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Abstract
End-to-end speech translation (ST), which directly translates
from source language speech into target language text, has at-
tracted intensive attentions in recent years. Compared to con-
ventional pipeline systems, end-to-end ST model has poten-
tial benefits of lower latency, smaller model size and less er-
ror propagation. However, it is notoriously difficult to imple-
ment such model which combines automatic speech recogni-
tion (ASR) and machine translation (MT) together. In this pa-
per, we propose a knowledge distillation approach to improve
ST by transferring the knowledge from text translation. Specif-
ically, we first train a text translation model, regarded as the
teacher model, and then ST model is trained to learn the output
probabilities of teacher model through knowledge distillation.
Experiments on English-French Augmented LibriSpeech and
English-Chinese TED corpus show that end-to-end ST is possi-
ble to implement on both similar and dissimilar language pairs.
In addition, with the instruction of the teacher model, end-to-
end ST model can gain significant improvements by over 3.5
BLEU points.
Index Terms: Speech recognition, Speech translation, Knowl-
edge distillation, Transformer

1. Introduction
Conventional speech translation system is a pipeline of two
main components: an automatic speech recognition (ASR)
model which transcribes source language utterances, and a text
machine translation (MT) model which translates the transcripts
into target language [1, 2, 3, 4, 5, 6]. This pipeline system usu-
ally suffers from time delay, parameter redundancy and error
accumulation. In contrast, end-to-end speech translation ST is
more compact and efficient. It can jointly optimize ASR and
MT in one model and directly generate translations from source
language utterances. Therefore, this model has become a new
trend in speech translation fields [7, 8, 9, 10, 11, 12].

However, despite appealing advantages of end-to-end ST
model, its performance is generally inferior. One reason is due
to scarce data of audios paired with target translations. Previ-
ous studies resort pretraining or multi-task learning to improve
the translation quality. They either pretrain ASR task on high-
resource data [12], or use multi-task learning to train ST model
with ASR or MT model simultaneously [10, 11]. Nevertheless,
they only gain limited improvements and do not take full ad-
vantage of text data. We notice that the performance between
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speech translation and text translation exists a huge gap, thus
how to utilize MT model to instruct ST model is of great signif-
icance.

It is a challenge to train an end-to-end ST model directly
from uttrances without transcriptions while achieving compa-
rable performance as text translation model. Considering that
text translation models are prominently superior to ST model,
we improve ST model by leveraging knowledge distillation. In
knowledge distillation, there is a big superior teacher model
with a small inferior student model. The student model is
trained to imitate the behaviour of teacher model, such as output
probabilities [13, 14], hidden representations [15, 16], or gen-
erated sequences [17], which can alleviate the performance gap
between itself and the teacher model [13].

In this paper, we improve end-to-end ST model through
knowledge distillation by learning knowledge from text transla-
tion model. We first train a text MT model (regarded as teacher)
on parallel text data and then an end-to-end ST model (regarded
as student) is trained to learn from both correction translations
and the output probabilities of teacher model. Experiments on
English-French Augmented LibriSpeech and English-Chinese
TED corpus show that it is possible to train a compact end-to-
end speech translation model on both similar and dissimilar lan-
guage pairs. Furthermore, with the instruction of teacher model,
end-to-end ST model can achieve significant improvements, ap-
proaching to the traditional pipeline system.

2. Related Work
End-to-end model has already become a dominant paradigm in
machine translation, which adopts an encoder-decoder architec-
ture and generates target tokens from left to right at each step
[2, 4, 6, 18]. This model has also achieved promising results in
ASR fields [3, 5, 19]. Recent studies purpose a further attempt
to combine these two tasks together by building an end-to-end
speech translation without the use of trancriptions during learn-
ing or decoding.

Anastasopoulos et al. [7] used k-means clustering to cluster
repeated audio patterns and automatically align spoken words
with their translations. Duong et al. [8] focused on the align-
ment between speech and translated phrase but not to directly
predict the final translations. Bérard et al. [9] gave the first
proof that end-to-end speech translation can be implemented
without using any source trancriptions. They further conducted
experimetns on a larger English-French dataset and proved that
pretraining on ASR task can improve the performance of ST
model [11]. Weiss et al. [10] used multi-task learning and
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first showed that end-to-end model can outperform a cascade
of independently trained pipeline system on Fisher Callhome
Spanish-English speech translation task. Bansal et al. [12]
found that pretraining encoder on higher-resource ASR train-
ing data can achieve significant improvements on low-resource
speech translation, even when the audios in two tasks do not be-
long to the same language. However, these work mainly resort
to pretraining acoustic encoder and do not take full advantage
of text data.

Knowledge distillation is first adopted to apply for model
compression, whose main idea is to train a student model
to mimic the behaviors of a teacher model. It has soon
been applied to a variety of tasks, like image classification
[13, 20, 21, 22], speech recognition [13] and natural language
processing [14, 17, 23]. The teacher and student model in con-
ventional knowledge distillation usually handle the same task.
However, in our method the teacher model and student model
have different input modalities where the former input is text
and the latter is audio.

3. Models
We apply end-to-end models with almost the same architec-
ture for all three tasks (ASR, ST and MT). The architecture
is adapted from Transformer model, which is the state-of-art
model in MT task [6]. Recently, this model also begins to be
used in ASR task, showing a decent performance [24, 25]. In
this section, we first describe the core architecture of Trans-
former and then show how this model is applied to ASR/ST and
MT task.

3.1. Core Module of Transformer

Transformer model adopts an encoder-decoder architecture
with entire self-attention mechanism including scaled dot-
product attention and multi-head attention. It consists of N
stacked encoder and decoder layers. Each encoder layer has
two blocks, which is a self-attention block followed by a
feed-forward block. Decoder layer has the same architecture
with encoder layer except an extra encoder-decoder attention
block to perform attention over the output of the top encoder
layer. Residual connection and layer normalization are em-
ployed around each block. In addition, the self-attention block
in the decoder is modified with mask to prevent present posi-
tions attending to future positions during training.

Multi-head attention is applied in self-attention and
encoder-decoder attention blocks to obtain information from
different representation subspaces at different positions. Each
head is corresponding to a scaled dot-product attention, which
operates on query Q, key K and value V:

Attention(Q,K,V) = softmax(
QKT

√
dk

)V (1)

where dk is the dimension of the key. Then the output values
are concatenated,

MultiHead(Q,K,V) = Concat(head1, · · · ,headh)W
O

where headi = Attention(QWQ
i ,KWK

i ,VWV
i )
(2)

where the WQ
i ∈ Rdmodel×dq , WK

i ∈ Rdmodel×dk , WV
i ∈

Rdmodel×dv and WO ∈ Rdv×dmodel are projection matrices.
dq = dk = dv = dmodel/h, h is the number of heads.
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Figure 1: Model architecture of our method. The left part is a
ST model, regarded as a student model, whose input is speech.
The right part is MT model, regarded as a teacher model, whose
input is the source transcription. The top part is distillation loss,
where the student model learns from not only the correct texts,
but also the output probabilities of the teacher model.

Position-wise feed-forward block is composed of two linear
transformations with a ReLU activation in between.

FFN(x) = max(0, xW1 + b1)W2 + b2 (3)

where the weights W1 ∈ Rdmodel×dff , W2 ∈ Rdff×dmodel

and the biases b1 ∈ Rdff , b2 ∈ Rdmodel .
For the sake of brevity, we refer readers to [6] for additional

details of the architecture.

3.2. ASR/ST Model

The ASR/ST model is shown in the left part of Figure 1, whose
input is a series of discrete-time speech signal. We first use
log-Mel filterbank to convert raw speech signal into a sequence
of acoustic features and then apply mean and variance normal-
ization. To prevent the GPU memory overflow and produce
approximate hidden representation length against target length,
we apply frame stack and downsample similar to [26, 27]. The
final acoustic feature sequence is S = (s1, s2, · · · , sn) with
dimension of dfilterbank × numstack. Then the feature se-
quence is fed into a linear transformation with a normalization
layer to map with model dimension dmodel. In addition, posi-
tional encodings are added to the feature sequence in order to
enable the model to attend by relative positions. This sequence
is treated as the final input. Other parts remain the same as
original Transformer model. For ASR task the target output is
source language text, and target translation text for end-to-end
ST task.
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3.3. MT Model

We also use Transformer to train a baseline MT model, as
shown in the right part of Figure 1. The difference between
MT model and ASR/ST model is the input to the encoder. In
MT model, X = (x1, x2, · · · , xn) is a sequence of tokens, rep-
resenting source sentence. We embed the words in sequence
X into a real continuous space with the dimension of Rd

model,
which can be fed into a neural network.

3.4. Knowledge Distillation

Training an end-to-end ST model is more difficult than MT
model. The accuracy of the latter is usually much higher than
the former. Therefore, we present MT model as a teacher to
teach ST model. Here we give a description of the idea of
knowledge distillation.

Denote D = (s, x, y) as the corpus of triple data including
audio, transcription in source language and its translation. The
log-likelihood loss of ST model can be formulated as follows:

LST(D; θ) = −
∑

(s,y)∈D

logP (y|s; θ) (4)

logP (y|s; θ) =
N∑
t=1

|V |∑
k=1

1(yt = k)logP (yt = k|y<t, s; θ)

(5)
where s is the acoustic feature sequence of source speech signal,
y is the target translated sentence, N is the length of the output
sequence, |V | is the vocabulary size of the output language, yt
is the t-th output token, 1(yt = k) is an indicator function
which indicates whether the output token is equal to the ground-
truth.

We denote the output distribution of teacher model for to-
ken yt as Q(yt|y<t, x; θT ), and x is the source transcribed sen-
tence which corresponds to speech signal s. Then the cross
entropy between the distributions of teacher and student is:

LKD(D; θ, θT ) = −
∑

(x,y)∈D

N∑
t=1

|V |∑
k=1

Q(yt = k|y<t, x; θT )

logP (yt = k|y<t, x; θ)
(6)

During distillation, the student model not only learns from
correct texts, but also the output probabilities of teacher model,
which is more smooth and yields smaller variance in gradients
[13]. Then the total loss function is,

LALL(D; θ; θT ) = (1−λ)LST(D; θ)+λLKD(D; θ, θT ) (7)

where λ is a hyper-parameter to trade off two loss terms.

4. Experiments
4.1. Datasets

We conduct experiments on Augmented LibriSpeech which is
collected by [28] and available for free. This corpus is built by
automatically aligning e-books in French with English transla-
tions in LibriSpeech [29], which contains 236 hours of audio in
total. They provide quadruplets: English audios, English tran-
scriptions, French text translations from alignment of e-books
and Google Translate references. Following [11], We only use
the 100 hours clean train set for training, with 2 hours devel-
opment set and 4 hours test set, which corresponds to 47,271,

1,071 and 2,048 sentences respectively. To be consistent with
their settings, we also double the training size by concatenating
the aligned references with the Google Translate references.

To verify whether end-to-end ST model can handle dis-
similar language pairs, we build a corpus in English-Chinese
direction. Raw data (including video, subtitles and times-
tamps) are crawled from TED website1. Audio files in each
talk are extracted from video by ffmpeg2 and saved in wav
format. We divide each audio file into small segments based
on timestamps instead of voice activity detection (VAD), be-
cause it eliminates the influence of improper fragments and
guarantees each utterance containing complete semantic infor-
mation, which is important for translation. In the end, we to-
tally obtain 317,088 utterances (∼542 hours). Development
and test sets are split according to the partition in IWSLT. We
use dev2010 as development set and tst2015 as test set, which
has 835 utterances (∼1.48 hours) and 1,223 utterances (∼2.37
hours) respectively. The remaining data are put into training
set. This dataset is available on http://www.nlpr.ia.
ac.cn/cip/dataset.htm.

4.2. Experimental Setup

Our acoustic features are 80-dimensional log-Mel filterbanks
extracted with a step size of 10ms and window size of 25ms, ex-
tended with mean subtraction and variance normalization. The
features are stacked with 3 frames to the left and downsample
to a 30ms frame rate. We lowercase all the texts, tokenize and
apply normalize punctuations by Moses 3. For Augmented Lib-
riSpeech corpus, we apply BPE [30] on the combination of En-
glish and French text to obtain subword units. The number of
merge operations in BPE is set to 8K, resulting in a shared vo-
cabulary with 8,159 subwords. For TED English-Chinese, the
merge number is 30K, and the vocabulary size is 28,912 and
30,000, respectively. We report case-insensitive BLEU scores
[31] by multi-bleu.pl for the evaluation of ST and MT tasks and
word error rates (WER) for ASR task.

Because the size of Augmented LibriSpeech is relatively
small, we set the hidden size dmodel = 256, the filter size
in feed-forward layer dff = 1024, the head number h = 8,
the residual dropout and attention dropout are 0.1. For TED
English-Chinese, we set the hidden size dmodel = 512 with the
filter size dff = 2048. MT model, as a teacher model, can use
bigger parameters. We use 512 hidden sizes, 2048 filter sizes
with 8 heads.The number of encoder layers and decoder layers
in above models are all set to 6. We train our models with Adam
optimizer [32] on 2 NVIDIA V100 GPUs.

4.3. Results

Table 1 shows the results of ASR and MT tasks on Augmented
LibriSpeech. It can be seen that Transformer model has su-
perior performances on both tasks, with 0.92 WER reduction
and 4.1 BLEU scores improvement compared to [11]. We con-
tribute it to the superior performance of Transformer model
which has the ability to model long distance in sequence-to-
sequence tasks, especially for MT tasks. Contrary to [11] who
uses characters as output units, we consider subword units can
also obtain improvements.

For ST task, we have four settings. The first is a pipeline
system which uses ASR outputs as the inputs to MT model. The

1https://www.ted.com
2http://ffmpeg.org
3https://www.statmt.org/moses/
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Table 1: ASR and MT results on test set of Augmented Lib-
riSpeech.

LibriSpeech Method WER(↓) BLEU(↑)

Bérard [11] greedy 19.9 19.2
beam search 17.9 18.8

Ours greedy 21.46 21.35
beam search 16.98 22.91

Table 2: ST results on Augmented LibriSpeech. KD denotes
knowledge distillation.

LibriSpeech Method greedy beam ensemble

Bérard [11]
Pipeline 14.6 14.6 15.8

End-to-end 12.3 12.9 15.5Pre-trained 12.6 13.3

Ours

Pipeline 15.75 17.85 18.4
End-to-end 10.19 13.15

17.8Pre-trained 13.89 14.30
KD 14.96 17.02

end-to-end model is trained on source audios paired with target
translation texts. The pre-trained model is initialized by ASR
and MT models. Knowledge distillation (KD) is our method
which uses MT model as a teacher to instruct end-to-end ST
model.

As shown in Table 2, all four settings surpass the results in
[11]. Noticing that there exists a large gap between the perfor-
mance of end-to-end ST model and MT model, we apply knowl-
edge distillation to instruct ST model by MT model. The result
shows that this method can bring significant improvements on
the BLEU score which increases from 14.30 to 17.02. With
the instruction of MT model, the performance gap is alleviated,
approaching to the pipeline system, which demonstrates the ef-
fectiveness of our method.

We also conduct experiments on an English-Chinese
dataset. Table 3 presents the results. Pipeline model combines
both the ASR (WER is 15.2%) and MT models. We cannot train
an end-to-end ST model from random initialization parameters,
since the reordering between dissimilar language pairs is too
difficult to align with frame based speech representations. Here
we pretrain the encoder of ST model on ASR tasks. The BLEU
of end-to-end model is 16.80, which indicates the potential to
implement a compact model even on dissimilar language pairs.
With knowledge distillation, it also can obtain significant im-
provements, proving the generality of our method.

Weiss et al. showed that end-to-end ST models outperform
the baseline cascade [10]. However, in our expeiments ST mod-
els are still inferior than the cascade system. We contribute it
to two reasons. First, they conduct experiments on Fisher and
Callhome Speech Translation Corpus which is in similar lan-
guages [33]. Besides, ASR WER on that dataset is relatively
high which heavily effects the MT model in cascade system.

4.4. Analysis

To evaluate the effect of teacher model, we explore different
hyper-parameters λ of the distillation loss on Augmented Lib-
riSpeech. With λ increasing, ST will pay more attention to
teacher model. When λ equals 0, it is the original end-to-end
model; when λ is 1, it will ignore correct text and only learn
from the teacher. As Table 4 shown, the performance becomes
better with the increasing of λ. End-to-end ST model obtains

Table 3: MT and ST results on English-Chinese TED.

TED MT Pipeline End-to-end KD
BLEU 27.08 22.28 16.80 19.55

Table 4: The effect of teacher model weight on ST results.

λ 0.0 0.2 0.4 0.6 0.8 1.0
BLEU 14.30 15.68 16.73 16.62 16.93 17.02

the best performance when it only learns the output distribu-
tions of teacher model.

We further analyze how the teacher model helps ST through
visualizations of the encoder-decoder attention. Figure 2 shows
an example. The attentions of ASR (a) and MT (c) models
are more concentrated than ST model. The attention in ST (b)
model tends to be smoothed out across input frames. However,
with the help of MT model, the attention of ST model with
KD (d) becomes more concentrated. For example, the speech
frames l = 45 ∼ 55 are corresponding to “was talking” in
ASR (a), which can be translated to “se parlait” in French (c).
The attention in ST model with KD has more weights on frames
l = 45 ∼ 55 than that in original ST model.
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Figure 2: The visualizations of attention in different models.
(a), (b), (c), (d) are the encoder-decoder attention of ASR, end-
to-end ST, MT and end-to-end ST with KD, respectively.

5. Conclusions
In this work, we present knowledge distillation method to im-
prove end-to-end ST model by transferring the knowledge from
MT model. Experiments on two language pairs demonstrate
that with the instruction of MT model, end-to-end ST model
can gain significant improvements. Although end-to-end ST
model does not outperform pipeline system, it shows the poten-
tial to come close in performance. In the future, we will utilize
other knowledges like the outputs from ASR model or better
MT model to further improve the performance of ST model.
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