fully
open-source language model series Pythia (Bider-
man et al., 2023) as base models in this work. It is

noted that we do not intend to achieve state-of-the-
art large language model performance but rather in-
vestigate an efficient method to replace the English-
centric tokenizer like Pythia. To transfer token-
level knowledge from other capable large language
models, tokenizers and vocabularies of Gemma
(Team et al., 2024), Qwen2 (Yang et al., 2024),
LLaMA2 (Touvron et al., 2023b), and LLaMA3
(Meta, 2024) are selected as the target to replace.
We report hyper-parameters in Appendix A.

Corpus To reduce the risk of distribution shift
from the training data, we choose the vanilla pre-
training corpus Pile (Gao et al., 2020) of Pythia
in the fine-tuning process. We also investigate the
robustness of the corpus used in the vocabulary
alignment by replacing it with Slimpajama (Sobol-
eva et al., 2023). Corpora of downstream tasks
and multiple languages are applied in cross-lingual
and cross-model knowledge transfer experiments
(Section 4.2.1 and 4.2.2).

Evaluation Tasks Following the common prac-
tices to evaluate large language models (Lin et al.,
2022; Biderman et al., 2023; Zhang et al., 2024),
there are 10 datasets, including commonsense rea-
soning (Clark et al., 2018; Mihaylov et al., 2018;
Zellers et al., 2019; Ponti et al., 2020; Bisk et al.,
2020; Sakaguchi et al., 2020) and reading compre-
hension (Clark et al., 2019) tasks, used in this work.
To avoid the randomness from the prompt and eval-
uation method, we adopt the default prompt from
the commonly used language model evaluation har-
ness framework (Gao et al., 2024). Further infor-
mation about the evaluation tasks is reported in
Appendix C.



High Medium Low

Model ar de en ja zh bn ko th uk vi ta te ur Avg ↓

Qwen21.5B 4.7 11.1 15.7 6.0 4.6 2.4 3.3 2.6 5.7 3.3 2.8 3.4 4.0 5.3

Pythia1B 7.6 15.4 21.7 9.9 13.2 3.4 5.6 4.3 6.7 6.3 2.9 3.3 5.8 8.2

w/ Focus Init. 4.1e3 1.7e5 1.8e6 2.1e4 9.6e2 6.5e4 1.0e3 5.6e3 1.6e6 8.4e2 5.0e4 1.9e5 1.9e5 3.1e5

+ LAT 8.3 27.1 59.7 14.0 14.0 3.6 5.9 3.8 7.3 5.9 3.5 3.6 4.3 12.4
w/ ZeTT Init. 3.0e2 4.2e2 1.3e2 1.2e3 2.4e2 3.0e2 2.4e2 3.3e2 2.5e2 2.0e2 2.4e2 1.8e2 4.7e2 3.4e2

+ LAT 7.1 15.7 26.4 10.0 10.3 2.8 5.0 3.6 5.9 4.9 2.6 2.7 4.2 7.8
w/ TokAlign Init. 1.2e2 2.2e2 1.0e2 3.6e2 1.2e2 46.5 60.1 70.8 1.5e2 49.2 61.0 1.1e2 50.9 1.2e2

+ LAT 6.3 13.9 23.6 8.9 9.0 2.4 4.4 3.2 5.2 4.4 2.3 2.4 3.7 6.9

Qwen27B 3.9 8.1 11.8 4.9 3.8 2.1 2.9 2.3 3.8 2.9 2.3 2.6 3.3 4.2

Pythia6.9B 5.9 10.8 16.7 7.9 9.9 3.0 4.6 3.7 4.9 4.9 2.6 2.9 4.8 6.3

w/ Focus Init. 6.9e3 1.6e5 1.2e6 2.4e4 1.3e3 2.5e4 7.2e2 3.3e3 1.9e6 7.9e2 1.7e4 1.5e5 1.2e5 2.8e5

+ LAT 6.8 17.6 39.3 10.8 11.1 2.5 5.0 3.3 5.2 4.8 2.3 2.5 3.7 8.8
w/ TokAlign Init. 1.2e2 1.9e2 81.4 3.7e2 1.3e2 52.5 53.3 66.2 1.4e2 49.2 46.4 92.1 48.7 1.1e2

+ LAT 5.2 9.9 17.8 7.4 7.9 2.1 3.8 2.8 4.0 3.7 2.1 2.1 3.1 5.5

∆ Length (%) ↓ −44.5 −13.1 −0.8 −32.4 −50.0 −22.2 −52.2 −46.1 −15.5 −51.7 −20.3 −2.9 −28.5 −29.2

Table 1: The normalized perplexity on the valid corpus of CulturaX. The perplexity is normalized to the vocabulary
of Pythia following Wei et al. (2023). “High”, “Medium”, and “Low” indicates the available amount of linguistic
resources. “w/ xxx Init.” denotes the performance of the model after initialization without any tuning steps.

Baselines We introduce the following vocabulary
adaptation methods as baseline methods in this
work:

• Random Initialization for each token t ∈
{Vt \ (Vt∩Vs)} employs the default initializa-
tion method of huggingface Transformers and
reuses the parameters of token t ∈ {Vt ∩ Vs},
which belongs to both vocabularies.

• Random Permutation initializes each token
t ∈ {Vt \ (Vt ∩ Vs)} using the parameter
of randomly chosen token from the source
vocabulary. The parameters of shared tokens
are also reused.

• Multivariate initializes each token t ∈ {Vt \
(Vt ∩ Vs)} by sampling from the multivari-
ate Gaussian distribution with the mean and
covariance of source embedding Es.

• Mean use the mean of source embedding Es

to initialize all tokens t ∈ {Vt \ (Vt ∩ Vs)}.

• WECHSEL (Minixhofer et al., 2022) linearly
transfers embeddings of source tokens into tar-
get tokens by tokenizing and recomposing ad-
ditional word embeddings Ws and Wt, which
are aligned with a bilingual dictionary.

• OFA (Liu et al., 2024) factorizes the embed-
dings of source model Es into the primitive
embedding P and source coordinate Fs that
is further re-composed by multilingual word
embedding W to the target coordinate Ft. The
assembled primitive embedding P and target
coordinate Ft yield the target embedding Et.

• Focus (Dobler and de Melo, 2023) initial-
izes the embedding parameters of token t ∈
{Vt\(Vt∩Vs)} using the weighted sum of the
ones from the token t ∈ {Vt ∩ Vs}. It largely
depends on the size of ∥Vt∩Vs∥, and performs
poorly when the overlapping percentage of Vt

and Vs is low.

• ZeTT (Minixhofer et al., 2024) trains an ad-
ditional hypernetwork Hθ to generate the pa-
rameters for each token t ∈ Vt. The added
hypernetwork brings a lot of training costs.

4.2 Main Results

We first report the final results of two applications
after replacing vocabulary: cross-lingual transfer
(Section 4.2.1) and cross-model knowledge transfer
(Section 4.2.2), then show vocabulary adaptation
results of methods (Section 4.3).

4.2.1 Cross-lingual Transfer
When applied to new domains or languages, tok-
enizers with higher compression rates can speed
up the learning and inference of large language
models. From the view of token co-occurrence,
tokens from other languages can be aligned and
initialized by the tokens with similar semantics in
the source vocabulary, which can boost the cross-
lingual knowledge transfer. Therefore, we replace
the English-centric tokenizer of Pythia with the one
of Qwen2 to evaluate the performance on cross-
lingual transfer settings.

As shown in Table 1, the perplexity of Pythia
initialized using TokAlign (1.2e2) is significantly



XNLI PAWS-X XCOPA XStoryCloze

Model en de zh ar th vi ur de en ja ko zh th vi ta en zh ar te Avg

Pythia1B 51.0 37.8 42.6 35.9 34.8 37.0 34.7 49.6 49.3 54.8 54.9 52.9 54.0 53.2 55.4 64.3 48.6 48.0 52.9 48.0

w/ Focus Init. 32.8 32.2 33.6 33.6 33.5 32.0 32.8 44.8 44.9 45.7 44.8 44.7 52.4 48.6 57.0 45.9 47.8 48.8 46.5 42.2
+ LAT 46.0 35.1 34.9 32.9 32.5 35.4 34.7 50.6 45.5 55.9 53.4 55.3 53.8 52.6 55.4 55.8 48.8 47.6 50.4 46.1

w/ ZeTT Init. 45.9 34.6 32.9 32.8 33.5 33.6 34.5 51.5 50.3 54.8 51.5 53.5 52.6 48.2 55.6 53.2 46.9 46.9 48.1 45.3
+ LAT 48.6 38.6 40.6 36.9 36.0 39.3 35.1 53.0 51.0 55.8 53.8 55.3 55.8 50.8 54.0 60.3 49.3 47.2 52.1 48.1

w/ TokAlign Init. 49.9 36.6 33.2 31.8 33.2 34.4 34.4 52.4 52.1 56.1 54.7 55.3 53.6 48.0 55.2 61.0 47.6 47.1 51.0 46.7
+ LAT 50.9 39.3 42.7 37.4 37.4 40.3 35.7 54.6 50.2 55.9 54.9 55.3 55.2 53.6 53.6 64.0 51.1 47.8 53.5 49.1

Pythia6.9B 54.4 39.0 46.2 39.3 39.8 39.3 36.4 43.8 40.2 50.2 54.2 50.2 56.2 54.4 52.2 70.4 53.9 50.3 53.8 48.6

w/ Focus Init. 31.5 31.3 33.0 32.6 33.4 32.2 32.6 44.8 42.4 52.7 45.5 44.7 52.2 48.6 55.6 44.5 47.1 47.8 47.1 42.1
+ LAT 52.6 34.9 36.6 35.1 33.6 39.0 34.5 51.1 43.8 55.9 55.3 55.4 54.2 52.4 53.8 61.0 48.7 47.7 53.7 47.3

w/ TokAlign Init. 53.3 36.3 35.0 34.6 34.6 33.0 33.8 48.8 44.6 56.2 55.7 55.3 54.6 52.2 54.6 66.8 48.6 47.7 50.0 47.1
+ LAT 55.2 35.8 43.5 40.4 40.2 43.0 37.1 43.2 45.8 55.8 55.8 55.5 54.6 57.0 54.6 70.2 54.4 49.3 53.9 49.7

Table 2: Zero-shot in-context learning results of cross-lingual transfer. Refer to Table 8 for few-shot results.

ARC-E BoolQ HellaSwag OpenbookQA PIQA WinoGrande Avg

Model 0 5 0 5 0 5 0 5 0 5 0 5 0 5

Pythia1B 56.82 58.71 60.43 57.37 37.68 37.66 18.80 19.00 70.40 71.49 53.20 52.01 49.55 49.37
+ Direct tuning 57.49 55.64 70.70 72.11 41.24 41.60 25.40 28.40 69.04 70.08 54.70 54.78 53.10 53.77
+ Sentence distill 52.27 53.41 67.49 67.06 39.03 39.08 21.80 22.80 66.97 68.99 51.85 52.17 49.90 50.58

w/ Gemma7B 55.39 56.99 67.19 69.69 36.53 37.26 19.00 22.80 68.82 69.21 52.33 53.51 49.88 51.58
w/ Qwen27B 62.33 63.17 70.18 72.54 41.58 42.21 22.00 28.20 73.01 73.18 55.01 55.56 54.02 55.81
w/ LLaMA38B 64.02 64.56 73.91 74.19 42.11 42.34 24.20 27.60 72.74 73.83 55.49 56.43 55.41 56.49

Pythia6.9B 65.99 69.23 62.84 62.02 47.56 47.64 25.00 27.00 74.65 75.41 60.46 62.43 56.08 57.29
+ Direct tuning 66.25 66.20 79.30 78.87 52.21 53.39 33.20 33.00 72.91 74.48 62.90 61.72 61.13 61.28
+ Sentence distill 61.70 65.36 76.64 76.88 48.98 51.33 28.20 30.40 70.18 71.55 58.96 62.19 57.44 59.62

w/ Gemma7B 67.59 68.94 76.06 75.66 47.83 48.36 28.40 31.40 73.78 75.52 59.04 64.17 58.78 60.67
w/ Qwen27B 71.72 73.27 79.85 80.00 50.78 51.12 29.20 34.00 77.26 77.91 61.33 64.56 61.69 63.48
w/ LLaMA38B 67.05 69.78 77.83 78.78 48.83 50.15 26.00 32.00 74.21 76.22 60.22 60.93 59.02 61.31

Table 3: The main results of token-level distillation on six downstream tasks with only 235M tokens. “+Sentence
distill” denotes the sentence-level distillation results with Qwen27B(Yang et al., 2024), which fine-tunes on the
output from Qwen27B given questions as prompt.

better than other two strong baseline methods Fo-
cus (2.9e5) and ZeTT(3.4e2). The length of tokens
after text tokenization has reduced by 29.2% on av-
erage across these languages. After only 2k steps of
Language Adaptation Tuning (“+LAT”), TokAlign
improved 14.5% over the vanilla model on average,
while Focus still performed worse. It is noted that
the performance of Pythia using TokAlign on three
low-resource languages even outperforms the ones
of Qwen2 with a similar parameter amount.

Table 2 and 8 in Appendix B.5 further report
zero-shot and few-shot in-context learning results
on four multilingual datasets. We can find that
TokAlign brings a better-initialized model than the
baseline method Focus (+4.4%), and transfers the
knowledge into other languages like Japanese (ja,
+2.3%) and Vietnamese (vi, +2.2%).

It is interesting to find that the perplexity of
Pythia1B initialized by TokAlign reaches 1.2e2,
while the in-context learning results are compa-
rable with the ones of Focus after adapting on the
multilingual corpus. We argue that it arises from
the reserved English ability with TokAlign (54.2%),
which significantly outperforms Focus (40.8%).

4.2.2 Cross-model Transfer

Unifying vocabulary with capable LLMs enables
token-level distillation and transfers the knowledge
learned into smaller models to decrease inference
costs. In this section, training samples from down-
stream tasks and the corpus of Pile are used in the
token-level distillation experiments. The logit of
each token from the teacher model is taken as the
soft label for Pythia to learn. Specifically, we add
the KL-divergence loss between the logit from the
teacher and student models to the original next to-
ken prediction loss on the training samples. The
proportion of training samples is empirically set to
15% to avoid a significant degradation in language
modeling performance (Wei et al., 2023). There are
two baseline methods: “+ Direct tuning”, where
models directly fine-tune on the training samples,
and “+ Sentence distill” for comparison, where
models fine-tune on the output text from the teacher
model given the question as a prompt.

Table 3 reports the results of two baseline meth-
ods and token-level distillation from three teacher
models using 235M tokens. It can be found that
token-level distillation is significantly better than
sentence-level distillation. In the neural machine
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Model #GPU Hour 0 5 0 5 0 5 0 5 0 5 0 5 0 5

Pythia1B − 56.82 58.71 60.43 57.37 37.68 37.66 18.80 19.00 70.40 71.49 53.20 52.01 49.55 49.37

w/ Rand. Init. 99.70 31.36 31.61 37.83 49.11 26.35 26.40 14.00 12.60 54.57 55.33 49.17 49.17 35.55 37.37
w/ Rand. Perm. 99.70 31.69 32.95 37.77 54.80 26.43 26.39 14.00 12.60 55.50 55.98 47.04 50.67 35.40 38.90
w/ Multivariate 99.70 32.79 34.18 45.08 49.72 27.67 27.87 15.20 16.20 56.09 57.83 50.51 50.12 37.89 39.32
w/ Mean 99.70 44.87 46.97 53.39 55.20 31.59 31.67 16.20 17.00 61.32 62.46 49.25 51.85 42.77 44.19
w/ OFA 99.70 38.17 37.79 55.14 52.35 28.29 28.62 14.40 12.20 58.43 58.54 49.96 50.99 40.73 40.08
w/ WECHSEL 99.70 43.35 45.33 56.61 54.34 32.53 32.41 14.80 16.20 61.70 62.89 52.01 52.72 43.50 43.98
w/ Focus 99.70 46.55 48.95 56.21 55.78 32.27 32.46 19.20 18.00 63.82 64.80 51.70 51.78 44.96 45.29
w/ ZeTT 418.94 47.14 49.03 57.06 53.70 34.06 34.06 18.40 19.40 64.15 65.34 52.09 51.22 45.48 45.46
w/ TokAlign 99.70 54.46∗ 56.86∗ 58.90∗ 52.26 36.16∗ 36.27∗ 21.00∗ 20.20∗ 67.74∗ 68.50∗ 52.25∗ 50.91 48.42 47.50

w/ SlimPajama 99.70 53.54 55.68 57.55 53.85 36.10 35.99 19.40 20.20 67.03 67.52 52.09 51.22 47.62 47.41
+ Align Rep. 99.70 54.25 56.65 59.33 54.68 37.08 36.91 20.20 19.40 67.36 68.17 54.38 52.80 48.77 48.10

Pythia2.8B − 63.80 67.00 63.91 65.14 45.32 45.04 24.00 25.20 74.05 74.43 58.64 60.77 54.95 56.26

w/ Rand. Init. 194.78 30.47 32.91 38.20 51.07 26.46 26.69 14.40 13.20 55.17 55.06 48.30 50.51 35.50 38.24
w/ Rand. Perm. 194.78 31.48 31.86 37.83 50.46 26.48 26.49 13.60 14.40 54.03 54.95 50.20 48.86 35.60 37.84
w/ OFA 194.78 50.13 54.12 60.89 61.47 36.39 36.88 18.00 19.00 65.18 64.80 54.06 54.85 47.44 48.52
w/ WECHSEL 194.78 52.48 54.92 59.42 56.76 36.79 37.30 19.20 20.80 64.04 64.25 56.43 55.72 48.06 48.29
w/ Focus 194.78 54.29 58.16 61.44 62.84 38.38 39.09 20.00 20.20 68.44 68.28 54.62 56.04 49.53 50.77
w/ ZeTT 855.96 57.15 59.42 61.68 62.05 42.17 42.25 21.80 23.60 71.11 71.16 56.59 59.19 51.75 52.95
w/ TokAlign 194.78 61.62∗ 65.15∗ 63.82∗ 65.47∗ 43.13∗ 43.18∗ 23.40∗ 25.80∗ 72.14∗ 72.42∗ 58.17∗ 61.17∗ 53.71 55.53

+ Align Rep. 194.78 61.66 65.66 64.56 65.66 43.97 44.09 22.40 25.00 73.01 73.23 58.09 60.54 53.95 55.70

Table 4: The main results of replacing the vocabulary of Pythia to Gemma. The best performance among the eight
methods is displayed in bold. ∗ indicates statistically significant improvements of 5% level. “+Align Rep.” denotes
the GloVe embeddings for tokens are converted into relative representations using 300 common tokens in both
vocabularies before alignment following (Mosca et al., 2023).

translation domain, token-level distillation outper-
forms sentence-level distillation when using larger
student models, simpler texts, and abundant decod-
ing information (Kim and Rush, 2016; Wei et al.,
2024). Given the same teacher model Qwen27B,
the improvement of Pythia over the sentence-level
distillation result reaches 4.4%. The performance
of Pythia1B is even comparable with the vanilla
Pythia7B after token-level distillation. It is also
noted that the knowledge transfer between mod-
els will be constrained in sentence-level distilling
without unifying vocabulary, which further demon-
strates the importance of unifying tokenizers be-
tween models.

4.3 Vocabulary Adaptation Results
We show experimental results of replacing the
Pythia vocabulary (50.3k) with the Gemma vo-
cabulary (256.0k) using all methods in Table 4.
Given the same amount of tokens to fine-tune, it
can be found that TokenAlign performs better than
other baseline methods. The average improvement
of TokenAlign over the strong baseline method
ZeTT reaches 2.4%, and 97.6% performance of
the vanilla model is reserved after vocabulary re-
placement. ZeTT requires more computation to
train a hypernetwork for the parameters prediction,
e.g., 661.2 GPU hours for Pythia2.8B, while our
method only costs less than two hours on a CPU
server with 128 cores to train GloVe embeddings
and align tokens. Replace the corpus to train the
GloVe embedding with 1B SlimPajama (Soboleva

et al., 2023) tokens brings comparable results (the
“w/ SlimPajama” row). It demonstrates the robust-
ness of our method on the pre-training corpus for
token embedding and alignment matrix. Follow-
ing Moschella et al. (2023), we also evaluate the
method that converts token representations into rel-
ative ones using 300 common tokens in both vocab-
ularies as anchors before calculating the alignment
matrix Ms→t, which brings better performance.

4.4 Analysis
The loss curves of Pythia2.8B with different meth-
ods during the first 2.5k steps are shown in Figure
4. We find that TokAlign brings a better initializa-
tion and decreases the first-step training loss from
17.8 (Focus) to 9.5. Moreover, the training process
with TokAlign is faster than other methods, which
reaches 2.75 at the 1.3k step and is 1.92x (2.5/1.3)
speed up than Focus.
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Figure 4: The training loss of Pythia2.8B.
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Model #V (k) 0 5 0 5 0 5 0 5 0 5 0 5 0 5

Pythia1B 50.3 56.82 58.71 60.43 57.37 37.68 37.66 18.80 19.00 70.40 71.49 53.20 52.01 49.55 49.37

→ Gemma 256.0 54.46 56.86 58.90 52.26 36.16 36.27 21.00 20.20 67.74 68.50 52.25 50.91 48.42 47.50
→ Qwen2 152.1 54.46 57.07 54.80 49.79 37.18 37.04 19.20 18.40 68.44 70.24 53.35 52.80 47.91 47.56
→ LLaMA2 32.0 49.45 52.02 58.32 55.75 35.38 35.45 18.80 17.80 66.32 66.65 53.91 50.91 47.03 46.43
→ LLaMA3 128.0 54.63 57.28 55.84 53.70 37.34 37.43 20.20 20.40 69.04 70.18 54.46 53.43 48.59 48.74

Pythia2.8B 50.3 63.80 67.00 63.91 65.14 45.32 45.04 24.00 25.20 74.05 74.43 58.64 60.77 54.95 56.26

→ Gemma 256.0 61.62 65.15 63.82 65.47 43.13 43.18 23.40 25.80 72.14 72.42 58.17 61.17 53.71 55.53
→ Qwen2 152.1 62.54 66.04 62.35 63.55 44.46 44.39 23.20 24.60 73.50 73.56 59.04 59.59 54.18 55.29
→ LLaMA3 128.0 61.83 64.60 64.40 63.94 44.62 44.59 23.80 25.60 73.45 73.29 57.54 58.72 54.27 55.12

Pythia6.9B 50.3 65.99 69.23 62.84 62.02 47.56 47.64 25.00 27.00 74.65 75.41 60.46 62.43 56.08 57.29

→ Gemma 256.0 65.40 68.35 62.39 59.57 45.75 45.86 22.00 25.60 73.39 74.10 60.38 61.17 54.89 55.77
→ Qwen2 152.1 65.57 68.43 64.07 57.61 46.84 46.91 25.60 25.40 73.45 74.65 61.17 63.14 56.12 56.02
→ LLaMA3 128.0 66.46 68.35 63.79 60.64 47.28 47.31 25.60 28.20 74.48 75.84 61.48 63.30 56.52 57.27

Table 5: The benchmark results of replacing different tokenizers using TokAlign. The overlapping ratio between
the vocabulary of Pythia and other models are 6.23% (Gemma), 26.92% (Qwen2), 28.10% (LLaMA2), 32.85%
(LLaMA3).
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Figure 5: The relationship between initial training loss
and BLEU-1 (a) or BERTScore (b) for Pythia1B.

Better alignment brings better initialization.
We further investigate the impact of the learned
alignment matrix Ms→t by changing the hyper-
parameters of GloVe. It is noted that different align-
ment matrices Ms→t bring different initial param-
eters, and also result in different BLEU-1 scores
on the same evaluation corpus. Figure 5(a) illus-
trates the negative relationship between the first-
step training loss and BLEU-1. The sentence em-
bedding model named “all-mpnet-base-v2” (Song
et al., 2020) is adopted in the BERTScore evalu-
ation. As shown in Figure 5(b), it also shows a
clear negative relationship with the initial training
loss. In other words, the higher the BLEU-1 score
or BERTScore for the alignment matrix Ms→t, the
better the initial parameter is.

More overlapping comes to faster convergence
and higher performance. TokAlign is further
applied to the other three target tokenizers: Qwen2,
LLaMA2, and LLaMA3. Table 5 reports the perfor-
mance of models after replacing vocabulary on six
datasets. TokAlign recovers 98.0% performance
of the base model on average with only 5k steps.
Given a target vocabulary with more tokens than
the one of Pythia (50.3k), it can be found that

a higher overlapping ratio brings a better perfor-
mance of model replaced (97.6% for Gemma to
99.1% for LLaMA3). The zero-shot in-context
learning results for Pythia6.9B with LLaMA3 vo-
cabulary even surpass the vanilla base model. The
results of Pythia1B with LLaMA2 vocabulary are
only 94.5%, which is inferior to the average result.
We argue that it may come from the missing 75.0M
parameters (7.4% for Pythia1B) after switching to
a 32.0k vocabulary from the 50.3k vocabulary.

Figure 9 in Appendix B.3 shows the training
loss curve. The replacing process of the Gemma
tokenizer is the slowest, which may come from
the only 6.23% overlapping ratio between two vo-
cabularies. It is in line with the result of random
initialization in Figure 10. Appendix B.3 reports
more quantitative results by shuffling the alignment
matrix, which further demonstrates the importance
of token alignment.

Two-stage tuning brings a more stable conver-
gence. To replace the tokenizer and keep the per-
formance of the vanilla model, we only fine-tune
the vocabulary-related parameters at the first stage.
The main reason for two-stage tuning is to take
these parameters as the adapters of different tok-
enizers and avoid the well-trained parameters of
the internal layer being distracted by the new ini-
tialized parameters.

Figure 6 illustrates that our two-stage tuning
method makes the convergence more stable un-
der a high learning rate like 6.4e-4, which comes to
better performance after vocabulary adaptation. It
is noted that the loss spike also occurs at the first
stage, fine-tuning vocabulary-related parameters
only, under such a high learning rate like 2.56e-3 in
Figure 7.
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Figure 6: The loss curve of Pythia1B under two-stage tuning or direct full parameters tuning.
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Figure 7: The training loss curve of Pythia1B for learn-
ing rate used during replacing to the Gemma tokenizer.

5 Conclusion and Future Work

In this paper, we introduce a method named
TokAlign to replace the tokenizer of large language
models from a token-token co-occurrence view. Ex-
tensive experiments demonstrate that TokAlign re-
stores the performance of vanilla models after vo-
cabulary adaptation, which enables cross-lingual
knowledge transfer and deep knowledge transfer
between models like token-level distillation.

Beyond replacing the vocabulary of large lan-
guage models, our method can be extended to re-
place the vocabulary of multi-modal models by
aligning different modal tokens. The other direc-
tion is to develop a faster method, e.g., incorporat-
ing meta-learning in the two-stage tuning method
to speed up the convergence.

Limitations

The first limitation comes from the assumption
that the pre-training data distribution is available.
We conduct experiments on Pythia with different
parameter amounts, which provide public model
weights and pre-training corpus. Due to the lim-
ited computation resource budget, open-source lan-
guage models with unknown pre-training corpus
like Mistral (Jiang et al., 2023) are not investigated

in this work. However, the pre-training corpus dis-
tribution of open-weighted large language models
can be roughly inferred by the BPE vocabulary
(Hayase et al., 2024). It can re-construct a similar
pre-training corpus to conduct replacing tokenizer
experiments.

Another limitation is the additional 5k steps for
vocabulary adaptation to replace a tokenizer. From
the loss curve of TokAlign (Figure 9), we find that
the start of full parameters tuning can be faster,
which may result in a better balance between per-
formance and computational budget. Appendix
B.4 reports a preliminary result with only 2k steps,
where TokAlign also shows a promising result.
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A Hyper-parameters

GloVe Training We empirically train GloVe vec-
tors with 1B tokens, which covers most tokens from
Gemma (95.10%), Qwen2 (93.40%), LLaMA2
(99.35%), and LLaMA3 (98.04%). The dimen-
sion size is set to 300. The max training iteration
and the size of the slide window are 15.

Model Tuning The optimizer adopted in this
work is AdamW (Loshchilov and Hutter, 2019),
where β1 = 0.9 and β2 = 0.999. The learning
rate for baseline methods is set to 5e-5 to reduce
the loss spike in Figure 6(b) and Figure 6(c). We
adopt bf16 mixed precision training, ZeRO-1, and
flash-attention to save GPU memory cost and speed
up the training process (Micikevicius et al., 2018;
Rasley et al., 2020; Dao et al., 2022). Following
Biderman et al. (2023), the batch size is set to 2M
tokens and the max sequence length is 2048.

B Additional Results

B.1 Tokenizer Compression Rate

Table 6 reports detailed compression rates of to-
kenizers across different domains and languages.
We randomly sample 10 subsets or languages from
vanilla datasets (Azerbayev et al., 2024; Kocetkov
et al., 2023) to estimate the compression rate. Fol-
lowing Lai et al. (2023), the division of languages
between “High”, “Medium” and “Low” is deter-
mined by the available amount resource on Com-
monCrawl.

B.2 GloVe Vectors

We show the effects of different token amounts for
the GloVe vectors training in Figure 8. It can be
found that 1B tokens used in this work provide a
high vocabulary coverage (>90%) and better ini-
tialization for Pythia1B. Due to the limited com-
putation budget, experiments with more than 1B
tokens are not conducted.

B.3 Convergence Analysis
To investigate the effect of overlapping rate be-
tween two tokenizers to the convergence of train-
ing, we plot Figure 10 for the random initialization
baseline method. The convergence of Gemma tok-
enizer is slower than the other tokenizers and comes
to worse results, which are similar to the case in
Figure 9.

Moreover, we randomly shuffle the alignment
matrix learned in TokAlign to imitate the case that
other worse methods rather than cosine similar-
ity to calculate the alignment matrix. Figure 11
shows that the higher percentage of randomly shuf-
fle comes to higher initial training loss and slower
convergence.

B.4 Fast Vocabulary Adaptation Results
We further investigate a challenge condition that
fine-tunes only 2B tokens to adapt the target vo-
cabulary. To meet the requirement, we reduce the
batch size to 1M tokens and set the number of fine-
tuning steps to 2k. Table 7 shows the results of
adapting to the other 3 tokenizers using TokAlign.
It can be found that 95.66% performance of the
vanilla model is recovered on average, which fur-
ther demonstrates the effectiveness of our method.

B.5 In-context Learning Results during
Cross-lingual Transfer

Table 2 and 8 report the 0-shot and 5-shot in-
context learning results on 4 multilingual datasets.
The average improvement over the baseline method
Focus is 2.35% after language adaptation pre-
training. We can find that the model initialized
by TokAlign is comparable to the one of Focus af-
ter language adaptation pre-training, which mainly
comes from the strong English performance pre-
served by TokAlign.

Case study of multilingual token alignment.
Table 9 provides nine new tokens from three lan-
guages with their top 3 tokens in the source vocabu-
lary for qualitative analyses. In most cases, a clear
semantic relationship between two aligned tokens
cannot be found. We argue that it may come from
the following two reasons:

• BPE algorithm (Sennrich et al., 2016) divides
words into the sub-word units, also called
tokens, from the statistical co-occurrence in-
formation. There may be less superficial se-
mantic information in the tokens divided com-
pared with words in the natural language.
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Tokenizer

Domain Subset / Language Gemma LLaMA3 LLaMA2 Qwen2 Pythia

Math
(Azerbayev et al., 2024)

ArXiv 2.8561 2.7765 2.7040 2.7445 2.8489

Textbooks 4.0883 4.3270 3.6500 4.2899 3.9464

Wikipedia 3.1753 3.2049 2.8792 3.0312 3.2898

ProofWiki 2.7538 2.8115 2.5996 2.7900 2.7363

StackExchange 3.2062 3.2814 3.0094 3.2107 3.2222

WebPages 3.9885 4.0655 3.5070 3.8720 4.1136

Code
(Kocetkov et al., 2023)

Python 3.3401 4.1331 3.0072 4.0339 3.2328

Java 3.7175 4.4900 3.2193 4.4141 3.4914

Go 2.9274 3.4797 2.5189 3.3870 2.8542

V HDL 2.1038 2.4814 1.8724 2.2961 2.1395

ActionScript 3.3470 3.9717 2.7852 3.9180 3.2949

Scheme 2.7178 3.3045 2.4586 2.9713 2.9326

Haml 3.2423 3.8429 2.9588 3.8002 3.1016

Xbase 2.8739 3.4325 2.3300 3.3475 2.7837

Mako 3.4387 4.0746 3.1238 4.0311 3.2844

EmberScript 1.4104 1.9017 1.3819 1.4082 2.1540

High-Langs
(Nguyen et al., 2023)

English 4.4971 4.6042 3.8647 4.4875 4.4505

Russian 6.7529 5.8131 4.9275 5.3559 3.5802

Spanish 4.6068 3.8416 3.4517 3.8330 3.3655

German 4.4605 3.6314 3.4417 3.6041 3.1096

French 4.2258 3.7378 3.4445 3.7243 3.3565

Chinese 3.7378 3.2373 1.8434 3.9859 1.9896

Italian 4.2211 3.4952 3.3320 3.4573 3.1928

Portuguese 4.2731 3.6030 3.2031 3.5850 3.2022

Polish 3.5583 2.8548 2.6639 2.9464 2.4333

Japanese 5.7640 4.2796 2.4701 4.7059 2.9326

Medium-Langs
(Nguyen et al., 2023)

Czech 3.3402 3.2875 2.5978 2.4490 2.3884

V ietnamese 4.5376 4.2766 1.9699 4.2877 2.0382

Persian 5.6465 5.3015 1.7938 3.1923 2.3707

Hungarian 3.2337 2.6008 2.6311 2.5500 2.3878

Greek 4.4691 4.5671 1.8544 2.1225 3.0283

Romanian 3.5558 3.0566 2.8355 3.0083 2.8981

Swedish 3.7087 3.1398 2.9214 3.0977 2.9620

Ukrainian 5.5141 5.5985 4.5904 3.6179 3.0702

Finnish 3.2659 2.6748 2.4176 2.6473 2.6112

Korean 3.3556 3.6957 1.5977 3.3330 1.5667

Low-Langs
(Nguyen et al., 2023)

Hebrew 4.0487 1.8592 1.7875 4.3773 2.0380

Serbian 4.8596 3.9234 4.2642 3.6267 2.9896

Tamil 5.6161 2.0279 2.2615 2.4759 1.9765

Albanian 2.8919 2.6536 2.2945 2.6037 2.3631

Azerbaijani 2.8585 2.4857 2.0407 2.3797 2.1534

Kazakh 3.8172 2.9176 3.0869 2.9263 2.3236

Urdu 4.4364 2.8462 1.7260 2.7174 1.9458

Georgian 3.8237 1.4828 2.5595 2.6951 2.2077

Armenian 3.2133 1.1658 1.7000 1.8531 1.3922

Icelandic 2.7964 2.4860 2.3050 2.4330 2.3185

Table 6: The compression rates (bytes/token) of different tokenizers.



ARC-E BoolQ HellaSwag OpenbookQA PIQA WinoGrande Avg

Model #V (k) 0 5 0 5 0 5 0 5 0 5 0 5 0 5

Pythia1B 50.3 56.82 58.71 60.43 57.37 37.68 37.66 18.80 19.00 70.40 71.49 53.20 52.01 49.55 49.37

→ Gemma 256.0 51.09 52.44 53.12 52.35 35.00 35.05 20.20 18.60 64.80 65.83 53.12 51.62 46.22 45.98

→ Qwen2 152.1 53.41 55.47 53.52 55.81 36.12 36.38 20.80 18.00 68.50 68.88 54.38 52.80 47.79 47.89

→ LLaMA3 128.0 51.73 55.09 59.05 55.08 36.42 36.52 19.40 19.60 67.68 68.34 53.43 53.75 47.95 48.06

Table 7: The main results of replacing the vocabulary of Pythia for TokAlign using 2B tokens from the Pile corpus.

XNLI PAWS-X XCOPA XStoryCloze

Model en de zh ar th vi ur de en ja ko zh th vi ta en zh ar te Avg

Pythia1B 46.2 38.6 38.9 36.9 35.2 38.9 34.9 48.9 48.3 52.9 53.3 54.1 53.4 52.6 55.4 65.3 48.6 48.2 52.2 47.5

w/ Focus Init. 32.8 32.2 33.6 33.6 33.5 32.0 32.8 44.8 46.0 48.9 44.8 44.7 51.4 47.6 55.6 45.9 48.6 48.5 46.8 42.3

+ LAT 47.0 36.7 35.4 34.3 33.5 35.1 33.9 51.5 48.6 53.7 51.2 54.0 54.4 51.6 55.6 55.8 48.7 47.5 50.4 46.3

w/ TokAlign Init. 44.9 37.4 34.0 32.8 35.3 35.2 34.5 50.2 50.3 52.0 53.1 54.4 54.4 50.0 54.4 61.2 48.3 47.6 50.0 46.3

+ LAT 44.4 39.0 38.7 35.6 35.1 37.8 35.5 51.9 49.3 54.7 53.1 50.6 54.2 54.0 52.8 64.7 50.8 48.0 52.4 47.5

Pythia6.9B 53.0 40.7 41.7 38.9 37.3 41.3 35.1 49.4 47.1 52.9 52.2 52.4 55.0 53.6 53.6 73.1 54.6 49.9 53.9 49.2

w/ Focus Init. 31.5 31.3 33.0 32.6 33.4 32.2 32.6 44.8 46.4 52.3 51.2 54.5 52.4 47.4 56.0 44.9 47.3 48.5 47.6 43.1

+ LAT 45.1 37.7 35.3 33.4 35.0 38.1 33.8 49.5 49.0 52.6 54.5 55.3 52.0 51.2 53.8 61.5 48.3 47.3 53.4 46.7

w/ TokAlign Init. 50.8 39.1 34.4 34.5 33.9 34.6 35.2 50.0 47.7 53.9 54.3 55.2 53.2 51.2 53.2 68.0 48.5 47.8 50.2 47.1

+ LAT 49.2 41.5 37.8 36.9 38.7 41.9 34.7 51.2 49.5 53.5 54.8 55.4 53.4 59.8 52.8 73.0 53.9 49.2 53.6 49.5

Table 8: Five-shot in-context learning results of cross-lingual transfer.

French Chinese Korean

Top-3 dire(speak) aller(go) oui(are) 吃(eat) 科学(science) 智能(intelligence) 능능능(competence) 집집집(house) 왜왜왜(why)

Qwen2 (Target Tokenizer)

1 ada Ġsta Ġsalv allel Ġantagon _{[ Si ĠBart bst
2 ays ĠÃ¨ Ġvas Ġindicator Ġign liquid uria ĠPAT rains
3 Ġ- Ġdetermin Ġexplos Ġbasic Ġcritic Layer ost ĠEdgar irc

Gemma (Target Tokenizer)

1 Ġj Cor Tools kernel ĠLed Ġcommittee Ġmang Ġcru Ġcholesterol
2 Ġdar Ġequality directed sentence COUNT ĠUND ial Ġcal Ġmolecule
3 ba Lex afx messages Ġglycine Ġfactors Ġrebut Ġmalt apor

Table 9: The case study of new tokens from other languages in the target vocabulary with top-3 source tokens
aligned. The language family of French, Chinese, and Korean are Indo-European, Sino-Tibetan, and Koreanic,
respectively.
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Figure 8: The average vocabulary coverage (a) and initial training loss of Pythia1B (b) under different amount tokens
to train the GloVe vector.
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Figure 9: The training loss curve of Pythia1B for differ-
ent overlapping ratios.
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Figure 10: The training loss to different tokenizers using
random initialization baseline.

• The GloVe vector for each token is obtained
from the token-token co-occurrence infor-
mation. These aligned tokens often appear
together, e.g., 科学(science) and “Ġcritic”,
왜(why) and “rains”.

Therefore, it is better to choose a matric to
quantify the performance of the alignment ma-
trix learned, for example, the BLEU-1 score or
BERTScore in Section 3.2.
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Figure 11: The training loss of Pythia1B when replacing
tokenizer to Qwen2 under different percentages of shuf-
fling.

C Evaluation Tasks

We report the statistics of evaluation tasks used
in Table 10. Here are the descriptions of these
evaluation tasks:

Natural Language Inference aims to determine
the semantic relationship (Entailment, neural, or
contradiction) between the premise and hypothesis
(Conneau et al., 2018).

Paraphrase Detection requires the model to
evaluate whether the second sentence is a para-
phrase of the first sentence in this task (Yang et al.,
2019).

Commonsense Reasoning is a task for the model
to reason the gold answer based on the semantic
coherence and physic rules (Clark et al., 2018; Mi-
haylov et al., 2018; Zellers et al., 2019; Ponti et al.,
2020; Bisk et al., 2020; Sakaguchi et al., 2020;
Tikhonov and Ryabinin, 2021).



Task Dataset #Lang #Class Data Curation #Train #Dev #Test

Natural Language Inference XNLI 15 3 Translation − 2, 490 5, 010

Paraphrase Detection PAWS-X 7 2 Aligned − 2, 000 2, 000

Reasoning

ARC-Easy 1 4 − 2, 251 570 2, 376

HellaSwag 1 4 − 39, 905 10, 042 10, 003

OpenbookQA 1 4 − 4, 957 500 500

PIQA 1 2 − 16, 000 2, 000 3, 000

XCOPA 12 2 Translation 33, 810 100 500

XStoryCloze 11 2 Translation 361 − 1, 511

WinoGrad 1 2 − 40, 398 1, 267 1, 767

Reading Comprehension BoolQ 1 2 − 9, 427 3, 270 −

Table 10: Statistic of evaluation datasets used.

Reading Comprehension needs the model to
infer whether the given passage can answer the
query (Clark et al., 2019).

D Language Codes

We provide details of languages involved in Table
11. Following Lai et al. (2023), languages are di-
vided by the data ratios in CommomCrawl: High
(>1%), Medium (>0.1%), and Low (>0.01%).

ISO 639-1 Language Family

AR Arabic Afro-Asiatic
BN Bengali Indo-European
DE German Indo-European
EN English Indo-European
JA Japanese Japonic
KO Korean Koreanic
TA Tamil Dravidian
TE Telugu Dravidian
TH Thai Kra-Dai
UR Urdu Indo-European
VI Vietnamese Austroasiatic
ZH Chinese Sino-Tibetan

Table 11: Details of language codes in this work.

E Licenses of Scientific Artifacts

We follow and report the licenses of scientific arti-
facts involved in Table 12.

Name License

Transformers Apache 2.0 license
lm-evaluation-harness MIT license
matplotlib PSF license
Focus MIT license
WECHSEL MIT license
Pythia Apache 2.0 license
LLaMA3 Meta LLaMA 3 community license
Qwen2 Tongyi Qianwen license
Gemma Gemma license
The Pile MIT license

Table 12: Licenses of scientific artifacts involved in this
work.
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