
2 1541-1672/15/$31.00 © 2015 IEEE IEEE INTELLIGENT SYSTEMS
Published by the IEEE Computer Society

Deep Neural
Networks in Machine
Translation: An
Overview
Jiajun Zhang and Chengqing Zong, Institute of Automation,
Chinese Academy of Sciences

Deep neural

networks (DNNs)

are increasingly

popular in machine

translation.

symbol variable processing, such as natural
language processing (NLP). As one of the
more challenging NLP tasks, machine trans-
lation (MT) has become a testing ground for
researchers who want to evaluate various
kinds of DNNs.

MT aims to find for the source language sen-
tence the most probable target language sen-
tence that shares the most similar meaning.
Essentially, MT is a sequence-to-sequence pre-
diction task. This article gives a comprehen-
sive overview of applications of DNNs in MT
from two views: indirect application, which at-
tempts to improve standard MT systems, and
direct application, which adopts DNNs to de-
sign a purely neural MT model. We can elabo-
rate further:

•	 Indirect application designs new features
with DNNs in the framework of standard
MT systems, which consist of multiple sub-
models (such as translation selection and lan-
guage models). For example, DNNs can be
leveraged to represent the source language

context’s semantics and better predict trans-
lation candidates.

•	Direct application regards MT as a se-
quence-to-sequence prediction task and,
without using any information from stan-
dard MT systems, designs two deep neural
networks—an encoder, which learns con-
tinuous representations of source language
sentences, and a decoder, which generates
the target language sentence with source
sentence representation.

Let’s start by examining DNNs themselves.

Deep Neural Networks
Researchers have designed many kinds
of DNNs, including deep belief networks
(DBNs), deep stack networks (DSNs), con-
volutional neural networks (CNNs), and
recurrent neural networks (RNNs). In NLP,
all these DNNs aim to learn the syntactic
and semantic representations for the dis-
crete words, phrases, structures, and sen-
tences in the real-valued continuous space so

Due to the powerful capacity of feature learning and representation, deep

neural networks (DNNs) have made big breakthroughs in speech recog-

nition and image processing. Following recent success in signal variable process-

ing, researchers want to figure out whether DNNs can achieve similar progress in

N a t u r a l l a N g u a g e P r o c e s s i N g

SEpTEMbEr/ocTobEr 2015 www.computer.org/intelligent 3

that similar words (phrases or struc-
tures) are near each other. We briefly
introduce five popular neural networks
after giving some notations—namely,
we use wi to denote the ith word of
a T-word sentence, and xi as the cor-
responding distributed real-valued
vector. Vectors of all the words in
the vocabulary form the embedding
matrix L ∈ Rk×|V|, where k is the
embedding dimension and |V| is the
vocabulary size. Additionally, U and
W are parameter matrices of a neural
network, and b is the bias; f and e in-
dicate the source and target sentence,
respectively.

Feed-Forward Neural Network
The feed-forward neural network (FNN)
is one of the simplest multilayer net-
works.1 Figure 1 shows an FNN ar-
chitecture with hidden layers as well
as input and output layers. Taking the
language model as an example, the
FNN attempts to predict the conditional
probability of the next word given the
fixed-window history words. Suppose
we have a T-word sentence, w1, w2, ...,
wt, ..., wT; our task is to estimate
the four-gram conditional probability
of wt given the trigram history wt−3,
wt−2, wt−1. The FNN first maps each his-
tory word into a real-valued vector xt−3,
xt−2, xt−1 using embedding matrix L ∈
Rk×|V|; xt−3, xt−2, xt−1 are then concate-
nated to form a single input vector xt_

history. The hidden layers are followed
to extract the abstract representation
of the history words through a linear
transformation W × xt_history and a non-
linear projection f(W × xt_history + b),
such as f = tanh (x)). The softmax layer
is usually adopted in the output to
predict each word’s probability in the
vocabulary.

recurrent Neural Network
The recurrent neural network (Recur-
rentNN)2 is theoretically more power-
ful than FNN in language modeling due

to its capability of representing all the
history words rather than a fixed-length
context as in FNN. Figure 2 depicts the
RecurrentNN architecture. Given the
history representation ht−1 encoding all
the preceding words, we can obtain the
new history representation ht with the
formula ht = Uxt + Wht−1. With ht, we
can calculate the probability of next
word using the softmax function:

p y
e

e
t

y

i
y

t

i
() =

∑
, (1)

where i traverses all the words in the
vocabulary. Similarly, the new his-
tory representation ht and the next
word will be utilized to get the his-
tory representation ht+1 at time t + 1.

recursive Auto-encoder
The recursive auto-encoder (RAE)3
provides a good way to embed a
phrase or a sentence in continu-
ous space with an unsupervised or
semisupervised method. Figure 3
shows an RAE architecture that learns
a vector representation of a four-word
phrase by recursively combining two
children vectors in a bottom-up man-
ner. By convention, the four words w1,
w2, w3, and w4 are first projected into
real-valued vectors x1, x2, x3, and x4.

In RAE, a standard auto-encoder (in
box) is reused at each node. For two
children c1 = x1 and c2 = x2, the auto-
encoder computes the parent vector y1
as follows:

y1 = f(W(1) [c1; c2] + b(1)). (2)

To assess how well the parent’s vec-
tor represents its children, the standard
auto-encoder reconstructs the children
in a reconstruction layer:

[c′1; c′2] = f ′(W(2) y1 + b(2)). (3)

The standard auto-encoder tries to
minimize the reconstruction errors

between the inputs and the recon-
structions during training:

Erec([c1; c2]) = ½ ||[c1; c2] - [c′1; c′2]||2.
 (4)

The same auto-encoder is reused
until the whole phrase’s vector is gen-
erated. For unsupervised learning,
the objective is to minimize the sum
of reconstruction errors at each node
in the optimal binary tree:

RAE x E c c
y A x

s y sθ () = ()
∈ ()

∈∑argmin rec 1 2; .

 (5)

Figure 1. The feed-forward neural
network (FNN) architecture. Taking the
language model as an example, the
FNN attempts to predict the conditional
probability of the next word given the
fixed-window history words.

Output

Hidden layers

Input

W 2

W 1

Figure 2. The recurrent neural network
(RecurrentNN) architecture. Theoretically,
it’s more powerful than FNN in language
modeling due to its capability of
representing all the history words rather
than a fixed-length context.

xt+1

ht–1

ht
yt

xt

ht+1

ht = Uxt + Wht–1

U

W

U

W

p(yt) =
eyt

eyi∑i

4 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

N a t u r a l l a N g u a g e P r o c e s s i N g

A(x) denotes all the possible binary
trees that can be built from input x.

recursive Neural Network
The recursive neural network (Recur-
siveNN)4 performs structure prediction
and representation learning using a bot-
tom-up fashion similar to that of RAE.
However, RecursiveNN differs from
RAE in four points: RecursiveNN is op-
timized with supervised learning; the tree
structure is usually fixed before train-
ing; RecursiveNN doesn’t have to recon-
struct the inputs; and different matrices

can be used at different nodes. Figure 4
illustrates an example that applies three
different matrices. The structure, repre-
sentation, and parameter matrices W(1),
W(2), and W(3) have been learned to op-
timize the label-related supervised objec-
tive function.

convolutional Neural Network
The convolutional neural network
(CNN)5 consists of the convolution and
pooling layers and provides a standard
architecture that maps variable-length
sentences into fixed-size distributed vec-
tors. Figure 5 shows the architecture.
The CNN model takes as input the
sequence of word embeddings, sum-
marizes the sentence meaning by con-
volving the sliding window and pooling
the saliency through the sentence,
and yields the fixed-length distributed
vector with other layers, such as drop-
out and fully connected layers.

Given a sentence w1, w2, ..., wt, ...,
wT, each word wt is first projected
into a vector xt. Then, we concate-
nate all the vectors to form the input
X = [x1, x2, ..., xt, ..., xT].

The convolution layer involves sev-
eral filters W ∈ Rh×k that summarize the

information of an h-word window and
produce a new feature. For the window
of h words Xt:t+h−1, a filter Fl (1 ≤ l ≤ L)
generates the feature yt

l as follows:

y f WX bt
l

t t h= +()+ −: 1
. (6)

When a filter traverses each window
from X1:h−1 to XT−h+1:T, we get the fea-

ture map’s output: y y yl l
T t
l

1 2 1, , ,… − +

(yl ∈ RT−h+1). Note that the sentences
differ from each other in length T, and
yl has different dimensions for different
sentences. A key question becomes how
do we transform the variable-length
vector yl into a fixed-size vector?

The pooling layer is designed to
perform this task. In most cases, we
apply a standard max-over-time pool-
ing operation over yl and choose the

maximum value ŷ max yl l= { }. With

L filters, the dimension of the pooling
layer output will be L. Using other lay-
ers, such as fully connected linear lay-
ers, we can finally obtain a fixed-length
output representation.

Machine Translation
Statistical models dominate the MT
community today. Given a source lan-
guage sentence f, statistical machine
translation (SMT) searches through
all the target language sentences e
and finds the one with the highest
probability:

′ =e p e f
e

argmax (|). (7)

Usually, p(e|f) is decomposed using
the log-linear model6:

′ =

=
()()∑

∑ ′

e p e f

exp h f e

e

e

i
i i

e

argmax (|)

argmax
,λ

eexp h f e
i
i i∑ ′()()λ ,

, (8)

y3 =f(W(1)[y2; x4]+b)

y2 =f(W(1)[y1; x3]+b)

y1 =f(W(1)[x1; x2]+b)

x1 x2 x3 x4

Figure 3. The recursive auto-encoder (RAE) architecture. It learns a vector representation of
a four-word phrase by recursively combining two children vectors in a bottom-up manner.

Figure 4. Recursive neural network
(RecursiveNN) architecture. The
structure, representation, and
parameter matrices W(1), W(2), and W(3)
have been learned to optimize the label-
related supervised objective function.

y3 =f(W (3)[y2; x4]+b(3))

label

label

label
y2 =f(W (2)[y1; x3]+b(2))

x2x1 x3 x4

y1 =f(W (1)[x1; x2]+b(1))

SEpTEMbEr/ocTobEr 2015 www.computer.org/intelligent 5

where hi(f, e) can be any translation fea-
ture and λi is the corresponding weight.

The translation process can be di-
vided into three steps: partition the
source sentence (or syntactic tree) into
a sequence of words or phrases (or
set of subtrees), perform word/phrase
or subtree translation; and compos-
ite the fragment translations to obtain
the final target sentence. If the transla-
tion unit is word, it’s the word-based
model. If phrase is the basic transla-
tion unit, it’s the popular phrase-based
model. In this article, we mainly take
the phrase-based SMT7 as an example.

In the training stage, we first per-
form word alignment to find word
correspondence between the bilingual
sentences. Then, based on the word-
aligned bilingual sentences, we extract
phrase-based translation rules (such as
the a–e translation rules in Figure 6)
and learn their probabilities. Mean-
while, the phrase reordering model
can be trained from the word-aligned
bilingual text. In addition, the lan-
guage model can be trained with the
large-scale target monolingual data.

During decoding, the phrase-based
model finds the best phrase partition
of the source sentence, searches for the
best phrase translations, and figures
out the best composition of the target
phrases. Figure 6 shows an example
for a Chinese-to-English translation.
Phrasal rules (a–e) are first utilized to
get the partial translations, and then
reordering rules (f–i) are employed to
arrange the translation positions. Rule
g denotes that “the two countries”
and “the relations between” should be
swapped. Rules f, g, and i just compos-
ite the target phrases monotonously.
Finally, the language model measures
which translation is more accurate.

Obviously, from training and decod-
ing, we can see the difficulties in SMT:

•	 It’s difficult to obtain accurate
word alignment because we have

no knowledge besides the parallel
data.

•	 It’s difficult to determine which tar-
get phrase is the best candidate for
a source phrase because a source
phrase can have many translations,
and different contexts lead to differ-
ent translations.

•	 It’s tough work to predict the trans-
lation derivation structure because
phrase partition and phrase reor-
dering for a source sentence can be
arbitrary.

•	 It’s difficult to learn a good language
model due to the data sparseness
problem.

k

Convolution

Va
ria

bl
e-

le
ng

th
se

nt
en

ce
 e

Max pooling
Fixed length
output Oe

L

L

Figure 5. The convolutional neural network (CNN) architecture. The CNN model takes as
input the sequence of word embeddings, summarizes the sentence meaning by convolving
the sliding window and pooling the saliency through the sentence, and yields the fixed-
length distributed vector with other layers, such as dropout and fully connected layers.

Figure 6. An example of translation derivation structure prediction. Phrasal rules
(a–e) are first utilized to get the partial translations, and then reordering rules (f–i)
are employed to arrange the translation positions. Rule g denotes that “the two
countries” and “the relations between” should be swapped. Rules f, g, and i just
composite the target phrases monotonously. Finally, the language model measures
which translation is more accurate.

6 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

N a t u r a l l a N g u a g e P r o c e s s i N g

The core issues lie in two areas: data
sparseness (when considering addi-
tional contexts) and the lack of se-
mantic modeling of words (phrases
and sentences). Fortunately, DNNs are
good at learning semantic representa-
tions and modeling wide context with-
out severe data sparseness.

DNNs in Standard SMT
Frameworks
The indirect application of DNNs in
SMT aims to solve one difficult prob-
lem in an SMT system with more
accurate context modeling and syn-
tactic/semantic representation. Table 1
gives an overview of SMT problems
and their various DNN solutions.

DNNs for Word Alignment
Word alignment attempts to identify
the word correspondence between
parallel sentence pairs. Given a source
sentence f = f1, f2, ..., ft, ..., fT and its
target translation e = e1, e2, ..., et, ...,
eT ′, the word alignment is to find the
set A = {(i, j), 1 ≤ i ≤ T, 1 ≤ j ≤ T ′}, in
which (i, j) denotes that fi and ej are
translations of each other. Figure 7
shows an example.

In SMT, the generative model is a
popular solution for word alignment.
Generative approaches use the statistics

of word occurrences and learn their pa-
rameters to maximize the likelihood of
the bilingual training data. They have
two disadvantages: discrete symbol
representation can’t capture the simi-
larity between words, and contextual
information surrounding the word isn’t
fully explored.

Nan Yang and colleagues8 extended
the HMM word alignment model and
adapted each subcomponent with an
FNN. The HMM word alignment
takes the following form:

p a e f p e f p a alex j a d j
j

T

j j
(, |) (|) ()= −

−
=

′

∏ 1
1

,

(9)

where plex is the lexical translation
probability and pd is the distor-
tion probability. Both components are
modeled with an FNN. For the lexical
translation score, the authors employed
the following formula:

slex(ej|fi, e, f) = f3 ° f2 ° f1 ° L
(window(ej), window (fi)). (10)

The FNN-based approach considers
the bilingual contexts (window(ej) and
window (fi)). All the source and target
words in the window are mapped into
vectors using L ∈ Rk×|V| and concatenated

to feed to hidden layers f1 and f2.
Finally, the output layer f3 generates
a translation score. A similar FNN is
applied to model the distortion score
sd(aj - aj−1). This DNN-based method
not only can learn the bilingual word
embedding that captures the similarity
between words, but can also make use
of wide contextual information.

Akihiro Tamura and colleagues9
adopted RecurrentNN to extend the
FNN-based model. Because the FNN-
based approach can only explore
the context in a window, the Recur-
rentNN predicts the jth alignment aj
by conditioning on all the preceding
alignments aj1

1− .
The reported experimental results

indicate that RecurrentNN outper-
forms FNN in word alignment qual-
ity on the same test set. It also implies
that RecurrentNN can capture long
dependency by trying to memorize all
the history.

DNNs for Translation rule
Selection
With word-aligned bilingual text, we
can extract a huge number of transla-
tion rules. In phrase-based SMT, we can
extract many phrase translation rules
for a given source phrase. It becomes a
key issue to choose the most appropri-
ate translation rules during decoding.
Traditionally, translation rule selection
is usually performed according to co-
occurrence statistics in the bilingual
training data rather than by exploring
the large context and its semantics.

Will Zou and colleagues10 used two
FNNs (one for source language and
the other for target language) to learn
bilingual word embeddings so as to
make sure that a source word is close
to its correct translation in the joint
embedding space. The FNN used for
source or target language takes as in-
put the concatenation of the context
words, applies one hidden layer, and
finally generates a score in the output

Table 1. Statistical machine translation difficulties and their corresponding
deep neural network solutions.

Word alignment FNN, RecurrentNN

Translation rule selection FNN, RAE, CNN

Reordering and structure prediction RAE, RecurrentNN, RecursiveNN

Language model FNN, RecurrentNN

Joint translation prediction FNN, RecurrentNN, CNN

we pay great attention to developing the relations between the two countries

Figure 7. Word alignment example. Each line connecting a Chinese word to an
English word indicates they are translation pairs.

SEpTEMbEr/ocTobEr 2015 www.computer.org/intelligent 7

layer. For source language embedding,
the objective function is as follows:

Jsrc + lJtgt→src, (11)

where Jsrc is the contrastive objective
function with monolingual data, and
Jtgt→src is a bilingual constraint:

Jtgt→src = || Lsrc - Atgt→srcLtgt||2. (12)

Equation 12 says that after word
alignment projection Atgt→src, the tar-
get word embeddings Ltgt should be
close to the source embeddings Lsrc.
This method has shown that it can
cluster bilingual words with similar
meanings. The bilingual word embed-
dings are adopted to calculate the se-
mantic similarity between the source
and target phrases in a phrasal rule,
effectively improving the performance
of translation rule selection.

Jianfeng Gao and colleagues11 at-
tempted to predict the similarity be-
tween a source and a target phrase
using two FNNs with the objective
of maximizing translation quality on
a validation set. For a phrasal rule
(f1,…,i, e1,…,j), the FNN (for source
or target language) is employed first
to abstract the vector representa-
tion for f1,…,i and e1,…,j, respectively.
The similarity score will be score
f e y yi j f

T
ei j1 1 1 1, , , ,,

, , , ,… … … …() = . The FNN
parameters are trained to optimize the
score of the phrase pairs that can lead
to better translation quality in the
valida tion set.

Because word order isn’t considered
in the above approach, Jianjun Zhang
and colleagues12 proposed a bilingually
constrained RAE (BRAE) to learn se-
mantic phrase embeddings. As shown in
Figure 3, unsupervised RAE can get the
vector representation for each phrase.
In contrast, the BRAE model not only
tries to minimize the reconstruction
error but also attempts to minimize
the semantic distance between phrasal

translation equivalents. By fine-tuning
BRAE’s parameters, the model can
learn the semantic vector representation
for each source and target phrase. Using
BRAE, each phrase translation rule can
be associated with a semantic similarity.
With the help of semantic similarities,
translation rule selection is much more
accurate.

Lei Cui and colleagues13 applied the
auto-encoder to learn the topic repre-
sentation for each sentence in the par-
allel training data. By associating each
translation rule with topic informa-
tion, topic-related rules can be selected
according to the distributed similarity
with the source language text.

Although these methods adopt dif-
ferent DNNs, they all achieve better
rule prediction by addressing differ-
ent aspects such as phrase similar-
ity and topic similarity. FNN as used
in the first two approaches is simple
and learns much of the semantics of
words and phrases with bilingual or
BLEU (Bilingual Evaluation Under-
study) objectives. In contrast, RAE is
capable of capturing a phrase’s word
order information.

DNNs for reordering and
Structure prediction
After translation rule selection, we can
obtain the partial translation candi-
dates for the source phrases (see the
branches in Figure 6). The next task
is to perform derivation structure
 prediction, which includes two sub-
tasks: determining which two neigh-
boring candidates should be composed
first and deciding how to compose
the two candidates. The first subtask
hasn’t been explicitly modeled to date.
The second subtask is usually done
via the reordering model. In SMT, the
phrase reordering model is formalized
as a classification problem, and dis-
crete word features are employed, al-
though data sparseness is a big issue
and similar phrases can’t share similar

reordering patterns with each other.
Peng Li and colleagues14,15 adopted

the semisupervised RAE to learn the
phrase representations that are sensitive
to reordering patterns. For two neigh-
boring translation candidates (f1, e1)
and (f2, e2), the objective function is

E = aErec(f1, e1, f2, e2) + (1 - a) Ereorder
((f1, e1), (f2, e2)), (13)

where Erec(f1, e1, f2, e2) is the sum
of reconstruction errors, and Ereorder
((f1, e1), (f2, e2)) is the reordering loss
computed with cross-entropy error
function. The semisupervised RAE
shows that it can group the phrases
sharing similar reordering patterns.

Feifei Zhai and colleagues16 and
Jianjun Zhang and colleagues17 explic-
itly modeled the translation process
of the derivation structure prediction.
A type-dependent RecursiveNN17
jointly determines which two partial
translation candidates should be com-
posed together and how that should
be done. Figure 8 shows a training
example. For a parallel sentence pair
(f, e), the correct derivation exactly
leads to e, as Figure 8a illustrates.
Meanwhile, we have other wrong
derivation trees in the search space
(Figure 8b gives one incorrect deri-
vation). Using RecursiveNN, we can
get scores SRecursiveNN(cTree) and
SRecursiveNN(wTree) for the correct and
incorrect derivations. We train the
model by making sure that the score
of the correct derivation is better than
that of incorrect one:

SRecursiveNN(cTree) ≤ SRecursiveNN(wTree)
+ D(SRecursiveNN(cTree),
SRecursiveNN(wTree)), (14)

where, D(SRecursiveNN(cTree), SRecursiveNN

(wTree)) is a structure margin.
As RecursiveNN can only explore

the children information, Shujie Liu
and colleagues18 designed a model

8 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

N a t u r a l l a N g u a g e P r o c e s s i N g

combining RecursiveNN and Recur-
rentNN together. This not only retains
the capacity of RecursiveNN but also
takes advantage of the history.

Compared to RAE, RecursiveNN ap-
plies different weight matrixes according
to different composition types. Other
work17 has shown via experiments that
RecursiveNN can outperform RAE on
the same test data.

DNNs for Language Models in SMT
During derivation prediction, any
composition of two partial transla-
tions leads to a bigger partial transla-
tion. The language model performs the
task to measure whether the transla-
tion hypothesis is fluent. In SMT, the

most popular language model is the
count-based n-gram model. One big
issue here is that data sparseness be-
comes severe as n grows. To alleviate
this problem, researchers tried to de-
sign a neural network-based language
model in the continuous vector space.

Yoshua Bengio and colleagues1 de-
signed an FNN as Figure 1 shows to
learn the n-gram model in the continu-
ous space. For an n-gram e1, ..., en, each
word in e1, ..., en−1 is mapped onto a
vector and concatenation of vectors
feed into the input layer followed by one
hidden layer and one softmax layer that
outputs the probability p(en|e1, ..., en−1).
The network parameters are optimized
to maximize the likelihood of the large-

scale monolingual data. Ashish Vaswani
and colleagues19 employed two hidden
layers in the FNN that’s similar to
Bengio’s FNN.

The n-gram model assumes that the
word depends on the previous n - 1
words. RecurrentNN doesn’t use this
assumption and models the probabil-
ity of a sentence as follows:

p e e p e e eT j j
j

T

1 1 1
1

, , | , , .… …′ −
=

′

() = ()∏
 (15)

All the history words are applied to
predict the next word.

Tomas Mikolov20 designed the Re-
currentNN (see Figure 2). A sentence
start symbol <s> is first mapped to a
real-valued vector as h0 and then em-
ployed to predict the probability of e1;
h0 and e1 are used to form the new his-
tory h1 to predict e2, h1 and e2 gener-
ate h2, and so on. When predicting eT′,
all the history e1, ..., eT′−1 can be used.
The RecurrentNN language model is
employed to rescore the n-best trans-
lation candidates. Michael Auli and
Jianfeng Gao21 integrated the Re-
currentNN language model during
the decoding stage, and further im-
provements can still be obtained than
just rescoring the final n-best transla-
tion candidates.

DNNs for Joint Translation
prediction
The joint model predicts the target
translation by using both of the source
sentences’ information and the target-
side history.

Yuening Hu and colleagues22 and
Youzheng Wu and colleagues23 cast the
translation process as a language model
prediction over the minimum transla-
tion units (smallest bilingual phrase
pairs satisfying word alignments). They
adopted RecurrentNN to model the
process.

Michael Auli and colleagues24 adapted
the RecurrentNN language model and

Figure 8. Type-dependent RecursiveNN: (a) correct derivation vs. (b) incorrect
derivation. The correct derivation is obtained by performing forced decoding on
the bilingual sentence pair; the derivation structure leads directly to the correct
translation. The incorrect derivation is obtained by decoding the source sentence
with the trained SMT model; it results in a wrong translation.

developing the relations between the two countries

the relations between the two countries

developing the two countries

the two countries

the relations between

between the relations

developing the two countries between the relations

developing the two countries

developing

M

M

(a) Correct derivation tree

(b) Wrong derivation tree

M

S

SEpTEMbEr/ocTobEr 2015 www.computer.org/intelligent 9

added a vector representation for the
source sentence as the input along with
the target history. Jacob Devlin and col-
leagues25 proposed a neural network
joint model (NNJM) that adapts FNN
to take as input both the n - 1 target
word history and h-window source con-
text. They reported promising improve-
ments over the strong baseline. Because
no global information is employed in
NNJM, Fandong Meng and colleagues26
and Jiajun Zhang and colleagues27 pre-
sented an augmented NNJM model:
CNN is designed to learn the vector
representation for each source sentence;
then, the sentence representation aug-
ments the NNJM model’s input to pre-
dict the target word generation. This
approach further improves the transla-
tion quality over the NNJM model.

The RecurrentNN joint model just
fits the phrase-based SMT due to the as-
sumption that the translation is gener-
ated from left to right or right to left. In
contrast, FNN and CNN can benefit all
the translation models because they fo-
cus only on applying DNNs to learn the
distributed representations of local and
global contexts.

Purely Neural MT
Purely neural machine translation
(NMT) is the new MT paradigm. The
standard SMT system consists of sev-
eral subcomponents that are separately
optimized. In contrast, NMT employs
only one neural network that’s trained
to maximize the conditional likelihood
on the bilingual training data. The basic
architecture includes two networks: one
encodes the variable-length source sen-
tence into a real-valued vector, and the
other decodes the vector into a variable-
length target sentence.

Kyunghyun Cho and colleagues,28
Ilya Sutskever and colleagues,29 and
Dzmitry Bahdanau and colleagues30 fol-
low the similar RecurrentNN encoder-
decoder architecture (see Figure 9).
Given a source sentence in vector

sequence X = (x1, ..., xT), the encoder
applies RecurrentNN to obtain a vec-
tor C = q(h1, ..., hT) in which ht (1 ≤ ht
≤ T) is calculated as follows:

ht = f(ht−1, xt), (16)

where f and q are nonlinear func-
tions. Sutskever and colleagues sim-
plified the vector to be a fixed-length
vector C = q(h1, ..., hT) = hT, whereas
Bahdanau and colleagues directly
applied the variable-length vector
(h1, ..., hT) when predicting each tar-
get word.

The decoder also applies Recur-
rentNN to predict the target sentence
Y = (y1, ..., yT’), where T′ usually dif-
fers from T. Each target word yt de-
pends on the source context C and
all the predicted target words {y1, ...,
yt−1}; the probability of Y will be

p Y p y y y Ct t t
t

T

() = { }()−
=

′

∑ | , , ,1 1
1

… . (17)

Sutskever and colleagues chose Ct =
C = hT, and Bahdanau and colleagues
set C ht j

T
tj j= =∑ 1α .

All the network parameters are trained
to maximize ∏p(Y) in the bilingual train-
ing data. For a specific network struc-
ture, Sutskever and colleagues employed
deep LSTM to calculate each hidden
state, whereas Bahdanau and colleagues
applied bidirectional RecurrentNN to
compute the source-side hidden-state hj.
Both report similar or superior perfor-
mance in English-to-French translation
compared to the standard phrase-based
SMT system.

The MT network architecture is
simple, but it has many shortcomings.
For example, it restricts tens of thou-
sands of vocabulary words for both
languages to make it workable in real
applications, meaning that many un-
known words appear. Furthermore,
this architecture can’t make use of
the target large-scale monolingual
data. Recently, Minh-Thang Luong
and colleagues31 and Sebastien Jean
and colleagues32 attempted to solve
the vocabulary problem, but their ap-
proaches are heuristic. For example,
they used a dictionary in the post-
processor to translate the unknown
words.

Discussion and Future
Directions
Applying DNNs to MT is a hot re-
search topic. Indirect application is
a relatively conservative attempt be-
cause it retains the standard SMT sys-
tem’s strength, and the log-linear SMT
model facilitates the integration of
DNN-based translation features that
can employ different kinds of DNNs
to deal with different tasks. However,
indirect application makes the SMT
system much more complicated.

In contrast, direct application is
simple in terms of model architecture:
a network encodes the source sentence
and another network decodes to the
target sentence. Translation quality is
improving, but this new MT architec-
ture is far from perfect. There’s still
an open question of how to efficiently
cover most of the vocabulary, how
to make use of the target large-scale

Figure 9. Neural machine translation (NMT) architecture. The model reads a source
sentence abc and produces a target sentence wxyz.

w

a b c

x y z

w x y z

<EOS>

<EOS>

10 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

N a t u r a l l a N g u a g e P r o c e s s i N g

monolingual data, and how to utilize
more syntactic/semantic knowledge in
addition to source sentences.

For both direct and indirect appli-
cations, DNNs boost translation per-
formance. Naturally, we’re interested
in the following questions:

•	Why can DNNs improve transla-
tion quality?

•	Can DNNs lead to a big break-
through?

•	What aspects should DNNs im-
prove if they’re to become an MT
panacea?

For the first question, DNNs rep-
resent and operate language units in
the continuous vector space that fa-
cilitates the computation of semantic
distance. For example, several algo-
rithms such as Euclidean distance and
cosine distance can be applied to cal-
culate the similarity between phrases
or sentences. But they also capture
much more contextual information
than standard SMT systems, and data
sparseness isn’t a big problem. For ex-
ample, the RecurrentNN can utilize all
the history information before the cur-
rently predicted target word; this is im-
possible with standard SMT systems.

For the second question, DNNs
haven’t achieved huge success with
MT until recently. We’ve conducted
some analysis and propose some key
problems for SMT with DNNs:

•	Computational complexity. Be-
cause the network structure is com-
plicated, and normalization over
the entire vocabulary is usually
required, DNN training is a time-
consuming task. Training a stan-
dard SMT system on millions of
sentence pairs only requires about
two or three days, whereas train-
ing a similar NMT system can take
several weeks, even with powerful
GPUs.

•	Error analysis. Because the DNN-
based subcomponent (or NMT) deals
with variables in the real-valued con-
tinuous space and there are no effec-
tive approaches to show a meaningful
and explainable trace from input to
output, it’s difficult to understand
why it leads to better translation per-
formance or why it fails.

•	Remembering and reasoning. For cur-
rent DNNs, the continuous vector
representation (even using LSTM in
RecurrentNN) can’t remember full in-
formation for the source sentence. It’s
quite difficult to obtain correct target
translation by decoding from this rep-
resentation. Furthermore, unlike other
sequence-to-sequence NLP tasks, MT
is a more complicated problem that
requires rich reasoning operations
(such as coreference resolution). Cur-
rent DNNs can’t perform this kind of
reasoning with simple vector or ma-
trix operations.

These problems tell us that
DNNs have a long way to go

in MT. Nevertheless, due to their ef-
fective representations of languages,
they could be a good solution eventu-
ally. To achieve this goal, we should
pay attention to the path ahead.

First, DNNs are good at handling
continuous variables, but natural lan-
guage is composed of abstract discrete
symbols. If they completely abandon
discrete symbols, DNNs won’t fully
control the language generation pro-
cess: sentences are discrete, not con-
tinuous. Representing and handling
both discrete and continuous vari-
ables in DNNs is a big challenge.

Second, DNNs represent words,
phrases, and sentences in continuous
space, but what if they could mine
deeper knowledge, such as parts of
speech, syntactic parse trees, and
knowledge graphs? What about ex-
ploring wider knowledge beyond the

sentence, such as paragraphs and dis-
course? Unfortunately, representation,
computation, and reasoning of such
information in DNNs remain a diffi-
cult problem.

Third, effectively integrating DNNs
into standard SMT is still worth trying.
In the multicomponent system, we can
study which subcomponent is indis-
pensable and which can be completely
replaced by DNN-based features. In-
stead of the log-linear model, we need a
better mathematical model to combine
multiple subcomponents.

Fourth, it’s interesting and impera-
tive to investigate more efficient algo-
rithms for parameter learning of the
complicated neural network architec-
tures. Moreover, new network archi-
tectures can be explored in addition to
existing neural networks. We believe
that the best network architectures for
MT must be equipped with representa-
tion, remembering, computation, and
reasoning, simultaneously.

Acknowledgments
This research work was partially funded by
the Natural Science Foundation of China un-
der grant numbers 61333018 and 61303181,
the International Science and Technology
Cooperation Program of China under grant
number 2014DFA11350, and the High New
Technology Research and Development Pro-
gram of Xinjiang Uyghur Autonomous Re-
gion, grant number 201312103.

References
1. Y. Bengio et al., “A Neural Probabilistic

Language Model,” J. Machine Learning

Research, vol. 3, 2003, pp. 1137–1155;

www.jmlr.org/papers/volume3/bengio03a/

bengio03a.pdf.

2. J.L. Elman, “Distributed Representations,

Simple Recurrent Networks, and Gram-

matical Structure,” Machine Learning,

vol. 7, 1991, pp. 195–225; http://crl.ucsd.

edu/~elman/Papers/machine.learning.pdf.

3. R. Socher et al., “Semi-supervised Recur-

sive Autoencoders for Predicting Sentiment

Distributions,” Proc. Empirical Methods

SEpTEMbEr/ocTobEr 2015 www.computer.org/intelligent 11

and Natural Language Process, 2011;

http://nlp.stanford.edu/pubs/SocherPen-

ningtonHuangNgManning_EMNLP2011.

pdf.

4. J.B. Pollack, “Recursive Distributed

Representations,” Artificial Intelligence,

vol. 46, no. 1, 1990, pp. 77–105.

5. Y. LeCun et al., “Gradient-Based Learn-

ing Applied to Document Recognition,”

Proc. IEEE, vol. 86, no. 11, 1998,

pp. 2278–2324.

6. F.J. Och and H. Ney, “Discriminative

Training and Maximum Entropy Mod-

els for Statistical Machine Translation,”

Proc. ACL, 2002, pp. 295–302.

7. D. Xiong, Q. Liu, and S. Lin, “Maxi-

mum Entropy Based Phrase Reordering

Model for Statistical Machine Transla-

tion,” Proc. ACL, 2006, pp. 521–528.

8. N. Yang et al., “Word Alignment Model-

ing with Context Dependent Deep Neural

Network,” Proc. ACL, 2013, pp. 41–46.

9. A. Tamura, T. Watanabe, and E.

Sumita, “Recurrent Neural Networks

for Word Alignment Model,” to be

published in Proc. ACL, 2015.

10. W.Y. Zou et al., “Bilingual Word Embed-

dings for Phrase-Based Machine Transla-

tion,” Proc. Empirical Methods and

Natural Language Process, 2013,

pp. 1393–1398.

11. J. Gao et al., “Learning Continuous

Phrase Representations for Translation

Modeling,” Proc. ACL, 2014; www.

aclweb.org/anthology/P14-1066.pdf.

12. J. Zhang et al., “Bilingually-Constrained

Phrase Embeddings for Machine Transla-

tion,” Proc. ACL, 2014, pp. 111–121.

13. L. Cui et al., “Learning Topic Represen-

tation for SMT with Neural Networks,”

Proc. ACL, 2014; http://aclweb.org/

anthology/P/P14/P14-1000.pdf.

14. P. Li, Y. Liu, and M. Sun, “Recursive Au-

toencoders for ITG-Based Translation,”

Proc. Empirical Methods and Natural

Language Process, 2013, pp. 151–161.

15. P. Li et al., “A Neural Reordering

Model for Phrase-Based Translation,”

Proc. Conf. Computational Linguistics

(COLING), 2014, pp. 1897–1907.

16. F. Zhai et al., “RNN-Based Derivation

Structure Prediction for SMT,” Proc.

ACL, 2014, pp. 779–784.

17. J. Zhang et al., “Mind the Gap: Machine

Translation by Minimizing the Semantic

Gap in Embedding Space,” Proc. AAAI,

2014, pp. 1657–1664.

18. S. Liu et al., “A Recursive Recurrent Neu-

ral Network for Statistical Machine Trans-

lation,” Proc. ACL, 2014, pp. 1491–1500.

19. A. Vaswani et al., “Decoding with Large-

Scale Neural Language Models Improves

Translation,” Proc. Empirical Methods and

Natural Language Process, 2013; https://

aclweb.org/anthology/D/D13/D13-1.pdf.

20. T. Mikolov, “Statistical Language

Models Based on Neural Networks,”

presentation at Google, 2012; www.fit.

vutbr.cz/~imikolov/rnnlm/google.pdf.

21. M. Auli and J. Gao, “Decoder Integration

and Expected BLEU Training for Recurrent

Neural Network Language Models,” Proc.

ACL, 2014; http://research.microsoft.com/

pubs/217163/acl2014_expbleu_rnn.pdf.

22. Y. Hu et al., “Minimum Translation

Modeling with Recurrent Neural Net-

works,” Proc. European ACL, 2014;

www.cs.umd.edu/~ynhu/publications/

eacl2014_rnn_mtu.pdf.

23. Y. Wu, T. Watanabe, and C. Hori, “Re-

current Neural Network-Based Tuple Se-

quence Model for Machine Translation,”

Proc. Conf. Computational Linguistics

(COLING), 2014; http://anthology.

aclweb.org/C/C14/C14-1180.pdf.

24. M. Auli et al., “Joint Language and

Translation Modeling with Recurrent

Neural Networks,” Proc. Empirical

Methods and Natural Language Process,

2013; http://research.microsoft.com/

pubs/201107/emnlp2013rnnmt.pdf.

25. J. Devlin et al., “Fast and Robust Neural

Network Joint Models for Statistical Ma-

chine Translation,” Proc. ACL, 2014; http://

aclweb.org/anthology/P/P14/P14-1000.pdf.

26. F. Meng, “Encoding Source Language

with Convolutional Neural Network for

Machine Translation,” arXiv preprint

arXiv:1503.01838, 2015.

27. J. Zhang, D. Zhang, and J. Hao, “Local

Translation Prediction with Global Sen-

tence Representation,” to be published in

Proc. Int’l J. Conf. Artificial Intelligence,

2015.

28. K. Cho et al., “Learning Phrase Represen-

tations Using RNN Encoder-Decoder

for Statistical Machine Translation,” Proc.

Empirical Methods and Natural Lan-

guage Processing, 2014, pp. 355–362.

29. I. Sutskever, O. Vinyals, and Q.V. Le,

“Sequence to Sequence Learning with

Neural Networks,” Proc. Neural In-

formation Processing Systems (NIPS),

2014; http://papers.nips.cc/paper/5346-

sequence-to-sequence-learning-with-

neural-networks.pdf.

30. D. Bahdanau, K. Cho, and Y. Bengio,

“Neural Machine Translation by Jointly

Learning to Align and Translate,” arXiv

preprint arXiv:1409.0473, 2014.

31. T. Luong et al., “Addressing the Rare

Word Problem in Neural Machine

Translation,” arXiv preprint arX-

iv:1410.8206, 2014.

32. S. Jean et al., “On Using Very Large

Target Vocabulary for Neural Machine

Translation,” arXiv preprint arX-

iv:1412.2007, 2014.

 t h e a u t h o r s
Jiajun Zhang is an associate professor at the National Laboratory of Pattern Recogni-
tion at the Institute of Automation, Chinese Academy of Sciences. His research interests
include machine translation, multilingual natural language processing, and statistical
learning. Zhang has a PhD in computer science from the Institute of Automation, Chi-
nese Academy of Sciences. Contact him at jjzhang@nlpr.ia.ac.cn.

chengqing Zong is a professor at the National Laboratory of Pattern Recognition at the
Institute of Automation, Chinese Academy of Sciences. His research interests include ma-
chine translation, natural language processing, and sentiment classification. Zong has a
PhD in computer science from the Institute of Computing Technology, Chinese Academy
of Sciences. He’s a member of the International Committee on Computational Linguistics
(ICCL). Contact him at cqzong@nlpr.ia.ac.cn.

