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Modal Contrastive Learning Based End-to-End Text
Image Machine Translation

Cong Ma , Xu Han , Linghui Wu , Yaping Zhang , Yang Zhao , Yu Zhou ,
and Chengqing Zong , Fellow, IEEE

Abstract—Text image machine translation (TIMT) aims at di-
rectly translating text in the source language embedded in images
into the target language. Most existing systems follow the cascaded
pipeline diagram from recognition to translation, which suffers
from the problem of error propagation, parameter redundancy,
and information reduction. The end-to-end model has the potential
to alleviate these issues via bridging the recognition and translation
models. However, the challenge is the data limitation and modality
gap between text and image. In this paper, we propose a novel
end-to-end model, namely Modal contrastive learning based End-
to-end Text Image Machine Translation (METIMT), which allevi-
ates these issues through end-to-end text image machine translation
architecture and modal contrastive learning. Specifically, an image
encoder is designed to encode images into the same feature space of
corresponding text sentences, with the guidance of an intra-modal
and inter-modal contrastive learning module. To further promote
the research of text image machine translation, we have constructed
one synthetic and two real-world datasets. Extensive experiments
show that our lighter, faster model outperforms not only existing
pipeline methods but also state-of-the-art end-to-end models on
both synthetic and real-world evaluation sets. Our code and dataset
will be released to the public.

Index Terms—Text image machine translation, contrastive
learning, text image recognition, machine translation.

I. INTRODUCTION

T EXT image machine translation (TIMT) is widely used
in daily life like photo translation, which translates text

embedded in the image into another language. The current
solution for TIMT utilizes the pipeline diagram as shown in
Fig. 1(a), which first recognizes the source text with text line
recognition (TIR) module and then translates the text into target
language with machine translation (MT) module [1], [2], [3],
[4], [5]. However, the pipeline systems need to deploy two inde-
pendent modules without any information sharing, causing error
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Fig. 1. Comparison of pipeline and end-to-end text image translation. End-to-
end text image translation model outperforms pipeline diagram by alleviating
error propagation with fewer parameters and faster decoding speed.

propagation, parameter redundancy, and information reduction.
End-to-end TIMT model is potential to alleviate these issues as
shown in Fig. 1(b).

Existing end-to-end methods on TIMT explore various archi-
tectures [6] and multi-task learning with text line recognition
task [7], [8]. However, end-to-end models still perform worse
than pipeline models. We attribute the challenges of end-to-end
TIMT research to two major aspects.
� Modality gap: TIMT is a cross-modal generation task,

where the modality representation gap between text and
image is huge. Existing end-to-end models encode image
and text features independently without any information
interaction. Recently, several multimodal learning tasks
show promising improvements in both cross-modal under-
standing and generation tasks via reducing the modality
gap [9], [10], [11]. However, there is rarely research on
text image machine translation, where texts are embedded
in images.

� Data limitation: As we know, end-to-end models usually
rely on large-scale annotated datasets. However, it is an
extremely high cost to collect large-scale data for end-to-
end TIMT research and development. To the best of our
knowledge, there is no public dataset designed for TIMT.
Although there is some existing research exploring end-to-
end TIMT with text line recognition datasets [6], [7], [8],
they didn’t incorporate the text parallel corpus to alleviate
the problem of data limitation. Meanwhile, none of these
data is publicly released, which limits the research and
applications of TIMT.
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Fig. 2. Modal contrastive learning is utilized to make positive examples
attracted, and negative examples separated in feature space.

To address the above challenges in TIMT, we propose a
novel modal contrastive learning based end-to-end TIMT model,
where a transformer based backbone for end-to-end TIMT is
designed. Image and text features encoded by corresponding
encoders are then aligned through a modal contrastive learning
module, which attracts multimodal positive examples together,
and separates negative examples as shown in Fig. 2. Specifi-
cally, for sentences with the same/similar semantics, the feature
representation of these text sentences and text images should be
similar. Meanwhile, images of the same sentence with different
backgrounds, fonts, font colors, and blurring levels should also
have similar hidden features due to the same text information in
images. Sentences with similar semantics but different expres-
sions should also have similar hidden features. Sentences and
images with different semantics should have different feature
representations to obtain the corresponding translation results.
Furthermore, to alleviate the problem of data scarcity, a text
image synthesis method is utilized to synthesize text images
based on the large-scale bilingual text parallel corpus. We further
annotate subtitle and street view test sets to evaluate our method.
Experimental results show our proposed method outperforms the
existing pipeline diagram and end-to-end text image machine
translation models significantly.

The main contributions of our work are summarized as fol-
lows:
� We propose a novel end-to-end text image machine trans-

lation model named Modal contrastive learning based
End-to-end Text Image Machine Translation (METIMT),
which utilizes intra- and inter-modal contrastive learning
to alleviate the modality gap by encoding image and text
features into shared semantic feature space.

� A synthetic and two real-world datasets are constructed to
train and evaluate text image translation models. The syn-
thetic training dataset contains one million text-image pairs
for each translation direction. We believe these datasets can
effectively address the data limitation problem and further
promote the research of text image translation. All these
datasets will be released to the public.

� Extensive experimental results show our proposed
METIMT model outperforms pipeline systems through
alleviating the error propagation problem and achieves
new state-of-the-art among existing end-to-end text image
machine translation models.

II. METHODOLOGY

Our proposed modal contrastive learning based end-to-end
text image machine translation model is composed of two pri-
mary parts: a transformer based end-to-end TIMT architecture
and a modal contrastive learning module. The transformer based
end-to-end TIMT model is the backbone of transforming source
language text images into target language text sentences. Modal
contrastive learning, including both intra- and inter-modal con-
trastive learning, is designed to improve the representation learn-
ing of text images.

A. Problem Definition

TIMT is to translate source language text images into the
target language. Let DTIMT = {I, Y } be the dataset for TIMT,
which consists of source language text image I , and correspond-
ing target language translation Y . The end-to-end model opti-
mizes the translation loss function of translating target language
sequence Y given image input I:

LE(θE) = −
∑

(I,Y )∈DTIMT

logP (Y |I; θE) (1)

whereLE and θE are the loss function and estimated parameters
of end-to-end TIMT model respectively.

B. Transformer Based TIMT Architecture

In order to translate source language text images into target
language text sentences, we propose a transformer based archi-
tecture as shown in Fig. 3(a). In our proposed end-to-end TIMT
model, two modalities of inputs are considered during model
training: text images and text sentences. As a result, we adopt an
image encoder before the transformer encoder to encode images,
whereas the embedding layer is utilized to encode text sentences.

a) Image encoder: To represent image features from text
image input, we extend the transformer with an external image
encoder. as shown in Fig. 3(b). Image encoder is composed
of TPS module [12], [13], ResNet [14] and a transformer en-
coder [15].

For image input, text images in natural scenes have diverse
directions, which increases the difficulty of image feature encod-
ing. To reduce this burden, the image encoder first normalizes the
text image direction. As shown in Fig. 3(b), given a text image
I , thin-plate spline (TPS), a variant of the spatial transformation
network (STN) [16], is applied at the beginning of image encoder
I(·) to normalize input image by transforming the tilted texts
in the image into the horizontal direction [12], [13], which is
essential for robust training and prediction. Specifically, TPS
consists of a sequence of processes: finding a text boundary,
linking the location of the pixels in the boundary to those
of the normalized image, and generating a normalized image
by using the values of pixels and the linking information. As
shown in Fig. 3(b), TPS could transform text images of diverse
directions into the horizontal position and employs a smooth
spline interpolation, which releases the burden of extracting the
text image representation.
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Fig. 3. Diagram overview of our proposed method. (a) depicts the training procedure of modal contrastive learning based end-to-end text image translation.
(b) illustrates the details of the individual modules. (c) shows the evaluation procedure of our proposed end-to-end text image translation model.

ResNet, which is composed of stacked convolution, pooling,
and residual connection layers, is utilized to extract feature maps
of the given image input. Image features are extracted from the
final convolutional (29-th) layer of ResNet, which we implement
the same architecture as in [17]. Then, a transformer encoder
E(·) is utilized to encode semantic features:

FI = I(I; θI) = E(ResNet(TPS(I))) (2)

where FI ∈ RlI×hE is the encoded image feature. lI and hE

represent the length of image feature sequence and the hidden
size of transformer encoder. θI denotes parameters in image
encoder.

b) Text encoder: Text encoder T(·) is composed of a stan-
dard transformer encoder as shown in Fig. 3(b):

FT = T(X; θT) = E(X) (3)

where FT ∈ RlT×hE is the encoded text feature of source lan-
guage inputX . lT represents the length of text feature sequence.
Notice we utilize the same transformer hidden size hE in the
image encoder and text encoder. θT denotes parameters in text
encoder.

Global representation is calculated after the average pooling
operation:

FI = AvgPool(FI); FT = AvgPool(FT) (4)

whereFI ∈ RhE andFT ∈ RhE represent global representation
of image and text features, which are utilized to calculate the
contrastive loss in modal contrastive learning module.

c) Decoder: A transformer decoder D(·) is utilized to de-
code target language auto-regressively given text image feature
FI:

F
(I)
D = D(Yh, FI; θD) (5)

where F
(I)
D represents transformer decoder output based on

text image features. Yh denotes decoded history. θD denotes
parameters in decoder.

Parameters in the TIMT task are optimized with the cross
entropy loss function:

LTIMT = −
∑

(I,Y )∈DTIMT

logP (Y |I; θI, θD)

P (Y |I) ∝ exp(WoF
(I)
D ) (6)

where Wo is a linear transformation mapping decoder features
into target language space.

C. Modal Contrastive Learning

In the text image machine translation task, text images and text
sentences with similar semantic meaning should be close in se-
mantic feature space as shown in Fig. 2. Meanwhile, images with
the same text sentence content and different background images
should also have similar semantic features. In order to learn
semantic invariant representation, we adopt both intra-modal
and inter-modal contrastive learning to improve TIMT perfor-
mance as shown in Fig. 3(a). Intra-modal contrastive learning
includes image-image and text-text contrastive learning, while
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inter-modal contrastive learning denotes text-image contrastive
learning.

a) Text-text contrastive learning: In order to learn se-
mantic invariant text representation, we implement Text-Text
Contrastive Learning (TT-CL) to align text features of similar
sentences. Positive pairs of text-text contrastive learning are
generated by back translation [18], which translates the source
sentence into the target language and then translates back to the
source language. Let F i

T be the global feature of i-th source text

Xi, F i+
T be the global feature of back translation result, and F j

T

be the global feature of j-th source text Xj in the mini-batch.
Text-text contrastive loss is calculated as:

Li
TT = −log

exp(d(F i
T, F

i+
T )/τ)

∑K
j exp(d(F i

T, F
j
T)/τ)

(7)

where K represents the size of the mini-batch. τ represents
temperature parameter and d(q, k) denotes similarity metric.

b) Image-image contrastive learning: Given the same
sentence, its text image may have various formats due to dif-
ferent fonts, background images, and other image augmentation
operations. However, the semantic representation of these text
images should be similar. Based on this motivation, we imple-
ment Image-Image Contrastive Learning (II-CL) to learn image
format invariant features of text images. Let F i

I be the global

feature of i-th text image Ii, F i+
I be the global feature of text

image with the same content as Ii, and F j
I be the global feature

of j-th text image Ij in the mini-batch. Image-image contrastive
loss is calculated as:

Li
II = −log

exp(d(F i
I , F

i+
I )/τ)

∑K
j exp(d(F i

I , F
j
I )/τ)

(8)

c) Text-image contrastive learning: Considering the se-
mantic representation of text image should be similar to its text
sentence, inter-modal Text-Image Contrastive Learning (TI-CL)
is incorporated by aligning image features and text features.
Let F i

T be the global text feature of i-th source text Xi, F i
I be

the global image feature of i-th text image Ii. F j
I represents

the global text feature of j-th text image Ij in the mini-batch.
Text-image contrastive loss is calculated as:

Li
TI = −log

exp(d(F i
T, F

i
I )/τ)∑K

j exp(d(F i
T, F

j
I )/τ)

(9)

After weighted summation of different contrastive losses, the
final modal contrastive learning loss is:

LMCL =

|DTIMT|∑

i

(λII · Li
II + λTT · Li

TT + λTI · Li
TI) (10)

where λII, λTT and λTI represent the weight of corresponding
loss functions. With different weighted summations of con-
trastive losses, we evaluate the effectiveness of intra-modal and
inter-modal contrastive learning for TIMT. Notice we utilize the
same temperature parameter τ = 0.2 and cosine distance based
similarity function d(q, k) = qT k/‖q‖‖k‖ for all contrastive
loss functions.

D. Multi-Task Learning With Text Translation

In order to fully utilize the text parallel corpus, we incorporate
text translation auxiliary task during training. Specifically, the
transformer decoder D(·) is utilized to decode target language
auto-regressively given source language text features FT:

F
(T )
D = D(Yh, FT; θD) (11)

where F
(T )
D represents transformer decoder output based on

source language text features. Yh denotes decoded history. θD
denotes parameters in decoder. The final text translation loss
function is:

LMT =
∑

(X,Y )∈DMT

logP (Y |X; θT, θD)

P (Y |X) ∝ exp(WoF
(T )
D ) (12)

where DMT represents the text parallel corpus. X,Y denote
the source language sentence and target language sentence
respectively. Wo is a linear transformation mapping decoder
features into target language space as introduced in the text
image translation task.

E. Training and Inference

a) Training: Training procedure of our proposed method
optimizes text image translation loss LTIMT, modal contrastive
loss LMCL, and text translation loss LMT simultaneously as
shown in Fig. 3(a):

L = λTIMT · LTIMT + λMCL · LMCL + λMT · LMT (13)

where λTIMT, λMCL and λMT denotes the weight of end-to-end
text image translation loss, modal contrastive learning loss, and
text translation loss functions respectively.

b) Inference: The end-to-end TIMT model is evaluated
after removing the text encoder, which means the text infor-
mation is only utilized during training. As shown in Fig. 3(c),
our proposed model translates the target language based on
source language text image input without any text input or modal
contrastive information during evaluation.

III. EXPERIMENTS

A. Dataset

To alleviate data limitation in text image translation, we
construct a synthetic TIMT training dataset based on the bilin-
gual parallel corpus. Meanwhile, a synthetic test set, a subtitle
test set, and a street view test set are annotated to evaluate
our proposed method as shown in Fig. 4. Three translation
directions are utilized in this work: English-to-Chinese (En ⇒
Zh), English-to-German (En ⇒ De), and Chinese-to-English
(Zh ⇒ En). For synthetic dataset construction, we first prepare
text parallel corpus, font types, and background images. Then a
text image generator is utilized to synthesize images with source
language text in them.
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Fig. 4. Examples of text image translation datasets.

1) Preprocessing of Text Data: Text parallel data from Work-
shop of Machine Translation1 is utilized as the text content of
the synthetic text images. Before pre-processing, we remove
illegal sentences in the corpus which include duplicate sentences
and sentences in different languages other than the source or
target language (filtered by our language detection tools). After
this step, we obtain 5,984,287 (around 6 M) En ⇔ Zh parallel
sentences and 20,895,771 (around 21 M) En ⇒ De parallel
sentences.

Preprocessing steps include escape character transformation,
text normalization, and tokenization. First, all escape characters
are transformed into corresponding marks with a well-designed
rule-based replacement method. Second, numbers and punctu-
ations are normalized into single-byte characters (SBC), and
non-print symbols or marks are removed. Third, we tokenize
sentences and obtain subword granularity tokenized sentences.
English and German sentences are tokenized by the toolkit in
Moses.2 Chinese sentences are tokenized by Jieba.3 We then
split tokens into subword units.4 The number of merge opera-
tions in byte pair encoding (BPE) is set to 32,000 for all lan-
guages [19]. All these preprocessed text sentences are used for
text machine translation with multi-task training in our proposed
method.

For the text sentence filtering, we discard Chinese sentences
longer than 40 characters and English, German sentences longer
than 80 characters. This length filter threshold is set after analysis
of the length distribution of real-world text images. The valida-
tion set is constructed with the same filtering method. Sentences
in the IWSLT test16, IWSLT test17, WMT test17, WMT test18,
and WMT test19 are used to synthesize synthetic TIMT test
set with the same method as the training set. Statistics of the
synthetic dataset are shown in Table I.

In summary, we finally obtain 1,000,000 parallel sentences of
each language direction for text image machine translation and
also keep large-scale text parallel sentences for text machine
translation.

2) Text Image Synthesis: Text images are composed of text
contents and background images. text contents are collected and

1http://www.statmt.org/wmt18/
2hppts://www.statmt.org/moses/
3https://github.com/fxsjy/jieba
4https://github.com/rsennrich/subword-nmt

TABLE I
STATISTICS OF SAMPLES IN SYNTHETIC, SUBTITLE, AND STREET VIEW TEXT

IMAGE TRANSLATION DATASETS

processed as introduced in Preprocessing of Text Data. For text
image effects, font rendering, text skewing, projective distortion,
noise, font color, and background images are mainly considered
as shown in Fig. 5.
� Font Rendering: 20 Chinese font types and 100 English

font types are collected to render texts in images. Given one
text sentence, one font is randomly sampled from the font
set and utilized as the font in the corresponding synthetic
text image. Examples of different font types are shown in
Fig. 5(a) and (b).

� Text Skewing: The Text line in the image is randomly
skewed by minus five to five degrees from the horizontal
as shown in Fig. 5(c) and (d).

� Projective Distortion: The text line in the image is distorted
with a random, full-projection transformation, simulating
the 3D world. Sine and Cosine curve based distortion are
utilized during text image synthesis. Examples are shown
in Fig. 5(e) and (f).

� Noise: Gaussian noise, random blur effects, and image
compression effects are introduced to the text images as
shown in Fig. 5(g).

� Font Color: Font color is randomly sampled from all RGB
color combinations as shown in Fig. 5(h).

� Background Images: Video frames are utilized as the back-
ground images of synthetic text images. Various genres
of videos like cartoons, movies, and soap operas from
Youtube5 and TED6 video websites are collected after
splitting into frames. Finally, 51,454 frame images (22,570
YouTube video frames and 28,884 TED video frames) are
utilized as the background images of synthetic text images.
Examples are shown in Fig. 5(i) and (j).

5https://www.youtube.com/
6https://www.ted.com/
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Fig. 5. Examples of text image effects.

To synthesize text images efficiently, Text Recognition Data
Generator7 toolkit is used to synthesize source language text im-
ages with prepared background images, randomly selected fonts,
and various text shapes as shown in Fig. 4(a). The final format
of the synthetic training dataset forms as triple tuples {source
language image, source language text, target language
text}.

3) Real-World Text Image Annotation: To evaluate the ef-
fectiveness of our proposed model, we also annotate real-world
evaluation datasets.
� Subtitle Dataset: This dataset takes real-world video to

generate text images. First, Videos with bilingual subtitles
are collected and split into frames. The subtitle part of the
video frame is detected with text detection toolkit [20]. Hu-
man translators then wrote down the subtitle transcripts and
the corresponding translated results as shown in Fig. 4(b).
Finally, 1,040 text images and corresponding translations
are obtained in the subtitle evaluation dataset.

� Street View Dataset: Real-world street view images from
Tencent Chinese Street View Dataset8 is used to con-
struct street view dataset [21]. We discard the image by
considering the image size smaller than 6 KB (around
2000 pixels) because too small texts in the image are
hard to recognize by humans and are seldom occurred in
real-world applications. From filtered text images, human
translators translate text images into the target language
English as shown in Fig. 4(c). Finally, 1,198 text images
and corresponding translations are obtained in the street
view evaluation dataset.

7https://github.com/Belval/TextRecognitionDataGenerator
8https://ctwdataset.github.io/

B. Experimental Settings

For model settings, the image encoder which includes
TPS and ResNet utilizes the same configuration in [22]. The
transformer encoder and decoder utilize the configuration of
transformer_base in [15], which contains 6-layer encoders and
6-layer decoders with 512-dimensional hidden sizes. The max-
imum length for Chinese, English, and German is set to 40, 80,
and 80 characters respectively. Preprocessed image height is set
to 32 pixels and the input channel is 3. To align the length of
image features and text features, preprocessed image width is
resized to 160, 320, and 320 pixels respectively. The batch size is
set to 64 for all model settings. All models are trained with Adam
optimizer [23] for 300,000 steps on 2 NVIDIA V100 GPUs. To
offer a fair comparison, all models are trained with the same
dataset introduced in Section III-A.

For evaluation metric, we report detokenized BLEU [24]
using sacre-BLEU9 for text image translation task on synthetic,
subtitle, and street view test sets.

C. Baseline Models

We compare our proposed method with the following end-to-
end text image machine translation baseline models:
� TRBA: This model represents the best model setting in [22],

Which includes TPS net, ResNet for image feature extrac-
tion, BiLSTM for sequential modeling, and attention-based
RNN for text image recognition.10 We train this model with
our constructed synthetic training set under the end-to-end
text image translation protocol.

9https://github.com/mjpost/sacrebleu
10https://github.com/clovaai/deep-text-recognition-benchmark
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TABLE II
PERFORMANCE OF END-TO-END TEXT IMAGE TRANSLATION ON SYNTHETIC DATASET

� CLTIR: A cross-lingual text image recognition (CLTIR)
architecture is proposed in [7], which contains a convolu-
tional image encoder, a semantic encoder, a target language
decoder, and an alignment model. It further trained the
end-to-end TIMT model and text line recognition model
simultaneously with a shared convolutional image encoder.
For text line recognition multi-task setting, bidirectional
long short term memory (BiLSTM) and connectionist tem-
poral classification (CTC) are combined to generate source
language recognition results.

� ItNet: This model utilizes a convolutional neural net-
work for image encoding, and a transformer decoder for
target language generation [6]. Specifically, five differ-
ent encoder settings (like variants of ResNet and Dark-
Net) and four different decoder settings (variants of
the transformer) are studied how encoder and decoder
size affect model accuracy. To offer a faire comparison,
ResNet and transformer_Base setting is utilized in this
paper due to the similar model size to other baseline
models.

� RTNet: Feature transformer is proposed to bridge the se-
mantic gaps between image encoder and text decoder [8].
Specifically, a pre-trained text image recognition encoder
is connected with a pre-trained text machine transla-
tion decoder through a feature transformer module, and
the feature transformer is trained on synthetic TIMT
data with multi-task training with text line recognition
task.

D. Results and Analysis

a) Results of end-to-end TIMT on synthetic dataset: Ta-
ble II shows the results of end-to-end TIMT on synthetic dataset.
Experimental results show our proposed end-to-end TIMT back-
bone ResNet+Transformer_Base (line 7) outperforms previous
vanilla end-to-end architecture in all language directions (line
1-6). Results of intra-modal contrastive learning reveal that

image-image contrastive learning (II-CL) is more effective for
end-to-end TIMT than text-text contrastive learning (TT-CL) as
shown in line 8-10 in Table II. Inter-modal text-image contrastive
learning (TI-CL) (line 11) improves translation performance in
all translation directions compared with intra-modal contrastive
learning (line 8-10). Furthermore, the translation performance
is improved after incorporating both intra-modal and inter-
modal contrastive learning (line 12, 13), which indicates that
intra-modal and inter-modal contrastive learning are comple-
mentary. Finally, our best model (line14) named METIMT,
which is composed of text-image, image-image, and text-text
contrastive learning achieves new state-of-the-art among all end-
to-end text image machine translation models and multi-task
enhanced models.

b) Results on real-world evaluation dataset: To evaluate
the generalization of models trained with the synthetic dataset,
we also evaluate models on real-world datasets as shown in
Table IV. With both intra-modal and inter-modal contrastive
learning, our proposed method achieves the best translation
performance among all models, which is consistent with the
results in the synthetic evaluation dataset. Text images in the
subtitle dataset are always shown with standard fonts and clean
background images. As a result, the translation performance
of the end-to-end model is even comparable with text machine
translation. The street view test set is extracted from real-world
images on the street and the texts in it are strongly influenced
by light, background, and various fonts, which is still a big
challenge for further improvements.

c) Comparison with pipeline system: We compare the per-
formance of the end-to-end TIMT model with the pipeline
diagram. For text line recognition models, we evaluate
recognition performance on English synthetic text image
recognition datasets, and Table III shows the word er-
ror rate (WER) of recognition results. Compared with the
recurrent neural network based VGG+BiLSTM+CTC [25]
and TPS+ResNet+BiLSTM+Attn [22], ResNet+Transformer
achieves lower WER on text line image recognition, which
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TABLE III
COMPARISON OF VARIOUS PIPELINE AND METIMT ARCHITECTURES ON ENGLISH-TO-CHINESE SYNTHETIC VALIDATION SET

TABLE IV
PERFORMANCE OF TEXT IMAGE TRANSLATION ON REAL-WORLD TEST

DATASETS

means incorporating transformer is better for text line
recognition task. For the machine translation task, Trans-
former_Base and Transformer_Big models [15] are evaluated,
and Transformer_Big achieves higher BLEU score than Trans-
former_Base in pipeline text image translation task. METIMT
models represent various end-to-end models trained with modal
contrastive learning. From this experiment, stronger encoders
and target language decoders bring further improvements for
text image translation task. As a result, ResNet and transformer
combined TIMT model is taken as the principle architecture
in our experiments. From the comparison between various
pipeline and METIMT models, better text line image recognition
and machine translation model of pipeline system improves
the TIMT performance. Meanwhile, corresponding architec-
ture based METIMT, which utilizes a similar encoder as the
TIR encoder and a similar decoder as the MT decoder, out-
performs pipeline systems, indicating our proposed METIMT
has good generalization among different encoder-decoder
architectures.

Table V shows the comparison between the
ResNet+Transformer_Base pipeline system and the
corresponding end-to-end METIMT model. BLEU score,
amount of trainable parameters, and decoding speed are
evaluated to compare the various aspects of the pipeline system
and METIMT based end-to-end model. The Δ is calculated as:

ΔBLEU = BLEU(METIMT) - BLEU(Pipeline)

ΔParams. =
Params.(Pipeline)-Params.(METIMT)

Params.(Pipeline)

ΔSpeed =
Speed(METIMT)
Speed(Pipeline)

(14)

TABLE V
COMPARISON BETWEEN PIPELINE SYSTEM AND OUR BEST END-TO-END TEXT

IMAGE TRANSLATION MODEL ON SYNTHETIC TEST SET

Our end-to-end METIMT model outperforms pipeline sys-
tem in all three translation directions, with 2.75, 3.67, and
0.62 BLEU improvements on English-to-Chinese, English-to-
German, and Chinese-to-English translation directions respec-
tively. For model size, our end-to-end model decrease 37.5%,
36.4%, and 39.2% trainable parameters compared with the
pipeline system respectively. Furthermore, the METIMT model
outperforms the pipeline system with 1.70x, 1.64x, and 1.87x
times faster decoding speed. This comparison shows our pro-
posed method could effectively alleviate the error propagation,
parameter redundancy, and decoding delay problems in pipeline
systems.

To further analyze the improvements of METIMT, text images
grouped by word error rate in the text line recognition model are
decoded by pipeline and METIMT respectively. Fig. 7 shows
the BLEU score calculated by different WER groups. When
the text image recognition model in pipeline system makes few
recognition errors (as shown in group WER ∈ [0%, 25%) of
Fig. 7), the MT model can translate good results, and METIMT
just achieves slight improvements. Fig. 6(a) and (b) show cases
in WER ∈ [0%, 25%) group. METIMT performs better than
the pipeline system in Fig. 6(a), where METIMT translates
most of the meaning, but the TIR model made a recognition
error of ‘brain’ into ‘bird’ leading further translation error. In
Fig. 6(b), the pipeline system performs well due to the perfect
recognition results of the TIR model, but METIMT makes minor
errors in translation results. In group WER ∈ [25%, 50%) and
WER ∈ [50%, 75%) of Fig. 7, METIMT performs much better
than pipeline system and Fig. 6(c) shows one case in WER ∈
[25%, 50%) group. TIR model in the pipeline system recognizes
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Fig. 6. Case study of text image translation in various WER groups. Red color means mistakes, and green color means correct translation.

Fig. 7. Comparison of experimental results grouped by word error rate in
pipeline system. WER ∈ [25%, 50%) represents sentences of which word
error rate is greater than or equal to 20% and less than 50%.

“That was” as “T hal mas” by mistake, which is further propa-
gated by the MT model. METIMT effectively addresses the error
propagation problem and translates the correct target sentence.
When the text image is too difficult to recognize as shown in
Fig. 6(d), which is a case in WER ∈ [75%, 100%) group, both
pipeline and METIMT models perform poor due to the difficulty
of recognizing texts in such images. As a result, METIMT can
alleviate the error propagation problems in pipeline system when
the TIR model makes several recognition errors.

d) Comparison with production OCR and MT system:
To compare with the production OCR system followed by a
translation system, METIT is compared with Google Tesseract-
OCR 11 and Google MT .12 Table VI shows the results of the
Google Tesseract-OCR&MT pipeline system, METIT, and OCR
Ground Truth+Google MT. OCR Ground Truth+Google MT
represents the inputs of the MT system are ground truth of

11https://github.com/tesseract-ocr/tesseract
12https://translate.google.com

TABLE VI
COMPARISON WITH COMMERCIAL OCR AND MT PIPELINE SYSTEM

text images, which have no recognition error. As a result, OCR
Ground Truth+Google MT is the current upper-bound system
for text image translation task. Since synthetic test images are
rendered with various effects as introduced in Section III-A,
the performance of Google Tesseract-OCR performs is limited
with an average word error rate of 54.41% on synthetic test sets.
Although the text direction in the subtitle test set is horizontal
and the font is standard, tesseract OCR performs 33.91% word
error rate due to the various background images. Recognition
errors are further propagated in the Google MT system, and the
translation performance is worse than METIMT. From this ex-
periment, the existing production OCR and MT pipeline system
performs not well enough on text image translation task and
the main reason for the performance drop is the error made by
OCR models. As a result, our proposed end-to-end METIMT
can effectively address the error propagation problem in OCR
and MT pipeline systems.

e) Effect of modal contrastive learning: To analyze the
effect of modal contrastive learning, we visualize the image and
text features without and with modal contrastive learning. Fig. 8
shows the text and image features after t-SNE dimension reduc-
tion. Both text and image features are reduced to 2-dimensional
feature space, and the axes represent the feature values of two
dimensions. Without modal contrastive learning, image and text
features are encoded into separated feature subspaces as shown
in Fig. 8(a), even if they are the same sentence with just modality
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Fig. 8. Visualization of image and text features after t-SNE dimensional reduction. Red round points • denote image features while blue square points � represent
text features. Image and text features are encoded into separated subspace when training independently as shown in (a). Modal contrastive learning aligns image
and text features of the same sentence as shown in (b). Axes represent two dimensions of features after t-SNE dimension reduction.

Fig. 9. Case study of text image translation. Red color means mistakes, and green color means correct translation. These examples show our proposed METIT
outperforms pipeline system by alleviating error propagation.

difference. Modal contrastive learning attracts different modal-
ity features of the same sentence together as shown in Fig. 8(b),
indicating text images and text sentences are mapped into the
same semantic feature space. Furthermore, when the text image
is difficult to recognize, like the example in Fig. 6(d) and No.4
example in Fig. 8, the image and text features are not aligned
well, leading to translation errors. While for text images and
text sentences that have the same semantic content and similar
feature vectors after modal contrastive learning, the translation
performance is significantly improved by aligning image and
text features before decoding.

f) Hyper-parameter analysis: Modal contrastive loss
weight λMCL is the key parameter during model training. We
evaluate several hyper-parameter settings as shown in Fig. 10.
From this evaluation, the optimal value of λMCL is 0.3. With the
increment of λMCL, the performance drops due to the main task
in our work is text image translation. In order to have a good
translation performance, the weight of text image translation

TABLE VII
ABLATION STUDY OF ENGLISH-TO-CHINESE TEXT IMAGE TRANSLATION ON

SYNTHETIC VALIDATION AND TEST SET

λTIMT and weight of text translation λMT are set to 1.0 in our
experiments.

g) Ablation study of various contrastive losses: Table VII
shows the ablation study of components in our proposed meth-
ods. From the ablation study on the synthetic validation set,
1.79 BLEU drops without inter-modal text-image contrastive
learning (TI-CL). Removing image-image contrastive learning
(II-CL) hurts performance by 1.32 BLEU and 0.64 BLEU drops
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Fig. 10. Hyper-parameter evaluation of modal contrastive loss weight λMCL
on English-to-Chinese synthetic valid set.

Fig. 11. Training losses of various model settings. TPS+ResNet+Tr. represents
our proposed end-to-end text image translation model, which is composed of
TPS, ResNet for image feature extraction, and a transformer for target language
generation. TT-CL, II-CL, and TI-CL represent text-text, image-image, and text-
image contrastive learning, respectively.

when removing text-text contrastive learning (TT-CL). Ablation
study indicates training with modal contrastive learning is vital
for text image translation.

h) Case study on real-world test sets: Fig. 9 shows the case
study of text image translation on real-world test sets. In these
two examples, the pipeline diagram makes mistakes of recog-
nition, which further leads to failed translation. Our proposed
model, which is trained with both intra-modal and inter-modal
contrastive learning, generates good translation without errors,
indicating end-to-end model could effectively alleviate the error
propagation in the pipeline system.

i) Convergence analysis: Fig. 11 shows the training loss
over time steps for different model settings. The vanilla end-
to-end model (TPS+ResNet+Transformer, TPS+ResNet+Tr.) is

difficult to optimize. Incorporating modal contrastive learning
improves the convergence speed, indicating modal contrastive
learning is crucial for the optimization procedure of text im-
age translation. Furthermore, intra- and inter-modal contrastive
learning could improve the training speed complementarily.

IV. RELATED WORK

A. Text Image Machine Translation

Text image machine translation has traditionally been ap-
proached through a pipeline system which consists of a text
line recognition model [22], [25], [26], [27], [28] and a text
MT model [15], [29], [30]. The pipeline system recognizes
texts in images with a recognition model, and then translates
to the target language with a text translation model, causing
error propagation, parameter redundancy, and decoding delay
problems [1], [3], [4]. Recent work explores translating text
images with the end-to-end model. [31] took a preliminary
step for image-to-image translation by transforming source lan-
guage images into target images directly without considering
any text information, but the experimental result shows vanilla
end-to-end image-to-image translation performs much worse
than pipeline models. [7] proposed to train end-to-end TIMT
by multi-task training with text image recognition task, which
performs comparably with pipeline models. ItNet was designed
for the TIMT task, which studied various CNN-based encoder
and transformer-based decoder architecture combinations [6].
RTNet was proposed to connect the text line recognition en-
coder and MT decoder with a feature transformer module, and
fine-tune the feature transformer module by multi-task training
of end-to-end TIMT task and text image recognition task [8].

B. Contrastive Learning

Contrastive learning is an effective method for representa-
tion learning [32], [33]. Significant improvements have been
shown in cross-lingual pre-training, language understanding,
and text representation learning [34], [35], [36], [37], [38],
[39]. Multimodal contrastive learning was proven effective to
bridge text and image representation learning [9], [10], [11].
Although research in multimodal contrastive learning explores
both intra-modal and inter-modal contrastive learning, they are
limited in the area of multimodal understanding tasks, like visual
question answering, image caption, text-image retrieval, and
so on. Different from multimodal contrastive learning between
images and corresponding captions, our proposed end-to-end
TIMT model with modal contrastive learning aims to learn
semantic invariant, background image invariant, and font in-
variant features for text images through both intra-modal and
inter-modal contrastive learning. To the best of our knowledge,
this is the first time to improve TIMT performance with modal
contrastive learning.

C. Multimodal Machine Translation

Transforming visual modal data into target language textual
strings, multi-modal machine translation [40], [41], [42] takes
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bi-modal inputs including source language sentences and se-
mantic aligned images to predict target language sentences.
Research on MMT proposes various model architectures to
incorporate visual and textual information together to guide
translation. Various datasets for multimodal machine translation
are proposed to improve the image-guided translation [43], [44].
Research of multimodal machine translation mainly focuses on
translating source language with the help of semantically related
images rather than translating the text contents in images.

V. CONCLUSION

In this paper, we propose a novel modal contrastive text
image machine translation model to align text image and text
sentence representation learning through both intra-modal and
inter-modal contrastive learning. Experimental results show our
end-to-end TIMT model achieves new state-of-the-art among
end-to-end TIMT models. Meanwhile, our proposed method
effectively alleviates error propagation problems in pipeline sys-
tems with fewer parameters and faster decoding speed. Further-
more, one synthetic and two real-world datasets are constructed
to alleviate the text image translation data limitation problem.
Analysis shows models trained with our synthetic dataset also
have good generalization on the real-world test sets.

In the future, we will incorporate text line detection mod-
ule into end-to-end text image translation and construct more
scenario datasets to further promote the research of text image
translation.
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