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Deep neural 

networks (DNNs) 

are increasingly 

popular in machine 

translation.

symbol variable processing, such as natural 
language processing (NLP). As one of the 
more challenging NLP tasks, machine trans-
lation (MT) has become a testing ground for 
researchers who want to evaluate various 
kinds of DNNs.

MT aims to find for the source language sen-
tence the most probable target language sen-
tence that shares the most similar meaning. 
Essentially, MT is a sequence-to-sequence pre-
diction task. This article gives a comprehen-
sive overview of applications of DNNs in MT 
from two views: indirect application, which at-
tempts to improve standard MT systems, and 
direct application, which adopts DNNs to de-
sign a purely neural MT model. We can elabo-
rate further:

•	 Indirect application designs new features 
with DNNs in the framework of standard  
MT systems, which consist of multiple sub-
models (such as translation selection and lan-
guage models). For example, DNNs can be  
leveraged to represent the source language  

context’s semantics and better predict trans-
lation candidates.

•	Direct application regards MT as a se-
quence-to-sequence prediction task and, 
without using any information from stan-
dard MT systems, designs two deep neural 
networks—an encoder, which learns con-
tinuous representations of source language 
sentences, and a decoder, which generates 
the target language sentence with source 
sentence representation.

Let’s start by examining DNNs themselves.

Deep Neural Networks
Researchers have designed many kinds 
of DNNs, including deep belief networks 
(DBNs), deep stack networks (DSNs), con-
volutional neural networks (CNNs), and  
recurrent neural networks (RNNs). In NLP, 
all these DNNs aim to learn the syntactic 
and semantic representations for the dis-
crete words, phrases, structures, and sen-
tences in the real-valued continuous space so 

Due to the powerful capacity of feature learning and representation, deep 

neural networks (DNNs) have made big breakthroughs in speech recog-

nition and image processing. Following recent success in signal variable process-

ing, researchers want to figure out whether DNNs can achieve similar progress in 
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that similar words (phrases or struc-
tures) are near each other. We briefly 
introduce five popular neural networks  
after giving some notations—namely, 
we use wi to denote the ith word of 
a T-word sentence, and xi as the cor-
responding distributed real-valued 
vector. Vectors of all the words in 
the vocabulary form the embedding  
matrix L ∈ Rk×|V|, where k is the  
embedding dimension and |V| is the 
vocabulary size. Additionally, U and 
W are parameter matrices of a neural 
network, and b is the bias; f and e in-
dicate the source and target sentence, 
respectively.

Feed-Forward Neural Network 
The feed-forward neural network (FNN)  
is one of the simplest multilayer net-
works.1 Figure 1 shows an FNN ar-
chitecture with hidden layers as well  
as input and output layers. Taking the  
language model as an example, the 
FNN attempts to predict the conditional 
probability of the next word given the 
fixed-window history words. Suppose 
we have a T-word sentence, w1, w2, ...,  
wt, ..., wT; our task is to estimate  
the four-gram conditional probability 
of wt given the trigram history wt−3, 
wt−2, wt−1. The FNN first maps each his-
tory word into a real-valued vector xt−3,  
xt−2, xt−1 using embedding matrix L ∈ 
Rk×|V|; xt−3, xt−2, xt−1 are then concate-
nated to form a single input vector xt_

history. The hidden layers are followed 
to extract the abstract representation 
of the history words through a linear 
transformation W × xt_history and a non-
linear projection f(W × xt_history + b),  
such as f = tanh (x)). The softmax layer 
is usually adopted in the output to  
predict each word’s probability in the 
vocabulary.

recurrent Neural Network 
The recurrent neural network (Recur-
rentNN)2 is theoretically more power-
ful than FNN in language modeling due 

to its capability of representing all the 
history words rather than a fixed-length 
context as in FNN. Figure 2 depicts the 
RecurrentNN architecture. Given the 
history representation ht−1 encoding all 
the preceding words, we can obtain the 
new history representation ht with the 
formula ht = Uxt + Wht−1. With ht, we 
can calculate the probability of next 
word using the softmax function:
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where i traverses all the words in the 
vocabulary. Similarly, the new his-
tory representation ht and the next 
word will be utilized to get the his-
tory representation ht+1 at time t + 1.

recursive Auto-encoder 
The recursive auto-encoder (RAE)3 
provides a good way to embed a 
phrase or a sentence in continu-
ous space with an unsupervised or 
semisupervised method. Figure 3 
shows an RAE architecture that learns 
a vector representation of a four-word 
phrase by recursively combining two 
children vectors in a bottom-up man-
ner. By convention, the four words w1, 
w2, w3, and w4 are first projected into 
real-valued vectors x1, x2, x3, and x4. 

In RAE, a standard auto-encoder (in 
box) is reused at each node. For two 
children c1 = x1 and c2 = x2, the auto-
encoder computes the parent vector y1 
as follows:

y1 = f(W(1) [c1; c2] + b(1)). (2)

To assess how well the parent’s vec-
tor represents its children, the standard 
auto-encoder reconstructs the children 
in a reconstruction layer:

[c′1; c′2] = f ′(W(2) y1 + b(2)). (3)

The standard auto-encoder tries to 
minimize the reconstruction errors  

between the inputs and the recon-
structions during training:

Erec([c1; c2]) = ½ ||[c1; c2] - [c′1; c′2]||2.
 (4)

The same auto-encoder is reused 
until the whole phrase’s vector is gen-
erated. For unsupervised learning, 
the objective is to minimize the sum 
of reconstruction errors at each node 
in the optimal binary tree:

RAE x E c c
y A x

s y sθ ( ) =  ( )
∈ ( )

∈∑argmin rec 1 2; .
 

 (5)

Figure 1. The feed-forward neural 
network (FNN) architecture. Taking the 
language model as an example, the 
FNN attempts to predict the conditional 
probability of the next word given the 
fixed-window history words.
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Figure 2. The recurrent neural network 
(RecurrentNN) architecture. Theoretically, 
it’s more powerful than FNN in language 
modeling due to its capability of 
representing all the history words rather 
than a fixed-length context.
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A(x) denotes all the possible binary 
trees that can be built from input x.

recursive Neural Network 
The recursive neural network (Recur-
siveNN)4 performs structure prediction 
and representation learning using a bot-
tom-up fashion similar to that of RAE. 
However, RecursiveNN differs from 
RAE in four points: RecursiveNN is op-
timized with supervised learning; the tree 
structure is usually fixed before train-
ing; RecursiveNN doesn’t have to recon-
struct the inputs; and different matrices 

can be used at different nodes. Figure 4 
illustrates an example that applies three 
different matrices. The structure, repre-
sentation, and parameter matrices W(1), 
W(2), and W(3) have been learned to op-
timize the label-related supervised objec-
tive function.

convolutional Neural Network
The convolutional neural network 
(CNN)5 consists of the convolution and 
pooling layers and provides a standard 
architecture that maps variable-length 
sentences into fixed-size distributed vec-
tors. Figure 5 shows the architecture. 
The CNN model takes as input the 
sequence of word embeddings, sum-
marizes the sentence meaning by con-
volving the sliding window and pooling 
the saliency through the sentence, 
and yields the fixed-length distributed  
vector with other layers, such as drop-
out and fully connected layers.

Given a sentence w1, w2, ..., wt, ..., 
wT, each word wt is first projected 
into a vector xt. Then, we concate-
nate all the vectors to form the input 
X = [x1, x2, ..., xt, ..., xT].

The convolution layer involves sev-
eral filters W ∈ Rh×k that summarize the 

information of an h-word window and 
produce a new feature. For the window 
of h words Xt:t+h−1, a filter Fl (1 ≤ l ≤ L) 
generates the feature yt

l as follows:

y f WX bt
l

t t h= +( )+ −: 1
. (6)

When a filter traverses each window 
from X1:h−1 to XT−h+1:T, we get the fea-

ture map’s output: y y yl l
T t
l
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(yl ∈ RT−h+1). Note that the sentences 
differ from each other in length T, and 
yl has different dimensions for different 
sentences. A key question becomes how 
do we transform the variable-length 
vector yl into a fixed-size vector?

The pooling layer is designed to 
perform this task. In most cases, we 
apply a standard max-over-time pool-
ing  operation over yl and choose the 

maximum value ŷ max yl l= { }. With 

L filters, the dimension of the pooling 
layer output will be L. Using other lay-
ers, such as fully connected linear lay-
ers, we can finally obtain a fixed-length 
output representation.

Machine Translation
Statistical models dominate the MT 
community today. Given a source lan-
guage sentence f, statistical machine 
translation (SMT) searches through 
all the target language sentences e 
and finds the one with the highest 
probability:

′ =e p e f
e

argmax ( | ). (7)

Usually, p(e|f) is decomposed using 
the log-linear model6:
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y3 =f(W(1)[y2; x4]+b)

y2 =f(W(1)[y1; x3]+b)

y1 =f(W(1)[x1; x2]+b)

x1 x2 x3 x4

Figure 3. The recursive auto-encoder (RAE) architecture. It learns a vector representation of 
a four-word phrase by recursively combining two children vectors in a bottom-up manner.

Figure 4. Recursive neural network 
(RecursiveNN) architecture. The 
structure, representation, and 
parameter matrices W(1), W(2), and W(3) 
have been learned to optimize the label-
related supervised objective function.

y3 =f(W (3)[y2; x4]+b(3))

label

label
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y2 =f(W (2)[y1; x3]+b(2))

x2x1 x3 x4

y1 =f(W (1)[x1; x2]+b(1))
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where hi(f, e) can be any translation fea-
ture and λi is the corresponding weight.

The translation process can be di-
vided into three steps: partition the 
source sentence (or syntactic tree) into 
a sequence of words or phrases (or 
set of subtrees), perform word/phrase 
or subtree translation; and compos-
ite the fragment translations to obtain 
the final target sentence. If the transla-
tion unit is word, it’s the word-based 
model. If phrase is the basic transla-
tion unit, it’s the popular phrase-based 
model. In this article, we mainly take 
the phrase-based SMT7 as an example.

In the training stage, we first per-
form word alignment to find word 
correspondence between the bilingual 
sentences. Then, based on the word-
aligned bilingual sentences, we extract 
phrase-based translation rules (such as 
the a–e translation rules in Figure 6)  
and learn their probabilities. Mean-
while, the phrase reordering model 
can be trained from the word-aligned 
bilingual text. In addition, the lan-
guage model can be trained with the 
large-scale target monolingual data.

During decoding, the phrase-based 
model finds the best phrase partition 
of the source sentence, searches for the 
best phrase translations, and figures 
out the best composition of the target 
phrases. Figure 6 shows an example 
for a Chinese-to-English translation. 
Phrasal rules (a–e) are first utilized to 
get the partial translations, and then 
reordering rules (f–i) are employed to 
arrange the translation positions. Rule 
g denotes that “the two countries” 
and “the relations between” should be 
swapped. Rules f, g, and i just compos-
ite the target phrases monotonously. 
Finally, the language model measures 
which translation is more accurate.

Obviously, from training and decod-
ing, we can see the difficulties in SMT:

•	 It’s difficult to obtain accurate 
word alignment because we have 

no knowledge besides the parallel 
data.

•	 It’s difficult to determine which tar-
get phrase is the best candidate for 
a source phrase because a source 
phrase can have many translations, 
and different contexts lead to differ-
ent translations.

•	 It’s tough work to predict the trans-
lation derivation structure because 
phrase partition and phrase reor-
dering for a source sentence can be 
arbitrary.

•	 It’s difficult to learn a good language 
model due to the data sparseness 
problem.
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Figure 5. The convolutional neural network (CNN) architecture. The CNN model takes as 
input the sequence of word embeddings, summarizes the sentence meaning by convolving 
the sliding window and pooling the saliency through the sentence, and yields the fixed-
length distributed vector with other layers, such as dropout and fully connected layers.

Figure 6. An example of translation derivation structure prediction. Phrasal rules 
(a–e) are first utilized to get the partial translations, and then reordering rules (f–i) 
are employed to arrange the translation positions. Rule g denotes that “the two 
countries” and “the relations between” should be swapped. Rules f, g, and i just 
composite the target phrases monotonously. Finally, the language model measures 
which translation is more accurate.
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The core issues lie in two areas: data 
sparseness (when considering addi-
tional contexts) and the lack of se-
mantic modeling of words (phrases 
and sentences). Fortunately, DNNs are 
good at learning semantic representa-
tions and modeling wide context with-
out severe data sparseness.

DNNs in Standard SMT 
Frameworks
The indirect application of DNNs in 
SMT aims to solve one difficult prob-
lem in an SMT system with more 
accurate context modeling and syn-
tactic/semantic representation. Table 1  
gives an overview of SMT problems 
and their various DNN solutions.

DNNs for Word Alignment
Word alignment attempts to identify 
the word correspondence between 
parallel sentence pairs. Given a source 
sentence f = f1, f2, ..., ft, ..., fT and its 
target translation e = e1, e2, ..., et, ..., 
eT ′, the word alignment is to find the 
set A = {(i, j), 1 ≤ i ≤ T, 1 ≤ j ≤ T ′}, in 
which (i, j) denotes that fi and ej are 
translations of each other. Figure 7 
shows an example.

In SMT, the generative model is a 
popular solution for word alignment. 
Generative approaches use the statistics 

of word occurrences and learn their pa-
rameters to maximize the likelihood of 
the bilingual training data. They have 
two disadvantages: discrete symbol 
representation can’t capture the simi-
larity between words, and contextual 
information surrounding the word isn’t 
fully explored.

Nan Yang and colleagues8 extended 
the HMM word alignment model and 
adapted each subcomponent with an 
FNN. The HMM word alignment 
takes the following form:

p a e f p e f p a alex j a d j
j
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where plex is the lexical translation 
probability and pd is the distor-
tion probability. Both components are 
modeled with an FNN. For the lexical  
translation score, the authors employed 
the following formula:

slex(ej|fi, e, f) = f3 ° f2 ° f1 ° L  
(window(ej), window (fi)). (10)

The FNN-based approach considers 
the bilingual contexts (window(ej) and 
window (fi)). All the source and target 
words in the window are mapped into 
vectors using L ∈ Rk×|V| and concatenated  

to feed to hidden layers f1 and f2.  
Finally, the output layer f3 generates 
a translation score. A similar FNN is 
applied to model the distortion score 
sd(aj - aj−1). This DNN-based method 
not only can learn the bilingual word  
embedding that captures the similarity 
between words, but can also make use 
of wide contextual information.

Akihiro Tamura and colleagues9 
adopted RecurrentNN to extend the 
FNN-based model. Because the FNN-
based approach can only explore 
the context in a window, the Recur-
rentNN predicts the jth alignment aj 
by conditioning on all the preceding 
alignments aj1

1− . 
The reported experimental results 

indicate that RecurrentNN outper-
forms FNN in word alignment qual-
ity on the same test set. It also implies 
that RecurrentNN can capture long 
dependency by trying to memorize all 
the history.

DNNs for Translation rule 
Selection
With word-aligned bilingual text, we 
can extract a huge number of transla-
tion rules. In phrase-based SMT, we can 
extract many phrase translation rules 
for a given source phrase. It becomes a 
key issue to choose the most appropri-
ate translation rules during decoding. 
Traditionally, translation rule selection  
is usually performed according to co-
occurrence statistics in the bilingual 
training data rather than by exploring 
the large context and its semantics.

Will Zou and colleagues10 used two 
FNNs (one for source language and 
the other for target language) to learn 
bilingual word embeddings so as to 
make sure that a source word is close 
to its correct translation in the joint 
embedding space. The FNN used for 
source or target language takes as in-
put the concatenation of the context 
words, applies one hidden layer, and 
finally generates a score in the output 

Table 1. Statistical machine translation difficulties and their corresponding  
deep neural network solutions.

Word alignment FNN, RecurrentNN

Translation rule selection FNN, RAE, CNN

Reordering and structure prediction RAE, RecurrentNN, RecursiveNN

Language model FNN, RecurrentNN

Joint translation prediction FNN, RecurrentNN, CNN

we pay great attention to developing the relations between the two countries

Figure 7. Word alignment example. Each line connecting a Chinese word to an 
English word indicates they are translation pairs.
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layer. For source language embedding, 
the objective function is as follows:

Jsrc + lJtgt→src, (11)

where Jsrc is the contrastive objective 
function with monolingual data, and 
Jtgt→src is a bilingual constraint:

Jtgt→src = || Lsrc - Atgt→srcLtgt||2. (12)

Equation 12 says that after word 
alignment projection Atgt→src, the tar-
get word embeddings Ltgt should be 
close to the source embeddings Lsrc. 
This method has shown that it can 
cluster bilingual words with similar 
meanings. The bilingual word embed-
dings are adopted to calculate the se-
mantic similarity between the source 
and target phrases in a phrasal rule, 
effectively improving the performance 
of translation rule selection.

Jianfeng Gao and colleagues11 at-
tempted to predict the similarity be-
tween a source and a target phrase 
using two FNNs with the objective 
of maximizing translation quality on 
a validation set. For a phrasal rule 
(f1,…,i, e1,…,j), the FNN (for source 
or target language) is employed first 
to abstract the vector representa-
tion for f1,…,i  and e1,…,j, respectively. 
The similarity score will be score  
f e y yi j f

T
ei j1 1 1 1, , , ,,

, , , ,… … … …( ) = . The FNN 
parameters are trained to optimize the 
score of the phrase pairs that can lead  
to better translation quality in the 
valida tion set.

Because word order isn’t considered 
in the above approach, Jianjun Zhang 
and colleagues12 proposed a bilingually 
constrained RAE (BRAE) to learn se-
mantic phrase embeddings. As shown in 
Figure 3, unsupervised RAE can get the 
vector representation for each phrase. 
In contrast, the BRAE model not only 
tries to minimize the reconstruction  
error but also attempts to minimize 
the semantic distance between phrasal 

translation equivalents. By fine-tuning  
BRAE’s parameters, the model can 
learn the semantic vector representation 
for each source and target phrase. Using 
BRAE, each phrase translation rule can 
be associated with a semantic similarity. 
With the help of semantic similarities, 
translation rule selection is much more 
accurate.

Lei Cui and colleagues13 applied the 
auto-encoder to learn the topic repre-
sentation for each sentence in the par-
allel training data. By associating each 
translation rule with topic informa-
tion, topic-related rules can be selected 
according to the distributed similarity 
with the source language text.

Although these methods adopt dif-
ferent DNNs, they all achieve better 
rule prediction by addressing differ-
ent aspects such as phrase similar-
ity and topic similarity. FNN as used 
in the first two approaches is simple 
and learns much of the semantics of 
words and phrases with bilingual or 
BLEU (Bilingual Evaluation Under-
study) objectives. In contrast, RAE is 
capable of capturing a phrase’s word 
order information.

DNNs for reordering and 
Structure prediction
After translation rule selection, we can 
obtain the partial translation candi-
dates for the source phrases (see the 
branches in Figure 6). The next task 
is to perform derivation  structure 
 prediction, which includes two sub-
tasks: determining which two neigh-
boring candidates should be composed 
first and deciding how to compose 
the two candidates. The first subtask 
hasn’t been explicitly modeled to date. 
The second subtask is usually done 
via the reordering model. In SMT, the 
phrase reordering model is formalized 
as a classification problem, and dis-
crete word features are employed, al-
though data sparseness is a big issue 
and similar phrases can’t share similar 

reordering patterns with each other.
Peng Li and colleagues14,15 adopted 

the semisupervised RAE to learn the 
phrase representations that are sensitive 
to reordering patterns. For two neigh-
boring translation candidates (f1, e1)  
and (f2, e2), the objective function is

E = aErec(f1, e1, f2, e2) + (1 - a) Ereorder 
((f1, e1), (f2, e2)), (13)

where Erec(f1, e1, f2, e2) is the sum 
of reconstruction errors, and Ereorder 
((f1, e1), (f2, e2)) is the reordering loss 
computed with cross-entropy error 
function. The semisupervised RAE 
shows that it can group the phrases 
sharing similar reordering patterns.

Feifei Zhai and colleagues16 and  
Jianjun Zhang and colleagues17 explic-
itly modeled the translation process  
of the derivation structure prediction. 
A type-dependent RecursiveNN17 
jointly determines which two partial  
translation candidates should be com-
posed together and how that should 
be done. Figure 8 shows a training 
example. For a parallel sentence pair 
(f, e), the correct derivation exactly 
leads to e, as Figure 8a illustrates. 
Meanwhile, we have other wrong 
derivation trees in the search space 
(Figure 8b gives one incorrect deri-
vation). Using RecursiveNN, we can 
get scores SRecursiveNN(cTree) and 
SRecursiveNN(wTree) for the correct and 
incorrect derivations. We train the 
model by making sure that the score 
of the correct derivation is better than 
that of incorrect one:

SRecursiveNN(cTree) ≤ SRecursiveNN(wTree) 
+ D(SRecursiveNN(cTree), 
SRecursiveNN(wTree)), (14)

where, D( SRecursiveNN(cTree), SRecursiveNN 

(wTree)) is a structure margin.
As RecursiveNN can only explore 

the children information, Shujie Liu 
and colleagues18 designed a model 
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combining RecursiveNN and Recur-
rentNN together. This not only retains 
the capacity of RecursiveNN but also 
takes advantage of the history.

Compared to RAE, RecursiveNN ap-
plies different weight matrixes according 
to different composition types. Other 
work17 has shown via experiments that 
RecursiveNN can outperform RAE on 
the same test data.

DNNs for Language Models in SMT
During derivation prediction, any 
composition of two partial transla-
tions leads to a bigger partial transla-
tion. The language model performs the 
task to measure whether the transla-
tion hypothesis is fluent. In SMT, the 

most popular language model is the 
count-based n-gram model. One big 
issue here is that data sparseness be-
comes severe as n grows. To alleviate 
this problem, researchers tried to de-
sign a neural network-based language 
model in the continuous vector space.

Yoshua Bengio and colleagues1 de-
signed an FNN as Figure 1 shows to 
learn the n-gram model in the continu-
ous space. For an n-gram e1, ..., en, each 
word in e1, ..., en−1 is mapped onto a 
vector and concatenation of vectors 
feed into the input layer followed by one 
hidden layer and one softmax layer that 
outputs the probability p(en|e1, ..., en−1). 
The network parameters are optimized 
to maximize the likelihood of the large-

scale monolingual data. Ashish Vaswani 
and colleagues19 employed two hidden  
layers in the FNN that’s similar to  
Bengio’s FNN.

The n-gram model assumes that the 
word depends on the previous n - 1  
words. RecurrentNN doesn’t use this 
assumption and models the probabil-
ity of a sentence as follows:

p e e p e e eT j j
j

T

1 1 1
1

, , | , , .… …′ −
=

′

( ) = ( )∏  
 (15)

All the history words are applied to 
predict the next word. 

Tomas Mikolov20 designed the Re-
currentNN (see Figure 2). A sentence 
start symbol <s> is first mapped to a 
real-valued vector as h0 and then em-
ployed to predict the probability of e1; 
h0 and e1 are used to form the new his-
tory h1 to predict e2, h1 and e2 gener-
ate h2, and so on. When predicting eT′, 
all the history e1, ..., eT′−1 can be used. 
The RecurrentNN language model is 
employed to rescore the n-best trans-
lation candidates. Michael Auli and 
Jianfeng Gao21 integrated the Re-
currentNN language model during 
the decoding stage, and further im-
provements can still be obtained than 
just rescoring the final n-best transla-
tion candidates.

DNNs for Joint Translation 
prediction
The joint model predicts the target 
translation by using both of the source 
sentences’ information and the target-
side history.

Yuening Hu and colleagues22 and 
Youzheng Wu and colleagues23 cast the 
translation process as a language model 
prediction over the minimum transla-
tion units (smallest bilingual phrase 
pairs satisfying word alignments). They 
adopted RecurrentNN to model the 
process.

Michael Auli and colleagues24 adapted 
the RecurrentNN language model and 

Figure 8. Type-dependent RecursiveNN: (a) correct derivation vs. (b) incorrect 
derivation. The correct derivation is obtained by performing forced decoding on 
the bilingual sentence pair; the derivation structure leads directly to the correct 
translation. The incorrect derivation is obtained by decoding the source sentence 
with the trained SMT model; it results in a wrong translation.
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added a vector representation for the 
source sentence as the input along with 
the target history. Jacob Devlin and col-
leagues25 proposed a neural network 
joint model (NNJM) that adapts FNN 
to take as input both the n - 1 target 
word history and h-window source con-
text. They reported promising improve-
ments over the strong baseline. Because 
no global information is employed in 
NNJM, Fandong Meng and colleagues26 
and Jiajun Zhang and colleagues27 pre-
sented an augmented NNJM model: 
CNN is designed to learn the vector 
representation for each source sentence; 
then, the sentence representation aug-
ments the NNJM model’s input to pre-
dict the target word generation. This 
approach further improves the transla-
tion quality over the NNJM model.

The RecurrentNN joint model just 
fits the phrase-based SMT due to the as-
sumption that the translation is gener-
ated from left to right or right to left. In 
contrast, FNN and CNN can benefit all 
the translation models because they fo-
cus only on applying DNNs to learn the 
distributed representations of local and 
global contexts.

Purely Neural MT
Purely neural machine translation 
(NMT) is the new MT paradigm. The 
standard SMT system consists of sev-
eral subcomponents that are separately 
optimized. In contrast, NMT employs 
only one neural network that’s trained 
to maximize the conditional likelihood 
on the bilingual training data. The basic 
architecture includes two networks: one 
encodes the variable-length source sen-
tence into a real-valued vector, and the 
other decodes the vector into a variable-
length target sentence.

Kyunghyun Cho and colleagues,28 
Ilya Sutskever and colleagues,29 and 
Dzmitry Bahdanau and colleagues30 fol-
low the similar RecurrentNN encoder-
decoder architecture (see Figure 9).  
Given a source sentence in vector  

sequence X = (x1, ..., xT), the encoder 
applies RecurrentNN to obtain a vec-
tor C = q(h1, ..., hT) in which ht (1 ≤ ht 
≤ T) is calculated as follows:

ht = f(ht−1, xt), (16)

where f and q are nonlinear func-
tions. Sutskever and colleagues sim-
plified the vector to be a fixed-length 
vector C = q(h1, ..., hT) = hT, whereas 
Bahdanau and colleagues directly  
applied the variable-length vector  
(h1, ..., hT) when predicting each tar-
get word.

The decoder also applies Recur-
rentNN to predict the target sentence 
Y = (y1, ..., yT’), where T′ usually dif-
fers from T. Each target word yt de-
pends on the source context C and 
all the predicted target words {y1, ..., 
yt−1}; the probability of Y will be

p Y p y y y Ct t t
t

T

( ) = { }( )−
=

′

∑ | , , ,1 1
1

… . (17)

Sutskever and colleagues chose Ct = 
C = hT, and Bahdanau and colleagues 
set C ht j

T
tj j= =∑ 1α .

All the network parameters are trained 
to maximize ∏p(Y) in the bilingual train-
ing data. For a specific network struc-
ture, Sutskever and colleagues employed 
deep LSTM to calculate each hidden 
state, whereas Bahdanau and colleagues 
applied bidirectional RecurrentNN to 
compute the source-side hidden-state hj. 
Both report similar or superior perfor-
mance in English-to-French translation 
compared to the standard phrase-based 
SMT system.

The MT network architecture is 
simple, but it has many shortcomings. 
For example, it restricts tens of thou-
sands of vocabulary words for both 
languages to make it workable in real 
applications, meaning that many un-
known words appear. Furthermore, 
this architecture can’t make use of 
the target large-scale monolingual 
data. Recently, Minh-Thang Luong 
and colleagues31 and Sebastien Jean 
and colleagues32 attempted to solve 
the vocabulary problem, but their ap-
proaches are heuristic. For example, 
they used a dictionary in the post-
processor to translate the unknown 
words.

Discussion and Future 
Directions
Applying DNNs to MT is a hot re-
search topic. Indirect application is 
a relatively conservative attempt be-
cause it retains the standard SMT sys-
tem’s strength, and the log-linear SMT 
model facilitates the integration of 
DNN-based translation features that 
can employ different kinds of DNNs 
to deal with different tasks. However, 
indirect application makes the SMT 
system much more complicated.

In contrast, direct application is 
simple in terms of model architecture: 
a network encodes the source sentence 
and another network decodes to the 
target sentence. Translation quality is 
improving, but this new MT architec-
ture is far from perfect. There’s still 
an open question of how to efficiently 
cover most of the vocabulary, how 
to make use of the target large-scale 

Figure 9. Neural machine translation (NMT) architecture. The model reads a source 
sentence abc and produces a target sentence wxyz.

w

a b c

x y z

w x y z

<EOS>

<EOS>



10  www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

N a t u r a l  l a N g u a g e  P r o c e s s i N g

monolingual data, and how to utilize 
more syntactic/semantic knowledge in 
addition to source sentences.

For both direct and indirect appli-
cations, DNNs boost translation per-
formance. Naturally, we’re interested 
in the following questions:

•	Why can DNNs improve transla-
tion quality?

•	Can DNNs lead to a big break- 
through?

•	What aspects should DNNs im-
prove if they’re to become an MT 
panacea?

For the first question, DNNs rep-
resent and operate language units in 
the continuous vector space that fa-
cilitates the computation of semantic 
distance. For example, several algo-
rithms such as Euclidean distance and 
cosine distance can be applied to cal-
culate the similarity between phrases 
or sentences. But they also capture 
much more contextual information 
than standard SMT systems, and data 
sparseness isn’t a big problem. For ex-
ample, the RecurrentNN can utilize all 
the history information before the cur-
rently predicted target word; this is im-
possible with standard SMT systems.

For the second question, DNNs 
haven’t achieved huge success with 
MT until recently. We’ve conducted 
some analysis and propose some key 
problems for SMT with DNNs:

•	Computational complexity. Be-
cause the network structure is com-
plicated, and normalization over 
the entire vocabulary is usually 
required, DNN training is a time-
consuming task. Training a stan-
dard SMT system on millions of 
sentence pairs only requires about 
two or three days, whereas train-
ing a similar NMT system can take 
several weeks, even with powerful 
GPUs.

•	Error analysis. Because the DNN-
based subcomponent (or NMT) deals 
with variables in the real-valued con-
tinuous space and there are no effec-
tive approaches to show a meaningful 
and explainable trace from input to 
output, it’s difficult to understand 
why it leads to better translation per-
formance or why it fails.

•	Remembering and reasoning. For cur-
rent DNNs, the continuous vector 
representation (even using LSTM in 
RecurrentNN) can’t remember full in-
formation for the source sentence. It’s 
quite difficult to obtain correct target 
translation by decoding from this rep-
resentation. Furthermore, unlike other 
sequence-to-sequence NLP tasks, MT 
is a more complicated problem that 
requires rich reasoning operations 
(such as coreference resolution). Cur-
rent DNNs can’t perform this kind of 
reasoning with simple vector or ma-
trix operations.

These problems tell us that 
DNNs have a long way to go 

in MT. Nevertheless, due to their ef-
fective representations of languages, 
they could be a good solution eventu-
ally. To achieve this goal, we should 
pay attention to the path ahead.

First, DNNs are good at handling 
continuous variables, but natural lan-
guage is composed of abstract discrete 
symbols. If they completely abandon 
discrete symbols, DNNs won’t fully 
control the language generation pro-
cess: sentences are discrete, not con-
tinuous. Representing and handling 
both discrete and continuous vari-
ables in DNNs is a big challenge.

Second, DNNs represent words, 
phrases, and sentences in continuous 
space, but what if they could mine 
deeper knowledge, such as parts of 
speech, syntactic parse trees, and 
knowledge graphs? What about ex-
ploring wider knowledge beyond the 

sentence, such as paragraphs and dis-
course? Unfortunately, representation, 
computation, and reasoning of such 
information in DNNs remain a diffi-
cult problem.

Third, effectively integrating DNNs 
into standard SMT is still worth trying. 
In the multicomponent system, we can 
study which subcomponent is indis-
pensable and which can be completely 
replaced by DNN-based features. In-
stead of the log-linear model, we need a 
better mathematical model to combine 
multiple subcomponents.

Fourth, it’s interesting and impera-
tive to investigate more efficient algo-
rithms for parameter learning of the 
complicated neural network architec-
tures. Moreover, new network archi-
tectures can be explored in addition to 
existing neural networks. We believe 
that the best network architectures for 
MT must be equipped with representa-
tion, remembering, computation, and 
reasoning, simultaneously.
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