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Integrating Generative and Discriminative Character-Based Models
for Chinese Word Segmentation

KUN WANG and CHENGQING ZONG, National Laboratory of Pattern Recognition,
Institute of Automation, Chinese Academy of Sciences
KEH-YIH SU, Behavior Design Corporation

Among statistical approaches to Chinese word segmentation, the word-based n-gram (generative) model
and the character-based tagging (discriminative) model are two dominant approaches in the literature. The
former gives excellent performance for the in-vocabulary (IV) words; however, it handles out-of-vocabulary
(OOV) words poorly. On the other hand, though the latter is more robust for OOV words, it fails to deliver
satisfactory performance for IV words. These two approaches behave differently due to the unit they use
(word vs. character) and the model form they adopt (generative vs. discriminative). In general, character-
based approaches are more robust than word-based ones, as the vocabulary of characters is a closed set;
and discriminative models are more robust than generative ones, since they can flexibly include all kinds of
available information, such as future context.

This article first proposes a character-based n-gram model to enhance the robustness of the generative
approach. Then the proposed generative model is further integrated with the character-based discrimina-
tive model to take advantage of both approaches. Our experiments show that this integrated approach
outperforms all the existing approaches reported in the literature. Afterwards, a complete and detailed
error analysis is conducted. Since a significant portion of the critical errors is related to numerical/foreign
strings, character-type information is then incorporated into the model to further improve its performance.
Last, the proposed integrated approach is tested on cross-domain corpora, and a semi-supervised domain
adaptation algorithm is proposed and shown to be effective in our experiments.
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1. INTRODUCTION

In English and other western languages, space delimiters are used to mark word
boundaries. However, no such spaces are used between adjacent words in Chinese
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(and some other Asian languages such as Japanese and Korean). Word segmentation
(WS) is thus required to find the corresponding word sequence for a given Chinese
character sequence. As words are the basic units for text analysis, WS plays an im-
portant role, and is the first step, in most Chinese natural language processing (NLP)
applications such as machine translation, information retrieval, and question answer-
ing. Since WS is the first phase, its errors will be passed along to subsequent phases.
Thus the accuracy of WS is crucial for Chinese NLP.

Although WS is the initial task for Chinese NLP, it would sometimes benefit from
subsequent phases that have not been carried out yet. Moreover, some ambiguities can
be resolved only by additional contextual information from beyond the sentence. For
example, “ ” can be segmented into two different meaningful sequences:
“ (discussion forum) (very) (hot)” “or (discussion) (will) (very)

(hot)”. Even humans cannot disambiguate this segment without the additional
context. Such problems are difficult to address and are beyond the scope of this article.

We can, however, address another major problem. In real applications, words are
often encountered which have never been encountered before. Among these out-of-
vocabulary (OOV) words, named entities, numerical expressions, new words, and ab-
breviations are four typical types. No dictionary and no corpus could possibly contain
all of them; so handling them is an unavoidable problem for all WS systems.

In the literature, rule-based approaches [Palmer 1997; Yeh and Lee 1991] and
statistics-based approaches [Asahara et al. 2005; Gao et al. 2003, 2005; Xue 2003;
Zhang and Clark 2007; Zhang et al. 2006] have been proposed as two major categories
of WS algorithms. Due to its robustness in handling OOV words and its capability to
automatically acquire knowledge, the statistical approach has been widely adopted
and has become the mainstream approach since 1990. We will thus focus here on
statistical approaches for further study.

1.1. Classification of Statistical Approaches

According to the basic unit adopted for extracting features, statistical approaches can
be classified as either word-based [Gao et al. 2003; Zhang and Clark 2007; Zhang et al.
2003] or character-based [Asahara et al. 2005; Jiang et al. 2008; Ng and Low 2004;
Peng et al. 2004; Tseng et al. 2005; Xiong et al. 2009; Xue 2003]. The word-based ap-
proach of course treats the word as the basic unit, so the desired segmentation result
is the best word sequence directly obtained from the search process. By contrast, the
character-based approach treats the word segmentation task as a character tagging
problem by labeling each character as the beginning, the middle, or the end of a word.
The final segmentation result is thus indirectly generated from the tag sequence as-
signed to the sentence.

Besides classification by basic unit as above, statistical approaches can also be clas-
sified as either adopting a generative model1 or a discriminative model. The generative
model learns the joint probability of the given input and its associated label sequence,
while the discriminative model learns the posterior probability directly. Comparison of
these two basic models is a perennial and interesting topic [Liang and Jordan 2008; Ng
and Jordan 2002; Raina et al. 2004; Toutanova 2006; Xue and Titterington 2008]. In
general, for the sequence labeling problem, the generative model closely couples each
input and its associated label as a joint event, and thus cannot use the succeeding
input to decide the current label in the sequence labeling problem. By contrast, the

1According to Wikipedia (http://en.wikipedia.org/wiki/Generative model), “Generative models contrast with
discriminative models, in which a generative model is a full probability model of all variables, whereas a
discriminative model provides a model only of the target variable(s) conditional on the observed variables.”
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discriminative model does not associate each input with its label as a joint event and
thus it is capable of using the succeeding input to decide the current label. In recent
years, the discriminative model has become the dominant solution for NLP problems
due to its flexibility in incorporating features with dependencies between them and di-
rectly optimizing classification accuracy [Toutanova 2006]. However, the performance
advantage for the discriminative model can be very slight [Johnson 2001]; and the
generative model can achieve very similar or even better performance than the cor-
responding discriminative model if a suitable structure can be adopted that avoids
certain unrealistic independence assumptions [Toutanova 2006].

The above two dimensions of classification are orthogonal to each other, and thus
can be freely combined. However, in the literature that we have checked, all the
character-based tagging approaches adopt the discriminative model, and almost all the
word-based approaches adopt the generative model. The exception is Zhang and Clark
[2007]2, a word-based approach which adopts the averaged perceptron [Collins 2002]
for training. For clarity, the time-honored word-based n-gram model will be called the
word-based generative approach hereafter, and the model of Zhang and Clark [2007]
will be called the word-based discriminative approach. The well-known character-
based tagging model will be called the character-based discriminative approach. In
addition, the word “model” will be freely exchanged with the word “approach” if there
is no confusion.

Since the word-based generative model and the character-based discriminative
model are the best-known ones in the generative and discriminative families respec-
tively, and many different approaches have been built by extending them, they will
be regarded as our baseline systems for performance comparison and will be briefly
introduced now.

1.2. Word-Based Generative Model

The word-based n-gram generative model can be formulated below.

WSeq∗ = arg max
WSeq

P(WSeq
∣∣cn

1 ) (1)

where WSeq ≡ wm
1 = [w1, w2, . . . wm] indicates a specific word sequence with m words,

and cn
1 denotes a given sentence with n characters. The classical word-trigram model

P(wi |wi−2, wi−1 ) is then derived as follows.

P(wm
1

∣∣cn
1 ) = P(cn

1

∣∣wm
1 ) × P(wm

1 )
/

P(cn
1) (2)

Since P(cn
1

∣∣wm
1 ) = 1 and P(cn

1) is the same for various WSeq candidates, only P(wm
1 )

should be considered. It can be further simplified with the second order Markov Chain
assumption shown below.

P(wm
1 ) =

m∏
i=1

P(wi

∣∣∣wi−1
1 ) ≈

m∏
i=1

P(wi

∣∣∣wi−1
i−2 ) (3)

In Equation (3), the dependency between two adjacent characters within a word is
implicitly handled by regarding the characters as a joint event (i.e., characters within
a word are treated together as a unit). This model works well when there is no OOV
word (i.e., only in-vocabulary (IV) words appear in the testing-set). However, this con-
dition cannot be met in real applications. For example, named entities and numeri-
cal expressions are two kinds of OOV words which are often encountered. Since the

2Sun [2010] and Zhang and Clark [2011] also adopted the word-based discriminative model, but they are
just slight variations of Zhang and Clark [2007].
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Table I. The Tag-Set for Word Segmentation Adopted in this Article

Tag Meaning of the tag in a word
B Beginning of a word that has more than one character

M Middle of a word that has more than two characters
E Ending of a word that has more than one character

S Single-character word

associated candidates of multi-character OOV words cannot be generated during the
searching process without OOV pre-detection, it is impossible to identify them in this
word-based approach. Most OOV words will thus be segmented into their correspond-
ing sequences of uni-character-words. High recall of IV words (abbreviated as RIV) and
low recall of OOV words (abbreviated as ROOV) are thus obtained (see Table VI). In
other words, OOV words are problematic for word-based models. Meanwhile, the over-
all precision rate may also be low, as OOV words are segmented into more relatively
short IV words.

Since the word-based approach has problems handling OOV words, an additional
procedure incorporating other knowledge (not covered by the given corpus) is usually
required [Gao et al. 2003; Zhang et al. 2003]. Although the performance of word-based
models can be greatly enhanced with additional OOV detection and named entity
recognition modules, the resulting system is rather complicated in comparison with the
character-based discriminative approach described below. Thus the character-based
discriminative model has become the dominant approach since it was proposed by Xue
and Shen [2003].

1.3. Character-Based Discriminative Model

The character-based discriminative model [Xue and Shen 2003] treats segmentation
as a tagging problem, which assigns a corresponding tag to each Chinese character.
The model is formulated as follows.

P(tn1
∣∣cn

1 ) =
n∏

k=1

P(tk
∣∣∣tk−1

1 , cn
1 ) ≈

n∏
k=1

P(tk
∣∣tk−1, ck+2

k−2 ) (4)

where tk is a member of {Begin, Middle, End, Single} (which are separately abbre-
viated as B, M, E, and S, and defined in Table I) to indicate the corresponding posi-
tion of the character ck in its associated word. For example, the word “ (Beijing
City)” will be assigned with the corresponding tags as: “ /B(North) /M(Capital)

/E(City)”.
In this work, the feature templates used in the character-based discriminative

model are those of Ng and Low [2004], which have been widely adopted and reported
in many papers. However, we exclude the features forbidden by the closed test regula-
tions of the second SIGHAN Bakeoff. For example, the feature template Pu(C0), which
indicates whether the current character is a punctuation or not, is not allowed. The
adopted feature templates are listed below:

(a) Cn(n = −2,−1, 0, 1, 2)
(b ) CnCn+1(n = −2,−1, 0, 1)
(c) C−1C1

For example, when we consider the third character “ ”” in the character sequence
“ ”, template (a) results in these features: C−2= , C−1= , C0= , C1= ,
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C2= . Template (b) generates these features: C−2C−1= , C−1C0= ,
C0C1= , C1C2= . Finally, template (c) generates the feature C−1C1= .

In fact, in the literature, various tag-sets have been proposed which include 2, 3, 4,
and even 6 tags. It was reported that the 6-tag set is much better than both the 2-tag
set and the 3-tag set, but its superiority over the 4-tag set is not obvious [Zhao et al.
2006; Zhao et al. 2010]. According to our experiments on the second SIGHAN Bakeoff,
the overall performances of the 4-tag set and the 6-tag set with the same features are
0.9467 (see Table VI) and 0.9472, respectively. Since this performance difference is
statistically insignificant, the 4-tag set has been adopted by most previous studies. In
order to fairly compare our approach with those in the literature, the 4-tag set will be
adopted in this work as well.

Compared with the word-based generative model, this approach can better tolerate
OOV words. Since the vocabulary size of the possible character-tag-pairs is limited,
there are almost no OOV character-tag-pairs under this approach, and each multi-
character OOV word can be converted into its corresponding sequence of character-
tag-pairs. It is thus possible to correctly identify those OOV words. Therefore, this
approach is robust with respect to OOV words and can yield a high ROOV . On the other
hand, though the dependencies between adjacent tags (labels) can be addressed in the
character-based discriminative model, the dependency between adjacent characters
within words cannot be directly modeled under this framework.

The dependency between adjacent characters within a word, which is implicitly
handled in Equation (3), makes the word-based approach yield significantly higher
RIV. To study how this improvement comes about, we calculated log P(ci |ci−1 ) for var-
ious character-bigrams collected from all the training corpora provided by the second
SIGHAN Bakeoff [Emerson 2005]. Figure 1 gives the distributions of log P(ci |ci−1 ) for
the class of character-bigrams within words (shown by black bars) and the class of
character-bigrams between words (shown by white bars), where the X-axis represents
different intervals of log P(ci |ci−1 ) and the Y-axis denotes the relative frequencies of
events associated with various intervals. As indicated in this figure, log P(ci |ci−1 ) for
the class of character-bigrams within-words3 tends to have higher value, which ex-
plains why those IV words are more likely to be selected, so that high RIV is obtained
in the word-based approach. Hence, even the word-based unigram model gives a much
higher RIV than the character-based discriminative model (see Table VI).

1.4. Overview

As mentioned above, the traditional word-based generative model gives excellent
performance for IV words. However, it is incapable of handling the OOV words in
the testing set. Thus, in this paper, we first propose a character-based generative
model to replace the word-based n-gram with the character-tag-pair-based n-gram.
As the vocabulary of characters is a closed set (as opposed to the open set of words),
robustness with respect to OOV words is enhanced in this generative model. Com-
pared with the character-based discriminative approaches in the second SIGHAN
Bakeoff, this new generative model achieves competitive results. As a second proposal,
since the generative model and the discriminative model complement each other in
handling IV words and OOV words, we further suggest a joint model with log-linear
interpolation to integrate them. This joint approach achieves a good balance between
IV word identification and OOV word recognition. The experiments on closed tests

3The pair-of-adjacent-characters features (e.g., CnCn+1 shown above) adopted in the discriminative approach
do not distinguish between (1) the case where the two characters belong to the same word, and (2) the
case where they belong to two different words. In contrast, log P(ci |ci−1 ) of the within-words class directly
measures the adhesion between adjacent characters within words.
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Fig. 1. The distributions of log P(ci |ci−1 ).

in the second SIGHAN Bakeoff show that this joint model significantly outperforms
the baseline models of both generative and discriminative approaches. Furthermore,
statistical significance tests show that the joint model is significantly better than all
state-of-the-art systems reported in the literature.

Afterward, a complete and detailed error analysis is conducted. According to the
analysis, a significant portion of the critical errors is related to numerical or for-
eign strings. Information concerning character type, which distinguishes numerical
or foreign or punctuation characters from Chinese characters, is thus proposed to fur-
ther improve performance. Last, the proposed integrated approach is tested on cross-
domain corpora, and a semi-supervised learning algorithm is proposed to carry out
domain adaptation. Experiments on the CIPS-SIGHAN 2010 set show that this adap-
tation is effective in improving cross-domain performance, especially when there is a
considerable difference between the two domains in the test.

The remainder of this article is organized as follows: Section 2 describes the pro-
posed models in detail. The experiments conducted are reported in Section 3. Statisti-
cal significance tests for comparing various approaches are shown in Section 4. Section
5 provides error analysis and related discussion. Section 6 shows the effect of domain
adaptation, and related work is described in Section 7. Finally, concluding remarks are
made in Section 8.

The character-based generative model and the character-based joint model were
originally introduced in Wang et al. [2009, 2010]. In this article, we provide more de-
tails concerning model analysis and experiment setting. In addition, complete error
analysis is provided here, and new models exploiting character-type information are
added and tested. Last, an effective semi-supervised algorithm for domain adaptation
is proposed to improve cross-domain performance.

2. PROPOSED MODELS

To enhance the robustness of the generative approach in handling OOV words, a
character-based model is required. We propose such a model in the following section.
Afterwards, in Section 2.2, a character-based joint model is proposed to take full ad-
vantage of both the generative and the discriminative models.

2.1. Character-Based Generative Model

As explained in Section 1.2, the word-based approach is vulnerable to OOV words. To
address the problem of OOV word recognition, we must adopt the character-based ap-
proach. However, we also need the generative model’s ability to handle the dependency
of character-bigrams within-words. Accordingly, we here propose a character-based
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generative model to take advantage of both of the above-mentioned approaches by re-
placing wi with its corresponding [character, tag] sequence (abbreviated as [c, t]), where
tag is the same as in the character-based discriminative model above. With this new
representation, P(wm

1 |cn
1) can be re-derived based on the character-tag pair as follows:

P(wm
1

∣∣cn
1 ) ≡ P([c, t]n

1

∣∣cn
1 ) = P(cn

1

∣∣[c, t]n
1 ) × P([c, t]n

1)
/

P(cn
1) (5)

Following the derivation of Equation (2), only P([c, t]n
1) must be handled. It can be

further simplified to:

P([c, t]n
1) ≈

n∏
i=1

P([c, t]i

∣∣∣[c, t]i−1
i−k ) (6)

In this work, the SRI Language Modeling Toolkit4 (SRILM) [Stolcke 2002] is used to
train various character-tag pair n-gram models using the modified Kneser-Ney smooth-
ing method [Chen and Goodman 1998]. A beam search decoder with dynamic program-
ming is applied to find the best result.

As shown in the last section, P(ci |ci−1 ) within words tends to have a higher
value than between words. Therefore, for bi-character-words (and for other
multi-character-words as well), when [ci−1, ci] is an IV word, P([c, t]i

∣∣[c, t]i−1 ) for
[ti−1 = B or M; ti = E or M] is frequently higher than for [ti−1 = E or S; ti = B or S],
where the latter expression corresponds to the character-bigram between two adjacent
words. In other words, IV words are more likely to be selected in the former case,
and high RIV is thus expected. However, the dependency between [c, t]i and [c, t]i−1
(represented by P([c, t]i

∣∣ [c, t]i−1 ) in the generative model) cannot be modeled in the
discriminative approach, as ci and ti must be jointly considered as an event.

Unlike the existing word-based generative model specified above, this new approach
treats the character as a unit. It can thus correctly identify multi-character OOV
words, as their corresponding candidates can now be generated during the searching
process. In addition, the ability to handle the dependency between adjacent characters
within words, which has been shown to be important for obtaining high RIV in the
word-based approach, remains in the new model with its adopted generative form.
Furthermore, as the basic unit in the new proposed model is the character, the model’s
vocabulary size is much smaller than that of the word-based approach. Thus the data
sparseness problem will be greatly alleviated.

In summary, compared with the character-based discriminative approach, the pro-
posed character-based generative model retains the capability to handle OOV words
because it, too, regards the character as a unit. Also, since the generative form is
adopted, the dependency between adjacent characters is now directly modeled; the
proposed approach thus will prefer the IV word when it is encountered. By contrast,
such dependency is not modeled in the character-based discriminative approach. Fi-
nally, compared with the word-based model, the character-based generative model can
be more easily and naturally integrated with the character-based discriminative model
within the searching process (shown in Equation (7)), since both models yield scores
based on characters.

Nonetheless, besides those advantages mentioned above, a problem still remains for
the new character-based generative model (and for all other generative models as well):
The future context cannot be utilized in assigning the tag of the current character, as
a character and its tag are jointly observed in the model. However, the future context
can help to select the correct tag when the associated trigram has not been observed
in the training set, as is the case for OOV words. By contrast, the character-based

4http://www.speech.sri.com/projects/srilm/
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Table II. The Corresponding Feature Weights for ““ ” in the Sentence
“ ”. The Value of Each Entry Is the Corresponding

Weight for the Feature when the Specified Tag Is Assigned Under the ME Framework. All Features Are
Explained in Section 3.2.1.

Gold and Discriminative Model Tag: M; Generative Trigram Model Tag: E
Tag/Probability B/0.0333 E/0.2236 M/0.7401 S/0.0030

��������Feature
Tag B E M S

C−2 −1.4375 1.3558 1.1071 −1.0254
C−1 0.1572 0.1910 −0.5527 0.2046

C0 0.0800 0.7229 −0.3174 −0.4856
C1 0.2282 −1.2696 2.9422 −1.9008

C2 0.7709 −0.5970 0.4636 −0.6375
C−2C−1 0.2741 0.0049 −0.1708 0.0000

C2C0 0.0000 0.0921 0.0000 0.0000

C0C1 0.0000 0.0000 0.0000 0.0000
C1C2 −0.6718 0.8049 −0.9700 0.8368

C−1C1 0.0000 0.0000 0.0000 0.0000

Gold and Discriminative Model Tag: E; Generative Trigram Model Tag: S

Tag/Probability B/0.0009 E/0.8137 M/0.0012 S/0.1842
��������Feature

Tag B E M S

C−2 0.3586 0.3666 −0.5657 −0.1595
C−1 0.4175 0.0687 −0.4330 −0.0532

C0 0.0000 4.5381 1.8847 2.7360
C1 −0.7207 2.8300 0.0000 1.8223
C2 0.4626 −0.0846 −0.0918 −0.2862

C−2C−1 0.0085 0.0000 0.0000 −0.0024

C−1C0 0.0000 0.0000 0.0000 0.0000
C0C1 0.0000 −1.0279 0.0000 1.0494
C1C2 0.0000 0.6127 0.0000 0.7113

C−1C1 0.0000 0.0000 0.0000 0.0000

discriminative model can take advantage of the future context in this case, as the
character and its tag are not jointly observed in the model. An example will clarify
this situation.

In the sentence “ (that) (place) (of) (street sleeper) (only)
(have/exist) (some) (person) (In that place, there are only some street sleep-

ers)” in the CITYU corpus, “ /B /M /E(street sleeper)” is an OOV word, while
“ /B /E(sleep on the street)” is an IV word, where the associated tag of each char-
acter is given after the slash symbol. The character-based generative model wrongly
splits “ ” (“sleep street person”, i.e., street sleeper) into two words “ /B /E”
(sleep street) and “ /S (person)”, as the associated trigram for “ ” is not seen in
the training set. However, the character-based discriminative model gives the correct
result for “ /M” (sleep) and this character’s dominant features come from its future
context “ ” (person) and “ ” (only), as shown in Table II. Similarly, the future context
“ ” (only) helps to assign the correct tag “E” to the character “ ” (person).
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Table II gives the corresponding feature weights (i.e., lambda values under the Max-
imum Entropy (ME) framework [Berger et al. 1996]) for “ ” in the character-
based discriminative model. The table shows that in the Feature row of “C1” below
“ ”, the lambda value associated with the correct tag “M” is “2.9422”, which is the
highest value in that row and far greater than that of the wrong tag “E” (i.e., “-1.2696”)
assigned by the character-based generative model. This indicates that feature “C1”
(“ ”) is the most important feature for correctly tagging “ ”. This observation fits
a linguistic interpretation perfectly. We can explain this point as follows. Since “ ”
acts as a Chinese suffix with probability 0.878 (3,202 out of 3,647) in the CITYU cor-
pus examined in this article, once we foresee it as the next character, we can strongly
suspect that the current character will be bound to it (i.e., the current character is
very unlikely to be tagged with “E”). Similarly, in the Feature row of “C1” below “ ”,
the lambda value associated with the correct tag “E” is “2.8300”, which is also much
larger than those of the wrong tags “B” (-0.7207) and “M” (0.0000). Also, since the next
character “ ” acts as either a prefix or a single-character-word with probability 0.976
(2,336 out of 2,394) in CITYU corpus, once we foresee it as the next character, we can
strongly suspect that the current character will not be bound with it (i.e., the current
character is very unlikely to be tagged with “B” or “M”).

2.2. Character-Based Joint Model

From the above discussion, it is clear that the proposed character-based generative
model and the character-based discriminative model complement each other. Since the
performance of IV word identification and the performance of OOV word recognition
are both important for real applications, we need the strength of both models.

In general, combining two different models will yield better performance if the fol-
lowing conditions can be met: (1) The two models complement each other with respect
to remaining errors. Of course, if both models make the same wrong decision for most
errors, then they cannot help each other, and combining them is useless. (2) In cases
of error, the model that makes the correct decision gives a strongly preferred or confi-
dent answer over its competitor, while the model that makes the wrong decision gives
a much weaker preference, so that the strong model can override the weak one.

Table III shows the results for the first test condition comparing the generative
model and the discriminative model. It displays the statistics of the remaining errors
resulting from these two models (please refer to Section 3.2 for detailed settings). In
the table, “D” denotes the discriminative model, and “G” denotes the generative model.
Also, “G+” indicates that the generative model gives the correct decision for words in
that column, and “G-” indicates that it gives the wrong decision. Similar interpretation
also applies for “D+” and “D-” in relation to the discriminative model. Apparently,
the errors under “G-D-” cannot be recovered by combining these two models, as both
models prefer the incorrect answer. The last row of Table III (labeled “Overall”) shows
that “G-D-” cases make up only 31.2% of the overall errors (11,456 out of 36,729).
After this portion is extracted, the row shows that “G+D-” occupies 71.8% under the
IV category (12,027 out of 16,750); however, it occupies only 28.0% under the OOV
category (2,384 out of 8,523). By contrast, “G-D+” occupies only 28.2% under the IV
category (4,723 out of 16,750), but occupies 72.0% under the OOV category (6,139 out
of 8,523). Therefore, we can conclude that these two models do complement each other
to a considerable extent.

The situation for the second condition comparing the generative and discriminative
models is shown in Table IV. It gives the strength of preference of the character-based
generative model and the character-based discriminative model. This table simply
follows Table III, replacing its entries with the corresponding average-gap, which is
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Table III. Statistics for the Remaining Errors of the Character-Based Generative Model (G) and the
Character-Based Discriminative Model (D). The “G+D-” Column Under “IV Errors” Denotes that the Generative
Model Segments an IV Word Correctly but the Discriminative One Gives the Wrong Result. Other Abbreviations

Are Interpreted as in the “G+D-” Case

IV Errors OOV Errors
Corpus G+D- G-D+ G-D- G+D- G-D+ G-D-

AS 2,240 (46.4%) 943 (19.6%) 1,640 (34.0%) 419 (14.0%) 1,442 (48.3%) 1,124 (37.7%)

CITYU 1,054 (56.8%) 350 (18.9%) 452 (24.3%) 452 (28.1%) 776 (48.3%) 380 (23.6%)

MSR 2,843 (64.1%) 700 (15.8%) 889 (20.1%) 217 (14.9%) 665 (45.7%) 574 (39.4%)

PKU (ucvt.) 3,099 (43.5%) 1,707 (24.0%) 2,318 (32.5%) 978 (22.5%) 2,256 (51.9%) 1,115 (25.6%)

PKU (cvt.) 2,791 (46.5%) 1,023 (17.1%) 2,182 (36.4%) 318 (15.2%) 1,000 (47.6%) 782 (37.2%)

Overall 12,027 (49.6%) 4,723 (19.5%) 7,481 (30.9%) 2,384 (19.1%) 6,139 (49.1%) 3,975 (31.8%)

Table IV. Statistics for the Degree of Preference from the Character-Based
Generative Model (G) and the Character-Based Discriminative Model (D). This

Table Simply Follows Table III, Replacing Its Entries with the Corresponding
Average-Gap. (Please Refer to the Above Paragraph for Detailed Explanation)

IV Errors OOV Errors
Corpus G+D- G-D+ G+D- G-D+
AS 0.73; −0.42 −0.12; 0.68 0.41; −0.39 −0.58; 0.76

CITYU 0.95; −0.30 −0.21; 0.75 0.17; −0.59 −0.63; 0.83
MSR 0.84; −0.40 −0.24; 0.83 0.26; −0.41 −0.64; 0.71

PKU (ucvt.) 0.93; −0.38 −0.54; 0.95 0.20; −0.53 −0.65; 0.96
PKU (cvt.) 0.79; −0.39 −0.08; 0.68 0.54; −0.30 −0.62; 0.87

Overall 0.84; −0.39 −0.25; 0.79 0.30; −0.46 −0.62; 0.84

the average score difference between the desired answer and its top competitor. In
each cell, the first number denotes the average-gap given by the generative model,
and the second number denotes that given by the discriminative model. The last row
of this table (labeled “Overall”) shows that, for IV Errors, the average-gap of “G” under
“G+D-” is 0.84, which is larger than that of “D” (-0.39), and is also larger than that of
“G” under “G-D+” (-0.25). In comparison, the average-gap of “D” under “G-D+” is 0.79,
which is larger than that of “G” (-0.25), and is also larger than that of “D” under “G+D-”
(-0.39). In other words, for the errors in “G+D-” column, the generative model gives rel-
atively strong positive preference, and the discriminative model gives relatively weak
negative preference. By comparison, for the errors in “G-D+” column, the generative
model gives relatively weak negative preference, and the discriminative model gives
relatively strong positive preference.

Similar phenomena can also be observed for the average-gap of “D” of the OOV er-
rors under “G-D+” (marked in the last row of Table IV). However, no such phenomenon
are observed for the average-gap of “G” of the OOV errors under “G+D-” (which is only
0.30 versus -0.46 of “D” under “G+D-”, and versus -0.62 of “G” under “G-D+”). The
above statistics shows that the generative model is relatively weak in handling OOV
words. Therefore, combining these two models is unlikely to improve the situation in
this portion of the data. Fortunately, it is only a small portion (19.1% of OOV errors,
as shown in Table III). Therefore, to a considerable degree, these two models meet
the second condition as well as the first. Since both conditions are met in our data
set, we do expect that combining the two models would give better performance than
employing either model individually.

In the literature, various ways have been proposed to combine the generative and
discriminative models. Generative related terms are directly integrated into the dis-
criminative model in Raina et al. [2004] and Fujino et al. [2005], but unfortunately
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Table V. Corpus Statistics for the Second SIGHAN Bakeoff

Corpus Abbrev. Encoding
Training Set Training Set OOV
(Words/Types) (Words/Types) Rate

Academia Sinica (Taipei) AS Big5 5.45M/141K 122K/19K 0.046

City University of Hong Kong CITYU Big5 1.46M/69K 41K/9K 0.074

Microsoft Research (Beijing) MSR GB 2.37M/88K 107K/13K 0.026

Peking University
PKU(ucvt.) GB 1.1M/55K 104K/13K 0.058
PKU(cvt.) GB 1.1M/55K 104K/13K 0.035

this method cannot be applied to our case. By contrast, Jiampojamarn et al. [2010]
integrates the generative joint n-gram model into the discriminative model as a set of
binary features. However, among the various combining methods, the log-linear in-
terpolation remains a simple but effective one [Bishop 2006]. Thus the following joint
model is proposed. For the k−th character ck, the score of the tag tk can be calculated
via log-linear interpolation as below:

Score(tk) = α × log
(

P
(
[c, t]k

∣∣∣ [c, t]k−1
k−2

))
+ (1 − α) × log

(
P

(
tk

∣∣tk−1, ck+2
k−2

))
(7)

In this joint model, ck and tk are as previously specified, and α (0.0 ≤ α ≤ 1.0) is the
weight for the generative model, obtained from a cross-validation set. Score(tk) will be
directly used when searching for the best sequence. In this proposed joint model, the
generative model and the discriminative model are integrated in a natural way5, since
both are character-based.

3. EXPERIMENTS

As different NLP tasks may require different segmentation criteria [Zhang and Clark
2007], there is no unified criterion for Chinese WS. Various corpora are thus frequently
created with different criteria, and the WS performance for each corpus must be eval-
uated accordingly. For example, time expressions and organizations are treated as
words in the MSR corpus, but are segmented as several smaller units in all other cor-
pora provided in the second SIGHAN Bakeoff [Emerson 2005]. A system trained in
one corpus thus might behave worse in another corpus if it is evaluated with different
criteria; and almost no system can outperform all others across all different corpora.
Therefore, to enable fairer comparison among various approaches, a set of corpora is
usually required. For instance, the widely cited second SIGHAN Bakeoff WS contest
provides four different standard corpora with their own criteria. These will be de-
scribed in Section 3.1. Then various experiments that have been conducted on those
corpora will be described in Section 3.2.

3.1. Data Sets Adopted

Since the corpora provided by the second SIGHAN Bakeoff [Emerson 2005] were
widely adopted in various articles for comparing the performance of different ap-
proaches, they will be used to conduct various experiments in this article as well.
These include the Academia Sinica Corpus (AS), the Hong Kong City University Cor-
pus (CITYU), the Microsoft Research Corpus (MSR), and the Peking University Corpus
(PKU). These corpora provide both Unicode coding and Big5/GB coding, and the latter
format is adopted in our work. The statistics of these corpora are shown in Table V.

The PKU corpus is a bit different from the others. Arabic digits and English char-
acters are encoded differently across its training set and testing set. In the training

5By contrast, it would be difficult to linearly combine the word-based n-gram model with the character-based
tagging model.
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set, Arabic digits and English characters are in full-width format, occupying two bytes.
However, in the testing set, these characters are half-width characters occupying only
one byte. Most researchers in the SIGHAN Bakeoff competition performed a conver-
sion before segmentation [Xiong et al. 2009]. Since the coding inconsistency issue is
unrelated to the WS problem that concerns us, this annoying disturbance ought to be
eliminated to reflect the true performance. However, as the performance of both cases
has been reported in previous studies, we will follow suit by conducting tests on both
the unconverted case (denoted as ucvt.), which keeps the original half-width format in
the testing set, and the converted case (denoted as cvt.), which pre-converts half-width
format into full-width format in the testing set before evaluation. After the Arabic
digits and English characters are converted, the OOV rate of the converted corpus is
significantly lower than that of the unconverted corpus (as shown by the “PKU(cvt)”
row in Table V).

3.2. Various Approaches Tested

To show the power of our proposed models, the word-based n-gram generative model
and the character-based discriminative model are first tested as two baseline systems
in Section 3.2.1, as they are the best known in the generative and discrimina-
tive families. Afterwards, the proposed character-based generative model and the
character-based joint model are tested in Sections 3.2.2 and 3.2.3 respectively. Last,
in Section 3.2.4, our experiments show that weighting various features initially in the
ME approach makes significant improvements.

For performance evaluation, to fairly compare the proposed approaches with pre-
vious work, the “closed test” regulation, as stipulated in the second SIGHAN Bakeoff
WS contest, will be respected in our experiments. This means that only the informa-
tion found in the training data can be used: all other data or information is excluded,
including knowledge of characters sets, punctuation characters, etc. In all tests to be
conducted below, Precision (P), Recall (R), F-score (F), Recall of OOV (ROOV) and Re-
call of IV (RIV) are used to evaluate the segmentation results. The balanced F-score is
calculated as: F = 2PR / (P + R).

3.2.1. Word-Based Generative Model and Character-Based Discriminative Model. To evaluate
the word-based generative approach, we first extract a word list from the training
set as our vocabulary. The word-based generative model is also trained using the
SRILM toolkit, with the same settings used in the character-based generative model
(mentioned in Section 2.1).

The segmentation results of the word-based generative model are shown in Table VI
(where the best F-score in each corpus is marked for visibility). As expected, it shows
that all word-based n-gram models have high RIV (even its unigram model outperforms
the character-based discriminative approach with respect to RIV) and very low ROOV .
Having further analyzed the testing-set errors generated by the trigram model, we find
that, among the 16,781 error-patterns resulting from all the testing-sets, 11,546 (69%)
errors are caused by segmenting an OOV into a sequence of IV words. This result
clearly illustrates the model’s disadvantage in handling OOV words and accounts for
its low ROOV .

For the character-based discriminative model, the ME Package6 provided by Zhang
Le has been used to conduct experiments. (Training was carried out with Gaussian
prior 1.0 and 300, 150 iterations for AS and other corpora respectively.) Table VI
shows that the character-based discriminative model outperforms the word-trigram
model on F-score and ROOV metrics, but the latter obtains higher RIV . The low RIV for

6http://homepages.inf.ed.ac.uk/lzhang10/maxent toolkit.html
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Table VI. Segmentation Results of Various Word-Based n-gram Models
(Word-Unigram /Bigram/Trigram), the Character-Based Discriminative

Model (Discriminative)

Corpus Method R P F ROOV RIV

AS

Word-unigram 0.933 0.878 0.905 0.014 0.975
Word-bigram 0.942 0.877 0.908 0.014 0.984
Word-trigram 0.941 0.877 0.908 0.014 0.983
Discriminative 0.955 0.946 0.951 0.707 0.967

CITYU

Word-unigram 0.924 0.851 0.886 0.162 0.984
Word-bigram 0.928 0.851 0.888 0.162 0.990
Word-trigram 0.929 0.852 0.889 0.162 0.990
Discriminative 0.941 0.944 0.942 0.708 0.959

MSR

Word-unigram 0.965 0.925 0.945 0.025 0.990
Word-bigram 0.969 0.926 0.947 0.025 0.995
Word-trigram 0.969 0.926 0.947 0.025 0.995
Discriminative 0.957 0.962 0.960 0.719 0.964

PKU (ucvt.)

Word-unigram 0.919 0.853 0.885 0.069 0.971
Word-bigram 0.929 0.857 0.892 0.069 0.982
Word-trigram 0.929 0.857 0.892 0.069 0.982
Discriminative 0.922 0.941 0.932 0.620 0.941

PKU (cvt.)

Word-unigram 0.939 0.909 0.924 0.016 0.972
Word-bigram 0.949 0.913 0.931 0.016 0.982
Word-trigram 0.949 0.913 0.930 0.016 0.982
Discriminative 0.940 0.951 0.946 0.685 0.949

Overall

Word-unigram 0.937 0.886 0.911 0.053 0.979
Word-bigram 0.945 0.888 0.916 0.053 0.987
Word-trigram 0.945 0.888 0.915 0.053 0.987
Discriminative 0.944 0.950 0.947 0.680 0.956

the character-based discriminative model clearly shows the disadvantage of not using
dependencies between adjacent characters within multi-character words. Among the
15,336 error-patterns from all of the testing-sets, we see that 9,291 of them (61%)
occurred because an IV word-sequence was incorrectly segmented. This illustrates
this model’s weakness in handling IV words, which accounts for its low RIV .

Since the word-based n-gram model tends to segment OOV words into uni-character-
word sequences, we might think of further raising the performance by replacing the
uni-character-word sequence generated via the word-based generative model by the
corresponding result from the character-based discriminative model. Unfortunately,
this simple merging method yields only results comparable with those of the character-
based discriminative model, as not all uni-character-word sequences should be re-
placed and it is difficult to judge which ones. For instance, “ (between the two
points)” is correctly segmented by the word-trigram model as “[ ] (two) [ ] (point)
[ ] (between)”, but the character-based discriminative approach gives the wrong
result: “[ ] (an OOV word which would mean two o’clock or two points) [ ] 
(between)”. The above strategy will thus convert the original correct result into an
incorrect one, “[ ] [ ]”.

3.2.2. Character-Based Generative Model. The experimental setting introduced in Sec-
tion 2.1 is adopted here. Table VII gives the results of the proposed character-based
generative model for various character n-gram-sizes ranging from n = 2 to n = 5, and
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Table VII. Segmentation Results of the Word-Trigram Model (Word-Trigram), the
Character-Based Discriminative Model (Discriminative) and Various Proposed

Character-Based Generative n-gram Models
(New (Bigram/Trigram/4-gram/5-gram))

Corpus Method R P F ROOV RIV

AS

Word-trigram 0.941 0.877 0.908 0.014 0.983
Discriminative 0.955 0.946 0.951 0.707 0.967
New (Bigram) 0.954 0.934 0.944 0.509 0.975
New (Trigram) 0.958 0.938 0.948 0.518 0.978
New (4-gram) 0.958 0.938 0.948 0.518 0.978
New (5-gram) 0.957 0.938 0.948 0.518 0.977

CITYU

Word-trigram 0.929 0.852 0.889 0.162 0.990
Discriminative 0.941 0.944 0.942 0.708 0.959
New (Bigram) 0.949 0.932 0.941 0.603 0.976
New (Trigram) 0.951 0.937 0.944 0.609 0.978
New (4-gram) 0.951 0.938 0.944 0.610 0.978
New (5-gram) 0.951 0.938 0.944 0.610 0.978

MSR

Word-trigram 0.969 0.926 0.947 0.025 0.995
Discriminative 0.957 0.962 0.960 0.719 0.964
New (Bigram) 0.965 0.955 0.960 0.522 0.977
New (Trigram) 0.974 0.967 0.970 0.561 0.985
New (4-gram) 0.974 0.967 0.971 0.568 0.985
New (5-gram) 0.974 0.967 0.971 0.568 0.985

PKU (ucvt.)

Word-trigram 0.929 0.857 0.892 0.069 0.982
Discriminative 0.922 0.941 0.932 0.620 0.941
New (Bigram) 0.924 0.923 0.924 0.400 0.956
New (Trigram) 0.929 0.933 0.931 0.435 0.959
New (4-gram) 0.927 0.934 0.931 0.432 0.957
New (5-gram) 0.928 0.935 0.931 0.438 0.957

PKU (cvt.)

Word-trigram 0.949 0.913 0.930 0.016 0.982
Discriminative 0.940 0.951 0.946 0.685 0.949
New (Bigram) 0.949 0.946 0.948 0.494 0.965
New (Trigram) 0.952 0.951 0.952 0.503 0.968
New (4-gram) 0.952 0.952 0.952 0.511 0.967
New (5-gram) 0.952 0.952 0.952 0.510 0.968

Overall

Word-trigram 0.945 0.888 0.915 0.053 0.987
Discriminative 0.944 0.950 0.947 0.680 0.956
New (Bigram) 0.949 0.939 0.944 0.491 0.969
New (Trigram) 0.953 0.946 0.950 0.511 0.973
New (4-gram) 0.953 0.947 0.950 0.512 0.973
New (5-gram) 0.953 0.947 0.950 0.514 0.973

the best F-score for each corpus is highlighted for visibility. Table VII shows that the
character-trigram model significantly outperforms the character-bigram model over all
four corpora, but also shows that almost no improvement was observed as we increased
the n-gram length. (Only the 4-gram result is a bit better than that of the MSR corpus,
since it has the largest average-word-length.) This outcome strongly suggests that the
training data is too sparse to support models with 4-grams and 5-grams.
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From these results, it can be seen that the proposed character-trigram generative
model significantly outperforms the word-trigram generative model and slightly out-
performs the character-based discriminative model. Compared with the word-trigram
approach, the proposed character-trigram model has dramatically raised the overall
ROOV from 0.053 to 0.511 at the cost of slightly degrading the overall RIV from 0.987
to 0.973. This result clearly shows that the handicap of the word-based generative
model in handling OOV words has been alleviated. In addition, compared with the
character-based discriminative approach, the proposed character-trigram model is able
to increase the overall RIV from 0.956 to 0.973, at the cost of degrading the overall
ROOV from 0.680 to 0.511. Also, the overall precision rate of the proposed character-
trigram model (0.946) is lower than that of the discriminative model (0.950), while the
overall F-score of the proposed model (0.950) is higher than that of the discriminative
one (0.947). This implies that the proposed model tends to segment OOV words into
more words than the discriminative model does, while the higher recall also indicates
that the proposed model results in more correct words.

Aside from performance, in regard to execution speed, the generative model is not
significantly faster than the discriminative model in our experiments. However, the
learning process of the generative approach is found to be much faster than that of
the discriminative model, as the discriminative model needs hundreds of iterations
for the adopted corpora. Taking the CITYU corpus as an example, the training time of
the generative and discriminative models are 8.5s vs. 1333.4s (150 iterations) with the
same environment. That is, the first model is approximately 157 times faster. Thus
the proposed approach has a large additional advantage when massive training data
must be processed.

When the remaining errors are examined, we find that the proposed model fails
to handle some OOV words such as “ ” due to its inability to utilize future con-
text when required, as illustrated in Section 2.1. However, the future context for the
character-based generative model scanning from left to right is just its past context
when scanning from right to left. We thus expected that such errors would be fixed if
we let the model scan in both directions and then combined their results. However, we
actually observed that these two scanning modes share more than 90% of their errors
(and thus do not satisfy the first condition stipulated in Section 2.2). For example,
in the CITYU corpus, the left-to-right scan generates 1,958 incorrect words and the
right-to-left scan results in 1,947, while 1,795 errors are the same. Similar behavior is
also observed for other corpora. So, unfortunately, the two scanning modes seem not
to complement each other after all.

To analyze the problems, ten errors similar to “ ” were selected for exam-
ination. Only one of them was fixed via the abovementioned right-to-left scanning
approach, and ““ ” still was not segmented correctly. Having analyzed the scores
from both scanning directions, we found that the original scores (in the left-to-right
scan) when processing “ ” and “ ” do improve if the model scans from right-to-left.
However, the score when processing ““ ” deteriorates because the useful feature “ ”
(person) (a non-adjacent character for “ ”, seen first when scanning from right to left)
still cannot be utilized when the prior context “ ” as a whole is unseen, when the
related probabilities are estimated via the Kneser-Ney smoothing technique. In other
words, P([c, t]i

∣∣ [c, t]i−2 ) is not used for estimating P([c, t]i

∣∣∣[c, t]i−1
i−2 ) in the Kneser-Ney

smoothing technique. Although either the multiple-backoff [Bilmes and Kirchhoff
2003] or the ME estimator could overcome this drawback, the packages7 that we have

7Factored Language Model: http://www.speech.sri.com/projects/srilm/. Maximum Entropy Modeling Toolkit
for Python and C++: http://homepages.inf.ed.ac.uk/lzhang10/maxent toolkit.html.
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Table VIII. Corpus Statistics for Development Sets and Testing Sets

Corpus Set Words Number OOV Number OOV Rate

AS
Development set 17,243 445 0.026
Testing Set 122,610 5,308 / 5,311 0.043 / 0.043

MSR
Development set 17,324 355 0.020
Testing Set 106,873 2,829 / 2,833 0.026 / 0.027

CITYU
Development set 12,075 537 0.044
Testing Set 40,936 3,028 / 3,034 0.074 / 0.074

PKU
Development set 13,576 532 0.039
Testing Set (ucvt.) 104,372 6,006 / 6,054 0.058 / 0.058
Testing Set (cvt.) 104,372 3,611 / 3,661 0.035 / 0.035

adopted yield no obvious improvement or even worse overall performance for all our
tri-gram models, as they are not designed to estimate n-gram probabilities for our
problems. It would be interesting to see whether a multiple-backoff (or an ME) estima-
tor could fix this problem, if either procedure were well designed for estimating n-gram
probabilities. However, such experimentation is beyond the scope of this article.

3.2.3. Character-Based Joint Model. When the remaining errors were inspected, we
found that the character-based generative model and the character-based discrimina-
tive model complement each other much more than the two scanning modes do. These
two approaches share at most 38.7% of their errors in all corpora tested (31.2% overall,
as shown in Table III). For example, in the CITYU corpus, the generative approach re-
sults in 1,958 incorrect words and the discriminative approach generates 2,338, while
only 832 of them (38.7%) are the same. Similar statistics can also be observed in other
corpora, per our original expectation.

For the character-based joint model, a development set is required to obtain the
weight α for its associated generative model. Therefore, a small portion from each
original training corpus is extracted as the development set and the remaining data
is treated as the new training-set, which is then used to train two new parameter-
sets for both of the associated generative and discriminative models. The number
of sentences in each development set is proportional to the size of the corresponding
training sets, with a ratio of about 0.5%. For the PKU training corpus, the last 300
sentences are extracted as the corresponding development set. Similarly, the last 400
sentences from the CITYU corpus, the last 600 sentences from the MSR corpus, and
the last 2,000 sentences from the AS corpus are extracted as their development sets to
obtain the various corresponding α values. The statistics for various new data sets are
shown in Table VIII. In the rows of the testing sets, the number before “/” is the OOV
number (or OOV rate) with respect to the original training sets, and the number after
the slash is the OOV number (or OOV rate) with respect to the new training sets (after
excluding the development sets). The variation of the OOV rate is barely noticeable.

The F-scores of the character-based joint model versus various α values are evalu-
ated for four different development sets, as shown in Figure 2. The curves are flat near
the top, which indicates that the character-based joint model is not sensitive to the α
value selected. Judging by these curves, the most appropriate α values for the AS,
CITYU, MSR, and PKU corpora are 0.30, 0.60, 0.60, and 0.60, respectively. The α val-
ues selected from the development sets are then adopted for conducting experiments
on the testing sets.

Note that the AS corpus obtains the lowest α value (0.3, even less than 0.5; however,
this curve is quite flat from 0.3 to 0.6). This is because the AS corpus is the only corpus
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Fig. 2. Joint Model performance on development sets.

for which it’s the generative model slightly lags behind the discriminative model in the
development set8 (with F-scores of 0.956 vs. 0.958).

Per Table IX, the character-based joint model significantly outperforms both the
character-based generative model and the character-based discriminative model in F-
score for all test corpora. Compared with the character-based generative approach,
the joint model increases the overall ROOVfrom 0.510 to 0.633, at the cost of slightly
degrading the overall RIV from 0.973 to 0.971. These scores show that the joint model
retains the advantage of the character-based generative model on IV words. Compared
with the character-based discriminative model, the proposed joint model improves the
overall RIV from 0.956 to 0.971, at the cost of degrading the overall ROOV from 0.680
to 0.633.

In addition, a Recall-Upper-Bound9 column is added to Table III to show how much
room is left to the proposed approach for further improvement. This score indicates
a reasonable upper bound for the recall rate when these two models are integrated.
Since combining the scores of the two models cannot recover from “G-D-” errors, and
since “G+D-, OOV” errors are almost hopeless (because “D-” yields relatively strong
preference for the wrong choice, while “G+” gives only weak preference for the correct
one, as shown in Table IV), a reasonable upper-bound of recall rate10 can be obtained
by excluding all the “G-D-” errors and the “G+D-, OOV” errors in Table III. Per the
Overall row, the proposed model fails to rescue 29.3%11 of the errors in the classes
“G-D+” and “G+D-, IV” (please see various error patterns at Section 5.1).

Although the proposed joint model has achieved the best performance, it gives the
same weight to the character-based generative model for both IV words and OOV

8The F-scores of the generative and discriminative models in the development sets of various corpora are as
follows. (The first number denotes that of the generative model, and the second number denotes that of the
discriminative model.) 0.956 vs. 0.958 for AS, 0.958 vs. 0.953 for CITYU, 0.978 vs. 0.966 for MSR, and 0.954
vs. 0.940 for PKU.
9Thanks to an anonymous reviewer for suggesting this upper-bound.
10It is difficult to know how many words will be actually generated if the errors of “G-D+” and “G+D-, IV”
are recovered, as a given error also affects its neighbors. Therefore, only the upper-bound of the recall-rate
(not the precision-rate or F-score) is calculated.
11This number is obtained with the following formula: [(number of errors, in the classes of “G-D+“ and
“G+D-, IV“, that the joint model fails to recover) / (total number of errors in the classes of “G-D+“ and “G+D-,
IV“)]. Given those associated numbers of the last Overall row, we get 29.3% = [6,708 / (12,027 + 4,723 +
6,139)].
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Table IX. Testing Set Performance of the Character-Based Generative Trigram Model (Generative), the
Character-Based Discriminative Model (Discriminative), and the Character-Based Joint Model (Joint)

Corpus Recall-Upper-Bound Models (Character-Based) R P F ROOV RIV

AS 0.974
Generative 0.958 0.937 0.947 0.516 0.978
Discriminative 0.956 0.946 0.951 0.709 0.967
Joint 0.962 0.950 0.956 0.679 0.975

CITYU 0.969
Generative 0.951 0.937 0.944 0.611 0.978
Discriminative 0.940 0.944 0.942 0.709 0.959
Joint 0.957 0.951 0.954 0.691 0.979

MSR 0.984
Generative 0.973 0.966 0.970 0.560 0.985
Discriminative 0.957 0.963 0.960 0.720 0.964
Joint 0.974 0.971 0.972 0.659 0.983

PKU (ucvt.) 0.958
Generative 0.929 0.932 0.931 0.435 0.959
Discriminative 0.922 0.940 0.931 0.619 0.940
Joint 0.935 0.946 0.941 0.561 0.958

PKU (cvt.) 0.969
Generative 0.952 0.951 0.951 0.502 0.968
Discriminative 0.939 0.951 0.945 0.685 0.948
Joint 0.954 0.958 0.956 0.616 0.966

Overall 0.971
Generative 0.953 0.946 0.949 0.510 0.973
Discriminative 0.944 0.949 0.947 0.680 0.956
Joint 0.957 0.955 0.956 0.633 0.971

words. However, one might suspect that we should weight the character-based genera-
tive model more when IV words are encountered, and less when OOV words are seen.
And yet, for character-based approaches, it is difficult to judge if the corresponding
word is an IV word or an OOV word before we reach the last character of that word.
Therefore, we tried weighting the character-based generative model differently accord-
ing to whether the given character-bigram has been observed or not. Unfortunately,
the results are disappointing and the improvements are slight. The reason for this
phenomenon is that an observed character-bigram (even with the tag of ck−1) cannot
guarantee that its corresponding word is an IV word. For example, “  (street
sleeper)” is an OOV word, but “  (sleep on the street)” is an observed character-
bigram in the training set. As another example, “[ ] (big) [ ] (crane)” are two IV
words but “ ” is an unseen character-bigram. It is thus difficult to distinguish IV
words from OOV words until we reach the last character of a word. Therefore, adopt-
ing more weight parameters seems unnecessary (at least for the corpora that we have
adopted).

Furthermore, as mentioned in Section 2.2, there are various ways to combine the
generative and discriminative models. Besides the log-linear interpolation method, we
have also tested different approaches that incorporate generative features into the dis-
criminative training framework [Andrew 2006; Jiampojamarn et al. 2010]. However,
whether we adopt binary joint n-gram features such as C−1t−1C0 and C−2t−2C−1t−1C0
(where t−1 and t−2 are the tags of character C−1 and C−2), or real-value generative n-
gram scores, only negligible improvements are achieved for the original discriminative
models, and the results are significantly worse than for the proposed joint model. This
result is not surprising, as the feature C−1t−1C0 cannot really reflect the dependency
that we want to incorporate between [c, t]i and [c, t]i−1. The result thus shows that
log-linear interpolation is an effective way to integrate two models, simple though
it is.

3.2.4. Weight Various Features Differently. Under the ME framework, each feature
should be trained only once for a given observation and its associated weight will be
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Table X. Performance of the Character-Based Generative Trigram Model, the Discriminative Model, and the Joint
Model Weighting Various Features Differently (as Denoted by Generative, Discriminative-Plus and Joint-Plus,

Respectively). The Data in Parenthesis (in the Discriminative-Plus and Joint-Plus Rows) Are the Performance of
the Corresponding Original Models (i.e., Discriminative and Joint)

Corpus Model (Character-Based) R P F ROOV RIV

AS
Generative 0.958 0.937 0.947 0.516 0.978
Discriminative-Plus 0.960(0.956) 0.948(0.946) 0.954(0.951) 0.680(0.709) 0.973(0.967)
Joint-Plus 0.963(0.962) 0.949(0.950) 0.956(0.956) 0.652(0.679) 0.977(0.975)

CITYU
Generative 0.951 0.937 0.944 0.611 0.978
Discriminative Plus 0.951(0.940) 0.952(0.944) 0.952(0.942) 0.720(0.709) 0.970(0.959)
Joint-Plus 0.959(0.957) 0.952(0.951) 0.956(0.954) 0.700(0.691) 0.980(0.979)

MSR
Generative 0.973 0.966 0.970 0.560 0.985
Discriminative-Plus 0.965(0.957) 0.967(0.963) 0.966(0.960) 0.675(0.720) 0.973(0.964)
Joint-Plus 0.975(0.974) 0.970(0.971) 0.972(0.972) 0.632(0.659) 0.984(0.983)

PKU (ucvt.)
Generative 0.929 0.932 0.931 0.435 0.959
Discriminative-Plus 0.934(0.922) 0.949(0.940) 0.941(0.931) 0.649(0.619) 0.951(0.940)
Joint-Plus 0.937(0.935) 0.947(0.946) 0.942(0.941) 0.556(0.561) 0.960(0.958)

PKU (cvt.)
Generative 0.952 0.951 0.951 0.502 0.968
Discriminative-Plus 0.949(0.939) 0.958(0.951) 0.953(0.945) 0.674(0.685) 0.958(0.948)
Joint-Plus 0.955(0.954) 0.958(0.958) 0.957(0.956) 0.610(0.616) 0.967(0.966)

Overall
Generative 0.953 0.946 0.949 0.510 0.973
Discriminative-Plus 0.952(0.944) 0.955(0.949) 0.953(0.947) 0.676(0.680) 0.965(0.956)
Joint-Plus 0.958(0.957) 0.955(0.955) 0.957(0.956) 0.621(0.633) 0.973(0.971)

learned from the training corpus automatically. However, when we repeat the work
of Jiang et al. [2008], which reports achieving state-of-the-art performance in the
data-sets that we have adopted, we find that some features (e.g., C0) are inadvertently
trained several times in their original implementation, which is implicitly generated
from various feature templates adopted in the paper. Further, we observe that this
study’s improvements are mainly due to this implicit feature repetition, overlooked
by the authors. For example, consider the feature C0. (The meanings of the features
are illustrated in Section 3.2.1.) This feature actually appears twice during training,
which is implicitly generated from two different templates Cn (with n = 0, generates
C0) and [C0Cn] (with n = 0, generates [C0C0]). The repetitive features also include
[C−1C0] and [C0C1], which implicitly appear three times.

All the features adopted in Jiang et al. [2008] possess binary values. Thus, if a
binary feature is repeated n times, it should behave like a real-valued feature with
value “n”, at least in principle. With the above discovery in mind, we converted all
binary-value features into their corresponding real-valued features and set the value
of C0 to 2.0; the value of C−1C0 and C0C1 to 3.0; and the values of all other features to
1.0. Then the original character-based discriminative model was re-trained under the
ME framework. Logically, this new implementation is equivalent to simply starting
from a different initial point when conducting ME training (i.e., with initial lambda
values not necessarily equaling one). The training process was also done using Zhang
Le’s software with Gaussian prior 1.0 and 300, 150 iterations for AS and other corpora
respectively. The new result is shown in Table X (in the Discriminative-Plus row).
The original data is also shown in parentheses next to the new data for comparison.
Table X shows that this new Discriminative-Plus implementation significantly outper-
forms the original one (the overall F-score is raised from 0.947 to 0.953) when both
implementations adopt real-valued features for training. Therefore, it seems that,
starting from different initial values, training will converge on different points in the
parameter space for this case.
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Table XI. F -Scores of Segmentation Results with Different ME Packages. The Slash Symbol “/” Separates
the Results of the Character-Based Discriminative Model and the Character-Based Discriminative-Plus
Model. Zhang: Zhang Le’s ME Package; Tsujii: the ME Package from Tsujii Laboratory, University of

Tokyo; Lin: Dekang Lin’s ME Package

AS CITYU MSR PKU(ucvt.) PKU(cvt.) Overall
Zhang 0.951/0.954 0.942/0.952 0.960/0.966 0.932/0.941 0.946/0.953 0.947/0.953

Tsujii 0.952/0.953 0.942/0.949 0.960/0.963 0.927/0.936 0.946/0.951 0.946/0.951
Lin 0.947/0.948 0.942/0.949 0.960/0.965 0.932/0.939 0.947/0.951 0.946/0.950

To test whether this phenomenon is general for various ME training algorithms, we
conduct similar experiments with two additional ME packages:

(1) MaxEnt Classifier12 from Tsujii laboratory, University of Tokyo (denoted as
Tsujii). Training was carried out with Gaussian prior 1.0, and the number of iter-
ations is automatically decided.

(2) Dekang Lin’s ME package13 (denoted as Lin). Training was performed with Gaus-
sian prior 1.0 and 500, 300 iterations for the AS and other corpora. Because this
software only supports binary features, we directly duplicated C0 twice, and C−1C0
and C0C1 thrice, for the character-based Discriminative-Plus model.

Similar improvements have been observed again with these two packages (as shown
in Table XI). Perhaps giving more initial weight to closely related features would gen-
erate better results. (C0 should be the most relevant feature for assigning tag t0.)
However, further analysis and detailed explanation of this problem would be beyond
the scope of this article14.

This new implementation is then further integrated with the character-based gener-
ative model. The resulting model will be called the character-based Joint-Plus model.
Table X shows that this Joint-Plus implementation achieves better results than the
Discriminative-Plus implementation, demonstrating that our Joint-Plus approach is
an effective and robust method of Chinese word segmentation. However, compared
with the original Joint model, the new Joint-Plus approach does not show much im-
provement, as shown in Table X, regardless of the significant improvement made by
the Discriminative-Plus model. This is because the additional benefit generated by the
Discriminative-Plus model has already been mostly covered by the generative model.
(Among the 6,965 error words corrected by the Discriminative-Plus model, 6,292 of
them (90%) are covered by the generative trigram model.)

4. STATISTICAL SIGNIFICANCE TEST

Although Tables IX and X showed that the proposed character-based joint model out-
performs all other approaches mentioned above, we would like to know if the difference
is statistically significant. Since the second SIGHAN Bakeoff provides only one test-
ing set for each training corpus and creating a set of additional testing suites is very
expensive, the well-known bootstrapping technique [Koehn 2004; Zhang et al. 2004] is
adopted to conduct the significance tests. Following this approach, given an original
testing-set T0, M-1 additional testing-sets T1, . . . TM−1 will be generated (each with the
same size of T0) by repeatedly resampling data from T0. Thus we will obtain a total of
M testing-sets for each training corpus (with M = 2,000 in our experiments).

12See http://www-tsujii.is.s.u-tokyo.ac.jp/∼tsuruoka/maxent/.
13See http://webdocs.cs.ualberta.ca/∼lindek/downloads.htm.
14Dekang Lin (the author of the Lin package mentioned above) and another anonymous reviewer suspect
that this problem is due to the adopted regularization step. However, the same phenomenon still appears
even when we remove the regularization setting (i.e., without the Gaussian prior).

ACM Transactions on Asian Language Information Processing, Vol. 11, No. 2, Article 7, Publication date: June 2012.



Integrating Models for Chinese Word Segmentation 7:21

Table XII. Statistical Significance Test of F -Score Among Various Proposed Models

Systems (Character-Based)
AS CITYU MSR PKU PKU Overall

System A System B (ucvt.) (cvt.)
Generative Discriminative < ∼ > ∼ > ∼
Discriminative-Plus Generative > > < > > >

Discriminative-Plus Discriminative > > > > > >

Joint Generative > > > > > >

Joint Discriminative > > > > > >

Joint-Plus Generative > > > > > >

Joint-Plus Discriminative-Plus > > > ∼ > >

Joint-Plus Joint ∼ > ∼ > > >

4.1. Comparison of Proposed Approaches

We then follow Zhang et al. [2004] in measuring the confidence interval for the discrep-
ancy between two models. For each performance measure (e.g., F-score) obtained from
a specific testing-set Ti (i = 0, 1 · · · , M − 1), assuming that its values are assigned by
system A and system B as ai and bi respectively, then the discrepancy between system
A and B for Ti would be δi = ai − bi. After M discrepancy values are found, the 95%
confidence interval for the discrepancy between system A and B is obtained by finding
the minimum interval that could cover the middle 95% of the discrepancy values. If
this confidence interval does not include the point of origin (value-zero), system A is
considered to be significantly different from system B.

Table XII gives the results of significance tests among various models mentioned
above. In this table, “>” means that system A is significantly better than system B;
“<” means that system A is significantly worse than B; and “∼” is used to mean that
the two are not significantly different. As shown in Table XII, the proposed character-
based generative trigram model achieves competitive results with the character-based
discriminative model. The proposed Joint model is significantly better than the two
baseline models on all corpora. Similarly, the proposed Joint-Plus model also sig-
nificantly outperforms the character-based generative model and the character-based
Discriminative-Plus model on all corpora except for the PKU(ucvt.) corpus. The com-
parison shows that the proposed Joint model and the Joint-Plus model outperform each
of their component models. Further, the generative approach is inferior to the discrim-
inative approach in the AS corpus, as the AS has a relatively high OOV rate. (The
Discriminative model performs better for OOV words.) Finally, the Discriminative-
Plus model is inferior to the generative one in the MSR corpus, as the MSR has the
lowest OOV rate. (The generative model performs better for IV words.)

4.2. Comparison with Previous Works

The above comparison shows the superiority of the proposed model among the ap-
proaches that we implemented and tested. However, it would be interesting to know
if the proposed Joint and Joint-Plus models also outperform state-of-the-art systems
that have not been reimplemented in our lab. Since our tests have been performed on
the corpora provided by the second SIGHAN Bakeoff15 [Emerson 2005], the systems
that performed best for F-score for at least one corpus in that contest have been first

15The performance comparison has not been performed on the systems that participated in the CIPS-
SIGNAN Bakeoff-2010 (http://www.cipsc.org.cn/clp2010/task1 en.htm), as it is difficult to conduct fair com-
parisons among the systems. The systems adopt different rule-sets and additional information (e.g., the
pinyin representation for characters) since there were no rigid rules for the closed track in this year.
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selected for comparison. This category includes Asahara et al. [2005] (denoted as Asa-
hara05) and Tseng et al. [2005]16 (Tseng05). The reported performance of these two
systems is listed in Table XIII, and they are briefly summarized as follows. Asahara
et al. [2005] achieves the best result on the AS corpus, using the character-based ap-
proach to first identify the OOV candidates and then integrate them into the system.
Tseng et al. [2005] adds numerous linguistic features such as information on “word-
prefixes” and “word-suffixes” (automatically extracted from the training-set) as well as
morphological and character reduplication features. This system thus overcomes the
drawbacks of character-based approaches and performs best on the remaining three
corpora.

In addition, the systems reported to outperform the preceding two systems in the
last few years have also been selected for comparison. This category includes Zhang
et al. [2006] (denoted as Zhang06), Zhang and Clark [2007] (Z&C07), Jiang et al. [2008]
(Jiang08), Sun [2010] (Sun10), and Zhang and Clark [2011] (Z&C11). Their perfor-
mances are also reported in Table XIII, and their approaches are briefly summarized
as follows. Zhang et al. [2006] use a sub-word tagging approach to utilize sub-word
information and achieve the best performance on CITYU, MSR, and PKU. Zhang and
Clark [2007] use perceptrons to generate word candidates with both word and char-
acter features and is the only word-based approach that adopts the discriminative
form. Jiang et al. [2008]17 also adopt a perceptron based model for word segmentation
based on Ng and Low [2004], with additional lexical-target features associated with
the current character. (The feature templates (a) ∼ (c) in Section 3.2.1 are called non-
lexical-target features in Jiang et al. [2008]. Lexical-target features are generated by
adding C0 to each feature templates (a) ∼ (c)). Sun [2010] combines the outputs of the
word-based discriminative model and the character-based discriminative model with
a bagging approach. Last, Zhang and Clark [2011] uses a single discriminative model
to adopt both word-based and character-based features.

Since the above-mentioned systems have not been re-implemented, the desired
pair-wise samples cannot be obtained from the testing-set as in the last section. To
overcome this problem, we associate each system that has been implemented with a
95% confidence interval by finding the minimum interval that could cover the mid-
dle 95% of its total M F-scores. Afterwards, the un-implemented systems are checked
against each of the implemented systems. If (and only if) the F-score of system B
(un-implemented) does not fall within the 95% confidence interval of system A (imple-
mented), the two systems are considered significantly different statistically. In most
cases, this sequential (or non-pair-wise) sampling test will have a wider confidence in-
terval and is thus a stricter test [Zhang et al. 2004]. Table XIV gives a 95% confidence
interval for our Joint model and Joint-Plus model for various corpora.

Table XV gives the results of significance tests for the un-implemented systems
mentioned in this section. It shows that both our Joint model and Joint-Plus model
outperform (or are comparable to) almost all state-of-the-art systems across all cor-
pora, except Zhang and Clark [2007] and Zhang and Clark [2011] on the PKU(ucvt.)
corpus. In that special case, Z&C07 outperforms the Joint-Plus model by 0.3% on F-
score (0.4% for the Joint model). However, the Joint-Plus model exceeds Z&C07 on the

16We are not sure if Asahara05 and Tseng05 also perform a conversion before doing segmentation in PKU
corpus. However, the comparison with these two systems was performed on PKU(cvt.) in Zhang06. There-
fore, we simply follow them, comparing these two systems under the converted case.
17The data for Jiang08 in Table XIII are different from the data originally reported. In private communica-
tion with the authors, it was found that the script provided by the second SIGHAN Bakeoff for evaluating
performance did not work correctly in their platform. After the problem was fixed, the re-evaluated actual
performances reported here were less than those of their original version. Please see the announcement in
Jiang’s homepage (http://nlp.ict.ac.cn/∼jiangwenbin/papers/error correction.pdf).
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Table XIII. Performance Report for Those Unimplemented Systems

Corpus Participants R P F ROOV RIV

AS

Asahara05 0.952 0.951 0.952 0.696 0.963
Tseng05 0.950 0.943 0.947 0.718 0.960
Zhang06 0.956 0.947 0.951 0.649 0.969
Z&C07 N/A N/A 0.946 N/A N/A
Jiang08 0.958 0.949 0.953 0.692 0.970
Sun10 N/A N/A 0.952 N/A N/A
Z&C11 N/A N/A 0.954 N/A N/A
Our Joint 0.962 0.950 0.956 0.679 0.975
Our Joint-Plus 0.963 0.949 0.956 0.652 0.977

CITYU

Asahara05 0.937 0.946 0.941 0.736 0.953
Tseng05 0.941 0.946 0.943 0.698 0.961
Zhang06 0.952 0.949 0.951 0.741 0.969
Z&C07 N/A N/A 0.951 N/A N/A
Jiang08 0.946 0.950 0.948 0.695 0.966
Sun10 N/A N/A 0.956 N/A N/A
Z&C11 N/A N/A 0.951 N/A N/A
Our Joint 0.957 0.951 0.954 0.691 0.979
Our Joint-Plus 0.959 0.952 0.956 0.700 0.980

MSR

Asahara05 0.952 0.964 0.958 0.718 0.958
Tseng05 0.962 0.966 0.964 0.717 0.968
Zhang06 0.972 0.969 0.971 0.712 0.976
Z&C07 N/A N/A 0.972 N/A N/A
Jiang08 0.964 0.967 0.966 0.686 0.972
Sun10 N/A N/A 0.969 N/A N/A
Z&C11 N/A N/A 0.973 N/A N/A
Our Joint 0.974 0.971 0.972 0.659 0.983
Our Joint-Plus 0.975 0.970 0.972 0.632 0.984

PKU (ucvt.)

Asahara05 N/A N/A N/A N/A N/A
Tseng05 N/A N/A N/A N/A N/A
Zhang06 N/A N/A N/A N/A N/A
Z&C07 N/A N/A 0.945 N/A N/A
Jiang08 0.929 0.946 0.937 0.633 0.947
Sun10 N/A N/A N/A N/A N/A
Z&C11 N/A N/A 0.944 N/A N/A
Our Joint 0.935 0.946 0.941 0.561 0.958
Our Joint-Plus 0.937 0.947 0.942 0.556 0.960

PKU (cvt.)

Asahara05 0.930 0.951 0.941 0.760 0.941
Tseng05 0.953 0.946 0.950 0.636 0.972
Zhang06 0.947 0.955 0.951 0.748 0.959
Z&C07 N/A N/A N/A N/A N/A
Jiang08 N/A N/A N/A N/A N/A
Sun10 N/A N/A 0.952 N/A N/A
Z&C11 N/A N/A N/A N/A N/A
Our Joint 0.954 0.958 0.956 0.616 0.966
Our Joint-Plus 0.955 0.958 0.957 0.610 0.967
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Table XIV. 95% Confidence Interval of F -Score for the
Proposed Joint Model and the Joint-Plus Model

Corpus Model Mean Interval

AS
Joint 0.955 [0.954, 0.957]
Joint-Plus 0.955 [0.95318, 0.957]

CITYU
Joint 0.954 [0.951, 0.957]
Joint-Plus 0.956 [0.953, 0.958]

MSR
Joint 0.972 [0.971, 0.974]
Joint-Plus 0.972 [0.971, 0.974]

PKU (ucvt.)
Joint 0.941 [0.938, 0.943]
Joint-Plus 0.942 [0.939, 0.944]

PKU (cvt.)
Joint 0.956 [0.954, 0.958]
Joint-Plus 0.957 [0.954, 0.959]

Table XV. Statistical Significance Test for F -Scores for Unimplemented Systems

Systems
AS CITYU MSR PKU (ucvt.) PKU (cvt.)

System A System B

Joint

Asahara05 > > > N/A >

Tseng05 > > > N/A >

Zhang06 > ∼ ∼ N/A >

Z&C07 > > ∼ < N/A
Jiang08 > > > > N/A
Sun10 > ∼ > N/A >

Z&C11 ∼ > ∼ < N/A

Joint-Plus

Asahara05 > > > N/A >

Tseng05 > > > N/A >

Zhang06 > > ∼ N/A >

Z&C07 > > ∼ < N/A
Jiang08 ∼ > > > N/A
Sun10 > ∼ > N/A >

Z&C11 ∼ > ∼ ∼ N/A

AS and CITYU corpora by 1.0% and 0.5%, respectively (1.0% and 0.3% for the Joint
model). Similarly, Z&C11 outperforms the Joint model by 0.3% on F-score; while the
Joint model exceeds Z&C11 by 0.5% on the CITYU corpus. Thus it is fair to say that
both our Joint model and Joint-Plus model are superior to all state-of-the-art systems
reported in the literature.

5. ERROR ANALYSIS AND DISCUSSION

5.1. Remaining Errors

We collect and analyze the errors on the CITYU and MSR corpora generated by the
character-based joint model, because the OOV rates of these corpora are the highest
and lowest among the five corpora. The statistics for remaining errors on CITYU and
MSR are shown in Tables XVI and XVII respectively. The tag in parentheses following
each character sequence (e.g., “ (IV)” in the first row under the Example column)

18The 95% confidence intervals for Joint and Joint-Plus in AS are very close. However, the rounding-off
mechanism differentiates the two scores.
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Table XVI. Statistics for Remaining Errors of the Joint Model on CITYU Corpus

Word Class Percentage Type Percentage
Example
Gold Output

OOV 71.6% (802)
Critical 73.8% (592)

[ (IV)] [ (NW)]
[ (OOV)] [ (NW)]

Not Critical 26.2% (210) [ (OOV)] [ (IV)] [ (IV)]

IV 28.4% (318)
Critical 55.3% (176) [ (IV)] [[ (IV)] [ (OOV)]
Inconsistency 38.7% (123) [ (IV)] [ (IV)] [ (IV)]
Not Critical 6.0% (19) [ (IV)] [ (IV)] [ (IV)]

Table XVII. Statistics for Remaining Errors of the Joint Model on MSR Corpus

Word Class Percentage Type Percentage
Example
Gold Output

OOV 53.0% (944)
Critical 58.6% (553)

[ ((IV)] [ (IV)] [ (IV)]

[ (OOV)] [ (NW)] [ (IV)]

Not Critical 41.4% (391) [ (OOV)] [ (IV)] [ (IV)]

IV 47.0% (838)
Critical 74.2% (622)

[ (IV)]
[ (OOV)]

[ (IV)]

Inconsistency 13.1% (110) [ (IV)] [ (IV)] [ (IV)]

Not Critical 12.6% (106) [ (IV)] [ (IV)] [ (IV)]

indicates whether the sequence is an IV word or an OOV word (or not a word at all, as
denoted by NW).

The errors are first classified as IV or OOV. Clearly, most of the remaining errors
are related to OOV words. In the CITYU corpus, among 1,120 error-sequences, 802
(71.6%) are related to OOV. In MSR, this ratio is much less but still over 50%. (The gap
arises because the OOV ratio of MSR is much less than that of CITYU.) Each category
is then further classified into three main sub-categories: Critical, Inconsistency, and
Not-Critical (to be defined later). In the headings of the following paragraphs, the first
percentage in parentheses indicates the corresponding ratio (combining both IV and
OOV) in the CITYU corpus, and the second percentage denotes the ratio in the MSR
corpus.

(I) Critical (68.5% = 71.6% * 73.8% + 28.4% * 55.3%; 65.9% = 53.0% * 58.6% +
47.0% * 74.2%): Such errors yield information loss or meaning distortion. For ex-
ample, the two uni-character words [“ (IV)” (slip)] and [“ (IV)” (fall down)] in Ta-
ble XVI are wrongly combined into an OOV word [“ (OOV) (slip)”], which would
lose information (since no lexicon information can be found for an OOV word) and thus
create additional problems for subsequent tasks such as pos-tagging and parsing. Sim-
ilarly, the sequence [“ (IV)” (automation) and “ (IV)” (factory)] is grouped into
one word [“ (OOV)” (automated factory)] with coarser granularity. For com-
parison, [“ (IV)” (ChiaYi)], a city name, and [“ (OOV)” (Shinong Creek)] are
two location names, and are segmented into [“ (NW)” (a nonsense string)] and
[“ (NW)” (Nong Creek)], in which the meaning is distorted (and displays bracket-
pair crossing). Similarly, [“ (IV)” (in no way; never)] and [“ (OOV)” (reach
for what is beyond one’s grasp)] are segmented into a sequence [“ (IV)” (definitely)
“ (IV)” (not good) “ (NW)” (a nonsense string) “ (IV)” (far)] (with bracket-pair
crossing), in which the meaning is distorted as well.

(II) Not Critical (20.5% = 71.6% * 26.2% + 28.4% * 6.0%; 27.9% = 53.0% * 41.4%
+ 47.0% * 12.6%): For such errors, there is no bracket-pair crossing: instead,
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different granularity levels have been adopted. Thus the result gives finer granularity
without distorting the original meaning. For example, [“ (IV)” (little daughter)]
in Table XVI is segmented into [“ (IV)” (little)] and [“ (IV)” (daughter)]; also,
[“ (IV)” in Table XVII (large scale integrated circuit)] is segmented into
[“ (IV)” (large scale)] and [“ (IV)” (integrated circuit)]; [“ (OOV)”
(white rose)] is segmented into [“ (IV)” (white)] and [“ (IV)” (rose)]; similarly,
[“ (IV)” (steel needle)] is segmented into [“ (IV)” (steel)] and [“ (IV)” (needle)].
None of these examples distort the original meaning.

(III) Inconsistency (11.0% = 28.4% * 38.7%; 6.2% = 13.1% * 47.0%): This kind of error
only applies to IV words. It indicates that the benchmark and the Top-1 candidate are
different, and that both of them have been observed in the training set. It may also
indicate that the same words (in similar contexts) are segmented differently across
the training set and the testing set. For example, both [““ (IV)” (just like)] and the
sequence [“ (IV)” (just), “ (IV)” (be)] are found in the training set in similar contexts
in the CITYU corpus; by comparison, [““ (IV)” (interview team)] is a single word
in the MSR training set but is segmented into two words [“ (IV)” (interview)] and
[“ (IV)” (team)] in the benchmark.

As the “Inconsistency” category is unrelated to the proposed models, and the “Not
Critical” category is usually not critical for the following processing phases, only the
“IV-Critical” and the “OOV-Critical” sub-categories will be further analyzed here. For
the “IV-Critical” cases, although the ambiguity problem has been reported in the lit-
erature as the main issue in segmenting the sequence of IV words [Zong 2008], it is
not the major problem among “IV-Critical” errors in our experiments. Most of the re-
maining “IV-Critical” errors instead result from data sparseness. For example, [“ (IV)
(slip)”, ““ (IV) (fall down)”] are two successive uni-character IV words in the CITYU
testing benchmark, and are incorrectly grouped into an OOV word [“ ” (slip)]; how-
ever, “ ” has not been observed as a continuous character sequence in the training
set. Although “ ” and “ ” turn up as two uni-character words here, their associated
probabilities are very low: the probability of “ ” with tag “S” is only 0.0370 (5 out of
135), while the probability with tag “B” is 0.4074 (55 out of 135); on the other hand,
the probability of “ ” with tag “S” is merely 0.1675 (67 out of 400), while the probabil-
ity with tag “E” is 0.2075 (83 out of 400). Therefore, these two characters tend to be
grouped together, if they do not appear consecutively in the training set. Many similar
cases can be found in the “IV-Critical” category. This problem is more serious in the
MSR corpus than in CITYU, as there are more long words in MSR. This issue would
be less significant if a larger corpus were adopted.

Table XVIII and Table XIX give the distributions of “OOV-Critical” errors on the
CITYU and MSR corpora, respectively. The errors in this category are further clas-
sified into five sub-categories (as shown above) according to the causes; and the sub-
categories are indexed according to their associated ratios in the CITYU corpus. The
errors in each sub-category will be classified again into various sub-classes if necessary,
also according to the causes.

The distributions of various sub-categories for these two corpora are quite different.
For example, the error type “(A) Not Adopting Named Entity Preprocessing” makes up
the biggest portion in CITYU (30.5%); however, it is instead “(B) Not Using Character-
Type Information” which occupies the largest portion in MSR (36.1%). Furthermore,
even the distributions of various sub-types under those sub-categories differ consider-
ably between these two corpora. For example, “Foreign name” is the largest sub-class
(40%) under sub-category (A) in CITYU; however, it occupies only 6% in MSR. This
difference arises because the CITYU corpus is collected from various regions (Beijing,
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Table XVIII. Statistics of OOV-Critical Errors for the Joint-Model on the CITYU Corpus. In Each Class in the
Examples Column, the First Row Shows the Gold Results and the Second Row Gives the Error Results Given by

the Joint Model. (LOC: Location; ORG: Organization)

Error Type Percentage Sub-Class Examples

(A) Not Adopting
30.5% (181)

Foreign Name (40%); [ (OOV)]

Named Entity Pre-processing
LOC (28%); [ (OOV)] [ (OOV)]
ORG (23%); [ (IV)] [ (OOV)]
Chinese Name (9%) [ (NW)] [ (NW)]

(B) Not Using

24.2% (143)

Punctuation (71%)
[ (IV)] [:(OOV)]

Character-Type Information

[ (NW)]
Numerical Expression [ (OOV)]
(21%) [ (OOV)] [ (OOV)]

Foreign Alphabet (8%)
[ (IV)] [valley(OOV)]
[ valley(NW)]

(C) Not Adopting
15.7% (93)

Suffix (84%); [ (OOV)]
Prefix/Suffix Information Prefix (16%) [ ((IV)] [ (IV)]

(D) Idioms 14.4% (85)
[ (OOV)]

[ (IV)] [ (IV)] [ (NW)]

(E) Others 15.2% (90)
[ (OOV)]
[ (IV)] [ (NW)]

Table XIX. Statistics of OOV-Critical Errors for the Joint Model on the MSR Corpus. In Each Class in the
Examples Column, the First Row Shows the Gold Results and the Second Shows the Error Results Given by the

Joint Model

Error Type Percentage Sub-Class Examples

(B) Not Using
36.1% (203)

Numerical Expression (85%)
[1 2 . 4 %(OOV)]

Character-Type Information

[1 2 .(OOV)] [4 %(IV)]

Foreign Alphabet (13%)
[ (IV)] [c c e d (OOV)]
[ c c e d (NW)]

Punctuation (2%)
[ (IV)] [ (OOV)]
[ (NW)]

(A) Not Adopting 25.4% (143)

ORG (55%); [ (OOV)]

Named Entity Pre-processing
Chinese Name (28%); [ (IV)] [ (IV)] [ (OOV)]
LOC (11%); [ (OOV)]
Foreign Name (6%) [ (IV)] [ (OOV)]

(D) Idioms 11.7% (66)
[ (IV)] [ (OOV)]
[ (IV)] [ (IV)] [ (NW)] [ (IV)]

(C) Not Adopting
10.3% (58)

Suffix (90%); [ ((OOV)]
Prefix/Suffix Information Prefix (10%) [ (IV)] [ ((IV)]

(E) Others 16.4% (92)
[ (OOV)]
[ (IV)] [ (IV)]

Hong Kong, Shanghai, Taiwan, Singapore and Macao), so there are many more for-
eign names than in the MSR corpus, which mainly covers the China news. As another
example, “Punctuation” makes up the largest portion (71%) under sub-category (B) in
CITYU; however, it occupies only 2% in MSR. This large difference is mainly due to
the corpus’s coding inconsistency problem. In this corpus, punctuation symbols are en-
coded inconsistently in the training set and testing set; thus many punctuation errors
occur. However, in the MSR corpus, such inconsistency appears only for the decimal
point and not for other punctuation symbols.

The detailed description of each error type in the above tables is given as follows.
Following the convention adopted above, the first percentage in parentheses in the
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headings of the following paragraphs indicates its corresponding ratio in the CITYU
corpus, and the second percentage denotes that in the MSR corpus.

(A) Not Adopting Named Entity Pre-processing (30.5%; 25.4%): Named entities (NE)
frequently cannot be handled with character n-gram information only. Errors of this
type can be further classified into four sub-classes as follows. Again, the first per-
centage in parentheses following the sub-class name indicates the corresponding ratio
within this sub-category for the CITYU corpus, and the second number denotes that
for the MSR.

(1) Foreign Name (40%; 6%). Most foreign names are rendered via syllable-by-syllable
transliteration, which may be performed differently depending on the source.
For example, in Table XVIII, the transliterated foreign name [“
(OOV)”] is incorrectly segmented into two words as [“ (OOV)”] and
[“ (OOV)”]. Since only a restricted set of characters is usually employed
to render syllables in foreign names, the membership of this set might be helpful
in providing useful information for correctly segmenting these names.

(2) LOC – location (28%; 11%). For example, in Table XVIII (and also in Table XVI), the
semantic meanings of “ (IV)” (ChiaYi, a location name) and “  (creek)” suffice
to let a human know that “  (Shinong)” is the name of the relevant creek, but
this reasoning is beyond the capability of character n-grams.

(3) ORG – organization (23%; 55%). As in the case of LOC, more features, rather than
simply character n-gram information, will be required for segmentation of organi-
zation names. For example, in Table XIX, “ (OOV)” (Beijing Hollysys
Company), a company name, is incorrectly segmented into a sequence of three
words [“ (IV)” (Beijing), “ (IV)” (and), “ (OOV)” (Lishi Company)]. The
error occurs because “ ” often serves as a conjunction in Chinese. Again, seman-
tic analysis is required to know that a location and a company name would not
normally be connected by “ (IV)” (and).

(4) Chinese Name (9%; 28%). Unlike in English, Chinese family names (mostly com-
posed of one or two characters) come before given names (again, usually made up of
one or two characters). Chinese family names compose a closed set: only 504 sur-
names are listed in the book “Hundred Family Surnames”18, written about 1,000
years ago. For example, in Table XIX, the Chinese name ““ (OOV)” is seg-
mented into two words as “ (IV)” and “ (OOV)”. However, if a given character
is known to be a family-name-character, the chance that it will be tagged as “B”
increases.

A named-entity recognizer, which usually incorporates many features beyond char-
acter n-gram information [Gao et al. 2005; Wu et al. 2005], should be helpful in cor-
recting errors in this category. Such modules should thus be used to provide candidate
information for word segmentation models; however, this work is beyond the scope of
the present paper.

(B) Not Using Character-Type Information (24.2%; 36.1%): Some OOV errors can be
corrected if character-type information (indicating if the character is a digit, a punc-
tuation symbol, a foreign-character, or a Chinese-character) is utilized. As an exam-
ple for numbers, the numerical string [“ ((OOV)” (23661416)] shown
in Table XVIII, which is “23661416” written in Chinese, is wrongly segmented into
[“ (OOV)” (2366)] and [“ (OOV)” (1416)] as two OOV words. Also,
“12.4(OOV)” (shown in Table XIX) is incorrectly segmented into “12.(OOV)” and

18See http://en.wikipedia.org/wiki/Hundred Family Surnames.
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“4(IV)”. Both errors can be corrected if we realize that all the associated charac-
ters are characters related to numerical expressions. As an example for punctua-
tion symbols, the word [“ (IV)” (single man)] and its following word [“ (OOV)”],
a colon symbol, are currently grouped together as one OOV non-word [“ (NW)”]
(shown in Table XVIII). Of course, this error can also be corrected if we know that
“ (OOV)” is a punctuation symbol. Similarly, two words [“ (IV)” (the first)] and
[“ (OOV)”] are incorrectly grouped into [ (NW)] in Table XIX; and this error can
also be corrected using character-type information. Lastly, as an example for foreign-
characters, the Chinese word [“ (IV)” (English)] and its following English word
[“valley(OOV)”], an English string, are currently grouped together as one OOV non-
word [““ valley(NW)”] (shown in Table XVIII). This error, too, can be corrected if
we are aware that [“valley(OOV)”] is an English string. Similarly, [“ (IV)” (invent)]
and [“c c e d (OOV)”] in Table XIX will be correctly separated if the English string [“c c
e d (OOV)”] can be recognized as a string of foreign characters.

(C) Not Adopting Prefix/Suffix Information (15.7%; 10.3%): Some OOV errors with
prefixes or suffixes are likely to be corrected if the information concerning prefixes
and suffixes can be utilized. As two examples in Table XVIII and Table XIX, the
prefixed word “ ” (unseeded) and the suffixed word “ ” (desertization) are
wrongly segmented into sequences of two words [“ (IV)” (un-), “ (IV)” (seed)] and
[“ (IV)”, (desert) “ (IV)” (-ization)] respectively. However, if we know that “ ”
(un-) is a prefix-character, then the chance that “ ” is tagged as “B” will increase.
Similarly, if “ ”” (-ization) is known to be a suffix-character, then the likelihood of “ ”
being tagged as “E” will increase as well. Clearly, it would be beneficial to integrate
relevant features into the current models.

(D) Idioms (14.4%; 11.7%): Chinese idioms are special words which often contain
four characters, and they form a nearly closed-set, which grows very slowly. Accord-
ing to the most stringent definition, there are about 5,000 such idioms in the Chinese
language, though some dictionaries list over 20,00019. As an example in Table XVIII,
the Chinese idiom “ (OOV)” (wonderful workmanship excelling nature) is in-
correctly segmented into a sequence of three words [“ (IV)”, “ (IV)”, “ (NW)”]. A
similar example “ (OOV)” (reach for what is beyond one’s grasp) can be also
found in Table XIX. If we recognized this string as an idiom via a pre-constructed
table, then the sequence [“ (IV)”, “ (OOV)”] would not be segmented into
[“ (IV)”, “ (IV)”, “ (NW)”, “ (IV)”].

(E) Others (15.2%; 16.4%): All remaining errors belong to this category. There are
various sub-classes according to the causes, but the portion of each sub-class is small.
Thus only some typical sub-classes, comprised of errors with clear linguistic causes,
are discussed here. The first percentage in parentheses following the sub-class names
indicates the corresponding ratio within a given sub-category for the CITYU corpus,
and the second number denotes that for the MSR corpus. (1) Split Compound (7%,
4%): Since the distance between elements of a split compound is usually beyond tri-
gram scope in either the generative or discriminative model (i.e., usually indicates a
long-distance dependency), neither model can handle this problem. For an example
in the MSR corpus, [“ (IV)” (when), “ (OOV)” (solar total eclipses; total solar
eclipses), “ (IV)”(time)] is segmented into [“ (IV)” (this day), “ (OOV)” (com-
plete eclipses), “ (IV)”(time)], because “ ” is an IV word. However, humans will
know not to treat “ ” as a group if the end of the sentence is “ ” (when), because

19http://en.wikipedia.org/wiki/Chinese idiom
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“ ” (at the time/when) is an indicator of adverbial of time. A list of split com-
pounds (or a syntactic parser with an appropriate grammar) would be required to
resolve such errors. (2) Abbreviations (6%, 13%): Chinese abbreviations are mainly
formed in three major ways: reduction, elimination, and generalization [Lee 2005].
The abbreviation [“ (OOV)” (double insurance)] (shown in Table XIX) is formed via
generalization: its full name in the MSR corpus is “ , ” (Ensure
the summer harvest; Ensure the spring seedling emergence). Compared with other
sub-categories, abbreviations are much more difficult to correct. Different strategies
would need to be adopted for various formation patterns. Related information can be
found in Chang and Lai [2004] and Sun and Wang [2006]; (3) Reduplication (2%; 2%),
which includes “AABB” and “ABAB” two forms (where A and B are different Chinese
characters); related features have been adopted in Tseng et al. [2005] and Andrew
[2006]. Table XVIII gives an example of “AABB”: [“ (OOV)” (go out and come
in; literally go out, go out, come in, come in)] is incorrectly split into [“ (IV)” (go out)]
and [“ (NW)”]. It seems a collection of these patterns will be required to solve
these errors. The remaining sub-classes are sparse, and thus will be skipped here.

Among the various categories mentioned above, sub-category (B) is selected for fur-
ther improvement in this article, as it occupies the biggest portion in MSR (36.1%)
and ranks the second in CITYU (24.2%). Furthermore, it can be implemented without
additional resources such as prefix/suffix lists, idiom tables, etc. Lastly, the CIPS-
SIGNAN Bakeoff 2010 [Zhao and Liu 2010] allowed the use of character-type informa-
tion. There are two ways to utilize character-type information in our proposed Joint
model: (1) Write rules for handling numerical expressions, punctuations, and English
strings during construction of the word lattice (by constraining the possible candi-
dates); (2) Regard character-type information as a feature, and then integrate that
information into the character-based generative/discriminative model. Since various
rule-sets would be required for different corpora (according to their different segmenta-
tion criteria), method (2) is preferred, as no rule modification will be needed if criteria
are updated: only the parameters need be retrained. The following section shows how
much improvement can be achieved if character-type information is integrated into
the Joint model as just suggested.

5.2. With Number, Punctuation, and Foreign Character Features

As mentioned, the knowledge of character-type can be integrated into the model as
an additional feature, which classifies a given character into five different types: (1)
a Chinese character; (2) a punctuation-symbol; (3) an Arabic digit; (4) a Chinese nu-
meral; and (5) a foreign character. Since the discriminative approach (under the ME
framework) is capable of easily incorporating additional features, this character-type
feature can be directly integrated into the character-based discriminative model. The
new feature template (d) is thus added to the original list as follows:

(a) Cn(n = −2,−1, 0, 1, 2);
(b ) CnCn+1(n = −2,−1, 0, 1);
(c) C−1C1;
(d) T(C−2)T(C−1)T(C0)T(C1)T(C2)

Where templates (a) ∼ (c) are the same as those used in the closed-test mentioned
before, and T(Ci) represents the corresponding character-type mentioned above for Ci.
For example, when considering the punctuation-symbol “,” in the character sequence
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“ , Q” , its feature T(C−2)T(C−1)T(C0)T(C1)T(C2) will be set to “41215”, where
each individual digit indicates the corresponding character-type defined above.

By contrast, incorporating additional features is more complicated for the gener-
ative approach. The original character-tag pair [c, t] is first expanded into [c, y, t],
where letter “y” denotes the corresponding character-type (i.e., the class of the given
character) and is the same as T(Ci) mentioned above. Afterwards, this new [c, y, t]
trigram model is the log-linear integration of two simpler models (named Method 1,
and shown below), since we would like to retain the advantages of the original model
for handling IV words.

log P([c, y, t]i|[c, y, t]i−1
i−2) ≈ β × log P([c, t]i|[c, t]i−1

i−2) + (1 − β) × log P([y, t]i|[y, t]i−1
i−2) (8)

The above formulation integrates the primary character-based generative model
with a new character-type-based generative model. Since many character-bigrams
of numerical or foreign strings cannot be covered in the training-set, this new model
should play an essential role when such strings are encountered in a testing-set. The
parameter β (0.0 ≤ β ≤ 1.0) is the weight for the [c, t] trigram factor, obtained from
the cross-validation set (described in Section 3.2.3).

An alternative method for incorporating character-type information into the gen-
erative model, to be designated Method 2, is to pre-convert various foreign alpha-
bets, Arabic digits, and Chinese numerical characters into meta-foreign characters,
meta-Arabic-numeral characters, and meta-Chinese-numeral characters, respectively.
Note that the punctuations are not pre-converted into meta-punctuation characters,
because most punctuations have been seen in training-sets (except the CITYU cor-
pus), and different punctuation symbols behave differently (especially in the computer
domain, which includes various path-names); therefore, various punctuation symbols
will not be pooled together into a meta-class. Otherwise, we proceed as we have previ-
ously done for the generative model for “Closed” tests.

The segmentation results of the above open-test approaches (adopting the additional
character-type feature) are shown in Table XX. In this table, the symbol “/” separates
the results of closed-test and open-test. The “Generative-1” rows show the segmen-
tation results of the original generative trigram model in “Closed” tests and of the
Generative-1 model (with Method 1) in “Open” tests. Likewise, the “Generative-2”
rows give the results of the original generative trigram model in “Closed” tests and
the Generative-2 model (with Method 2) in “Open” tests. The results show that the
character-type feature is useful in improving the performance of generative models
for both Methods 1 and 2; and that Method 2 is superior to Method 1 (with 0.952
vs. 0.948 in Overall F-score). Also, Method 2 is much better than Method 1 in the
PKU(ucvt.) corpus (0.951 vs. 0.938 in F-score), due to the problem of character-
encoding-inconsistency mentioned above: Arabic digits and English characters are en-
coded differently across its training and testing sets. This inconsistency problem exists
for Method 1, but not for Method 2. This difference arises because Method 1 still uses
the character-tag-pair trigram as a factor, while in Method 2 English characters and
Arabic numerical characters are pre-converted into the meta-foreign character and the
meta-Arabic-numeral character, respectively.

In addition, we test Method 2 with pre-conversion of various punctuation symbols
into the same meta-punctuation character. Compared with the original Method 2,
which did not pool the various punctuation-symbols, this new modification signifi-
cantly improves the F-score from 0.946 to 0.950 in the CITYU corpus (not shown in
Table XX), because punctuation symbols are encoded inconsistently in this corpus.
However, this trick gives no improvement in other corpora, and even causes some mi-
nor deterioration. The degradation occurs because punctuation symbols are not always
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Table XX. Segmentation Results with the Character-Type Feature. The Symbol “/” in Each Entry Separates the
Performance of “Closed” Tests and “Open” Tests (Which Use This Additional Character-Type Feature). The

Associated Weights of “Closed” and “Open” Tests Are Shown in the Form “A / B” in the “Weight” Column. (A for
”Closed” Tests and Is Just the Alpha-Value, and B for “Open” Tests Which Would Be the Beta-Values for the

Generative Model and Would Be Alpha-Values for Other Cases)

Corpus Model Weight R P F ROOV RIV

AS

Generative-1 NA/0.80 0.958/0.959 0.937/0.940 0.947/0.949 0.516/0.532 0.978/0.978
Generative-2 NA/NA 0.958/0.958 0.937/0.942 0.947/0.950 0.516/0.554 0.978/0.977
Discriminative NA/NA 0.956/0.957 0.946/0.949 0.951/0.953 0.709/0.729 0.967/0.967
Discriminative-Plus NA/NA 0.960/0.961 0.948/0.952 0.954/0.957 0.680/0.703 0.973/0.973
Joint-1 0.30/0.50 0.962/0.964 0.950/0.953 0.956/0.958 0.679/0.680 0.975/0.977
Joint-2 0.30/0.30 0.962/0.964 0.950/0.954 0.956/0.959 0.679/0.710 0.975/0.975
Joint-Plus-1 0.35/0.40 0.963/0.965 0.949/0.953 0.956/0.959 0.652/0.677 0.977/0.978
Joint-Plus-2 0.35/0.35 0.963/0.964 0.949/0.954 0.956/0.959 0.652/0.684 0.977/0.977

CITYU

Generative-1 NA/0.85 0.951/0.953 0.937/0.938 0.944/0.946 0.611/0.639 0.978/0.978
Generative-2 NA/NA 0.951/0.953 0.937/0.939 0.944/0.946 0.611/0.630 0.978/0.979
Discriminative NA/NA 0.940/0.953 0.944/0.952 0.942/0.953 0.709/0.816 0.959/0.964
Discriminative-Plus NA/NA 0.951/0.960 0.952/0.958 0.952/0.959 0.720/0.805 0.970/0.973
Joint-1 0.60/0.65 0.957/0.962 0.951/0.954 0.954/0.958 0.691/0.742 0.979/0.980
Joint-2 0.60/0.40 0.957/0.964 0.951/0.959 0.954/0.962 0.691/0.791 0.979/0.978
Joint-Plus-1 0.50/0.40 0.959/0.965 0.952/0.958 0.956/0.961 0.700/0.779 0.980/0.979
Joint-Plus-2 0.50/0.35 0.959/0.965 0.952/0.959 0.956/0.962 0.700/0.785 0.980/0.980

MSR

Generative-1 NA/1.0 0.973/0.973 0.966/0.966 0.970/0.970 0.560/0.560 0.985/0.985
Generative-2 NA/NA 0.973/0.975 0.966/0.969 0.970/0.972 0.560/0.633 0.985/0.985
Discriminative NA/NA 0.957/0.959 0.963/0.964 0.960/0.962 0.720/0.744 0.964/0.965
Discriminative-Plus NA/NA 0.965/0.967 0.967/0.970 0.966/0.968 0.675/0.724 0.973/0.973
Joint-1 0.60/0.60 0.974/0.976 0.971/0.973 0.972/0.975 0.659/0.709 0.983/0.983
Joint-2 0.60/0.60 0.974/0.976 0.971/0.974 0.972/0.975 0.659/0.721 0.983/0.983
Joint-Plus-1 0.65/0.55 0.975/0.976 0.970/0.974 0.972/0.975 0.632/0.699 0.984/0.984
Joint-Plus-2 0.65/0.65 0.975/0.977 0.970/0.974 0.972/0.975 0.632/0.702 0.984/0.985

PKU (ucvt.)

Generative-1 NA/0.75 0.929/0.933 0.932/0.938 0.931/0.936 0.435/0.493 0.959/0.960
Generative-2 NA/NA 0.929/0.952 0.932/0.951 0.931/0.952 0.435/0.703 0.959/0.967
Discriminative NA/NA 0.922/0.937 0.940/0.945 0.931/0.941 0.619/0.738 0.940/0.949
Discriminative-Plus NA/NA 0.934/0.945 0.949/0.951 0.941/0.948 0.649/0.735 0.951/0.958
Joint-1 0.60/0.70 0.935/0.946 0.946/0.952 0.941/0.949 0.561/0.692 0.958/0.961
Joint-2 0.60/0.65 0.935/0.955 0.946/0.957 0.941/0.956 0.561/0.757 0.958/0.967
Joint-Plus-1 0.60/0.75 0.937/0.948 0.947/0.952 0.942/0.950 0.556/0.686 0.960/0.964
Joint-Plus-2 0.60/0.60 0.937/0.956 0.947/0.958 0.942/0.957 0.556/0.766 0.960/0.967

PKU (cvt.)

Generative-1 NA/0.75 0.952/0.952 0.951/0.951 0.951/0.952 0.502/0.521 0.968/0.968
Generative-2 NA/NA 0.952/0.952 0.951/0.951 0.951/0.952 0.502/0.510 0.968/0.968
Discriminative NA/NA 0.939/0.943 0.951/0.952 0.945/0.948 0.685/0.690 0.948/0.952
Discriminative-Plus NA/NA 0.949/0.951 0.958/0.958 0.953/0.954 0.674/0.680 0.958/0.961
Joint-1 0.60/0.70 0.954/0.954 0.958/0.958 0.956/0.956 0.616/0.651 0.966/0.964
Joint-2 0.60/0.65 0.954/0.955 0.958/0.958 0.956/0.957 0.616/0.621 0.966/0.967
Joint-Plus-1 0.60/0.75 0.955/0.955 0.958/0.958 0.957/0.957 0.610/0.642 0.967/0.966
Joint-Plus-2 0.60/0.60 0.955/0.956 0.958/0.958 0.957/0.957 0.610/0.617 0.967/0.968

Overall

Generative-1 NA/NA 0.953/0.955 0.946/0.948 0.949/0.951 0.510/0.538 0.973/0.974
Generative-2 NA/NA 0.953/0.959 0.946/0.952 0.949/0.955 0.510/0.611 0.973/0.975
Discriminative NA/NA 0.944/0.950 0.949/0.952 0.947/0.951 0.680/0.740 0.956/0.959
Discriminative-Plus NA/NA 0.952/0.957 0.955/0.957 0.953/0.957 0.676/0.726 0.965/0.967
Joint-1 NA/NA 0.957/0.960 0.955/0.958 0.956/0.959 0.633/0.685 0.971/0.973
Joint-2 NA/NA 0.957/0.963 0.955/0.960 0.956/0.962 0.633/0.722 0.971/0.974
Joint-Plus-1 NA/NA 0.958/0.961 0.955/0.959 0.957/0.960 0.621/0.691 0.973/0.974
Joint-Plus-2 NA/NA 0.958/0.964 0.955/0.961 0.957/0.962 0.621/0.711 0.973/0.975
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tagged with “S”: some, like “/”, “-”, “ ”, etc., may be tagged with “M”. Thus, to further
improve the performance of the generative model, we will need to categorize punctua-
tion symbols according to their different behavior patterns.

Table XX also gives the segmentation results of the modified Discriminative model
and the modified Discriminative-Plus model. Again, we see that character-type
information is useful in improving the performance on all corpora and is most effective
in the CITYU and PKU(ucvt.) corpora. Next, the modified generative and the modified
Discriminative models are further integrated as in the previous “Closed” tests: the
Generative-1 model and the modified Discriminative model are integrated into the
character-based Joint-1 model (abbreviated as Joint-1); the Generative-1 model and
the modified Discriminative-Plus model are integrated into the character-based
Joint-Plus-1 model (abbreviated as Joint-Plus-1); the Generative-2 model and the
modified Discriminative model are integrated into the character-based Joint-2 model
(abbreviated as Joint-2); and the Generative-2 model and the modified Discriminative-
Plus model are integrated into the character-based Joint-Plus-2 model (abbreviated
as Joint-Plus-2).

The segmentation results for the modified Joint models and the modified Joint-Plus
models are also given in Table XX. We see that the Joint-Plus-2 model achieves the
best F-score on each corpus. It is marked for visibility. Also, improvement is espe-
cially noticeable in the CITYU and PKU(ucvt.) corpora, because the punctuations are
inconsistent in the CITYU corpus, as are the Arabic numbers and English characters
in the PKU(ucvt.) corpus. In addition, the Joint-2 model holds an apparent edge over
the modified Discriminative model on both the closed-tests and the open-tests. For the
overall F-score, the Joint-2 model outperforms the Discriminative model by 0.9 per-
cent on the closed-test and 1.1 percent on the open-test. The advantage of using the
Joint-Plus-2 model over the Discriminative-Plus model is smaller but still significant
(in comparison to that of the Joint model over the Discriminative model). For the over-
all F-score, the Joint-Plus model exceeds the Discriminative-Plus model by 0.4 percent
on the closed-test, while the advantage rises up to only 0.5 percent on the open-test.

Although the overall improvement does not seem very impressive, most errors re-
lated to numerical expressions, punctuations, and foreign character sequences are in-
deed fixed. With the character-based Joint-2 model, 129 out of the original 143 related
errors in the CITYU corpus and 185 out of 203 in the MSR corpus have been tagged cor-
rectly with character-type information. The remaining errors (totaling 32 from both
the CITYU corpus and the MSR corpus) can be classified into two sub-classes: (1)
Missing Space Character (53%), and (2) Grouping with Quantifier (47%). The first sub-
class indicates cases in which the usual space characters are missing. For example, in
strings such as [“2 . 1 9 9 2 ” (Item 2, in 1992)] and [“i n t e r n e t s e r v i c e p r o v i d
e r” (Internet service provider)], the spaces normally used to separate different words
are absent; however, the benchmark segments them into [“2(IV)” (Item 2), “.(IV)” (a
period symbol), “1 9 9 2 (IV)” (In year 1992)] and [“i n t e r n e t (OOV)”, “s e r v i c
e (OOV)”, “p r o v i d e r (OOV)”], respectively. For these two examples, the former is
wrongly recognized as a false numerical expression [“2 . 1 9 9 2 (OOV)”], while the
latter is identified as only one English OOV word because there is no space character.
The errors in this sub-class are due to incorrect text format conversion, and are beyond
the capability of the character-type feature.

The second sub-class (Grouping with Quantifier, 47%) denotes cases in which
not all the Chinese characters following a number should be separated from the
number. For example, in the MSR corpus, some Chinese measurement-units such as
“ ” (a Chinese quantifier for counting items) and “ ” (Yuan, the currency unit for
RMB), are often grouped with numbers, such as [“3 4 ” (34), “ ” (county)] and [“5
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Table XXI. Statistics of Corpora of Simplified Chinese Text

Corpora Characters Tokens Word Types OOV Rate

Training
Labeled PKU-News 1,820,456 1,109,947 55,303 NA
Unlabeled-Literature 100,352 NA NA NA
Unlabeled-Computer 103,764 NA NA NA

Testing
Literature 50,637 35,736 6,364 0.069
Computer 53,382 35,319 4,150 0.152
Medicine 50,969 31,490 5,076 0.110
Finance 53,253 33,028 4,918 0.087

8 0 ” (5,800,000 RMB)]. However, as the character-type adopted above cannot
distinguish “Measurement-Unit” characters from others, our model incorrectly groups
two consecutive uni-character words [“5 (IV)” (five)] and [“ (IV)” (province)] into one
OOV word [“5 (OOV)” (five provinces)]. Similarly, the two-word sequence [“9 9 3

(OOV)” (9,930,000), “ (IV)” (working-day)] is grouped into one OOV word as [“9 9
3 (OOV)” (9,930,000 working-day)], because “ ” and “ ” are often tagged with
“E” in the training-set. Apparently Chinese “measurement-unit” characters should
be grouped together and treated as an additional character-type. Since the new
character-type does not target the errors mentioned above, we can conclude that it is
actually quite effective.

6. DOMAIN ADAPTATION

As shown in the above section, the proposed Joint-2 model and Joint-Plus-2 model
achieve better performance than previously reported models on all corpora tested.
However, both the training-sets and the testing-sets are from the same domain. To
test the cross-domain performance of the proposed models, we will adopt the Sim-
plified Chinese Text corpora of different domains provided by CIPS-SIGNAN Bakeoff
2010 [Zhao and Liu 2010]. Four testing sets are provided by this Bakeoff, each of
them from a different domain: literature, computers, medicine, and finance. However,
only two of them (literature and computers) are provided with unlabeled training sets.
In addition, it turns out that the labeled training data of Simplified Chinese Text in
this Bakeoff is the same as the PKU training data of SIGHAN Bakeoff 2005, which
comes from the News domain. The statistics of the SIGHAN 2010 corpora are shown
in Table XXI.

Since the character-based Joint-Plus-2 model (with the character-type feature)
achieves the best performance so far, we will conduct the domain adaptation test on
this model only, for simplicity. Furthermore, the cross-domain performance and the ef-
fect of domain adaptation will not be compared with the systems reported in SIGNAN
Bakeoff-2010: because strict regulation was not provided, these systems adopted vari-
ous rule-sets and additional information (e.g., the pinyin spelling of each character), so
that it would be difficult to conduct fair comparisons between them. Finally, again for
simplicity, we fix the weight of the generative score in our Joint-Plus-2 model during
the training procedure (toα = 0.60, acquired from the PKU development set in the last
section).

To incorporate unlabeled training data, Mcclosky et al. [2006] adopted a semi-
supervised learning method called self-training. The issue of convergence during such
learning has been studied in Haffari and Sarkar [2007] and Culp and Michailidis
[2008]. In the present study, we adopt a similar semi-supervised learning method,
which proceeds as follows: The initial segmenter is first trained with a pre-labeled
corpus; then this trained segmenter is used to segment the unlabeled training data;
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Fig. 3. Semi-supervised learning algorithm.

Table XXII. Segmentation Results Under Different Conditions. Joint-Plus-2: The Character-Based
Joint-Plus-2 Model; Joint-Plus-2+S: Joint-Plus-2 Model with Semi-Supervised Learning. The Pre-Labeled

Training Set is in News Domain

Domain Condition OOV Rate R P F ROOV RIV

News (In domain) Joint-Plus-2 0.035 0.956 0.958 0.957 0.617 0.968

Finance Joint-Plus-2 0.087 0.961 0.954 0.958 0.812 0.976
Medicine Joint-Plus-2 0.110 0.930 0.912 0.921 0.644 0.965

Literature
Joint-Plus-2 0.069 0.938 0.936 0.937 0.615 0.962

Joint-Plus-2+S 0.056 0.940 0.938 0.939 0.621 0.964

Computer
Joint-Plus-2 0.152 0.944 0.927 0.935 0.759 0.977

Joint-Plus-2+S 0.079 0.951 0.929 0.940 0.790 0.980

and finally, the resulting data is regarded as labeled data (denoted by Ui for the i-th
iteration) and added to the original pre-labeled data to form a new training set. The
above procedure is repeated until the convergence criterion is met. Currently, the iter-
ations stop when the similarity between the results of two consecutive iterations (Ui−1
and Ui) reaches a high level (F-score > 0.9999, evaluated by treating Ui−1 as the bench-
mark and Ui as the testing set). In our observation, the above procedure converges
quickly, with only three or four iterations for both Literature and Computer corpora.
The flow of the adopted semi-supervised learning procedure is shown in Figure 3.

Table XXII gives the segmentation results of various cross-domain testing-sets un-
der different conditions. The performance of in-domain testing-set is shown in the first
row in Table XX, labeled PKU(cvt.). For cross-domain testing-sets, the performance
without conducting domain adaptation is given in the rows labeled “Joint-Plus-2”; in
contrast, the performance with domain adaptation is given in the rows labeled “Joint-
Plus-2+S”. Marked entries denote that the performance with domain adaptation is
significantly better than without.

In comparison with the in-domain performance (SIGHAN 2005), the cross-domain
performance (except for the Finance domain) degrades significantly, because many
technical terms in different domains cannot be covered by the training-set of the
News domain. (This analysis is supported by the dramatic increment of OOV Rate in
Table XXII.) Among the various domains, the Finance domain obtains the best result,
which is even a bit better than the in-domain performance. The reason is that most
OOV words in the Finance domain are numerical expressions, which can be easily
handled by exploiting character-type information. The worst domain is Medicine,

ACM Transactions on Asian Language Information Processing, Vol. 11, No. 2, Article 7, Publication date: June 2012.



7:36 Wang et al.

because there are many OOV medical terms. Table XXII also shows that conducting
domain adaptation significantly improves the performance of the Computer domain
(raising F-score from 0.935 to 0.940, which is statistically significant); however,
performance improves only slightly in the Literature domain (from 0.937 to 0.939, also
statistically significant). This is because the difference between News and Computer
is much greater than that between News and Literature. The unlabeled training
data from the Computer domain is thus more effective in providing information con-
cerning computer-related technical terms, which are not found in the original News
domain.

Table XXII also gives the OOV rates for cross-domain testing-sets with and without
domain adaptation. In the case with domain adaptation, the OOV words in the testing
set are checked against the union of the pre-labeled and the unlabeled training cor-
pora. For the unlabeled training corpus, the OOV words are checked against its final
segmentation results after convergence. We see that the OOV rates of the Computer
domain decreases sharply after domain adaptation (decreasing from 0.152 to 0.079).
This decrease is much more obvious than that seen in the Literature domain (from
0.069 to 0.056). However, the improvement (of F-score) with domain adaptation in
the Computer domain is only 0.5%. Upon analyzing, we find that most of the OOV
words in the Computer domain, which are covered by the unlabeled training data, are
numbers and English strings; and most of these words have already been correctly
handled by the Joint-Plus-2 model before the semi-supervised learning. Thus, even
though the OOV rates decrease sharply, the improvement with domain adaptation in
the Computer domain is still minor.

On the other hand, the Computer domain performs better than the Literature do-
main after domain adaptation (0.940 versus 0.939 in F-score). Even its OOV rate is
higher (0.079 versus 0.056, after adaptation). This observation can be explained as fol-
lows: after numbers and English strings are excluded, the number of remaining OOV
words covered by the unlabeled training data in the Literature domain is only 177,
while the number in the Computer is 1,011. Further, the unlabeled corpora provided
by the SIGHAN Bakeoff-2010 are very small compared with the pre-labeled corpora.
The gain from the unlabeled data should thus be greater if a larger unlabeled training
corpus is provided.

7. RELATED WORK

The word-based generative model is a well-known approach used in many successful
applications [Gao et al. 2003; Zhang et al. 2003]. However, Zhang et al. [2006] has
shown that, while this approach performs excellently for IV words, it is quite weak for
OOV words. To handle OOV words appropriately, Zhang et al. [2003] adopted a proce-
dure for incorporating other knowledge of various sorts. In contrast to the word-based
generative model, the word-based discriminative model is adopted only in [Zhang
and Clark 2007]. This study utilizes a discriminative perceptron algorithm [Collins
2002] to generate word candidates with features related to both words and characters.
This model reportedly achieves state-of-the-art performance on some of the corpora
tested.

We can now consider the character-based tagging model [Xue 2003]. This method
has become dominant because it can tolerate OOV words. As a consequence, in the
SIGHAN Bakeoff 2005 [Emerson 2005], all systems ranked in the first tier [Asahara
et al. 2005; Tseng et al. 2005] are based upon it. However, the performance of this
approach is still quite unsatisfactory [Huang et al. 2007], and many studies have
tried to improve it. For example, Peng et al. [2004] integrates domain knowledge,
such as additional word lists, character lists, and “part-of-speech character lexicons”
(including title prefixes, title suffixes, Chinese surnames, etc.) into the framework
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of the conditional random field (CRF) [Lafferty et al. 2001]. In a similar spirit,
Tseng et al. [2005] adopts a large number of linguistic features, such as features
representing morphological and character reduplication. Zhao et al. [2006] reports
that the six-tag set using a three-character window outperforms the standard four-tag
set with a five-character window. Finally, Li and Sun [2009] uses punctuation as
implicit annotation to improve OOV word recognition.

In general, the character-based tagging model yields high recall of OOV words
(ROOV) but unsatisfactory recall of IV words (RIV). To overcome this weakness, Zhang
et al. [2006] propose a sub-word tagging approach, and Fu et al. [2008] adopts a
morpheme-based chunking approach. Sun et al. [2009] incorporates hybrid infor-
mation, based on both word and character sequences, with a latent variable model.
Sun [2010] compares the performance of the word-based discriminative model and the
character-based discriminative model, and then uses a bagging approach to combine
the outputs of these two models. Recently, Zhang and Clark [2011] use a single dis-
criminative model to adopt both word-based and character-based features. Notably,
while the character-based model can be associated with the generative form as argued
here, there are no related papers in the literature. (The only exceptions are our own
conference articles [Wang et al. 2009, 2010], which are greatly reduced versions of the
current article.)

With regard to integration of generative and discriminative models, a hybrid gener-
ative/discriminative approach was proposed by Jaakkola and Haussler [1999]. In that
study, the kernel function for the discriminative model was extracted from a genera-
tive model. Also, Raina et al. [2004] divide the feature vector into sub-vectors based
on naı̈ve Bayesian assumptions, and then combines these sub-generative models with
discriminative learning. More recently, Jiampojamarn et al. [2010] integrated a gen-
erative joint n-gram model as binary features into the discriminative training. Specifi-
cally for WS, Andrew [2006] improves performance by adding generative features into
a semi-Markov CRF framework. However, the gain from adopting these additional
generative components has been insignificant. As compared with these various ap-
proaches, our experiments have shown that our proposed log-linear interpolation is
still the most effective way to combine the generative and the discriminative models
for the WS problem, simple though it is.

Since some ambiguities of word segmentation require even the information of sub-
sequent phases (e.g., POS tagging, parsing, etc.) to solve, some researchers do word
segmentation jointly with subsequent tasks. For example, Shi and Wang [2007] in-
corporate the Part-of-Speech (POS) information in the WS procedure, and the best
outputs are searched with the overall joint WS and POS probabilistic score. Simi-
lar works also include Jiang et al. [2008], Zhang and Clark [2008], Kruengkrai et al.
[2009], Sun [2011], and Zhang and Clark [2011]. Furthermore, Li [2011] proposes
a new paradigm for Chinese word segmentation, which do word segmentation, word
inter-structure, and phrase parsing at the same time in a unified way. However, all of
them require additional linguistic resources (e.g., a corpus annotated with POS or a
Chinese Treebank).

This article differs from previous approaches in several ways. First, we propose a
new model form including the character-tag-pair (as opposed to simply adding a few
new features under the same discriminative framework). Second, we propose and
test a simple but effective way to integrate the generative and discriminative models.
Third, all state-of-the-art systems reported in the literature are checked and compared
with our systems. Fourth, a complete and detailed error analysis is conducted, which
clearly points out directions for future research. Fifth, we show the effect of adding
character-type information on the SIGHAN Bakeoff 2005. Last, a semi-supervised
learning method is proposed to conduct domain adaptation for word segmentation.
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8. CONCLUSION

Since word segmentation is the first step for most Chinese NLP applications, WS er-
rors will be carried forward into subsequent phases. Thus WS accuracy is crucial
for Chinese NLP and should be raised as much as possible. The traditional word-
trigram generative model can identify IV words quite well, but cannot handle OOV
words. To address this issue, this article first proposes a new character-based gen-
erative model, which replaces word-based n-grams with character-tag-pair n-grams.
As the vocabulary of characters is a closed-set, as opposed to the open-set of words,
there will be no more unseen candidates if the training set is large enough. Thus the
character-based approach can handle OOV words much better than the word n-gram
approach (ROOV is significantly raised from 0.053 to 0.511). Experiments conducted
on the second SIGHAN Bakeoff 2005 corpora have shown that the proposed character-
based generative model not only achieves a good balance between IV words and OOV
words, but also obtains competitive results with the widely adopted character-based
discriminative model.

On the other hand, although the character-based discriminative approach handles
OOV words better, given its ability to incorporate the future context as features (as
generative models cannot), it fails to model the adhesion and dependency between ad-
jacent characters within words (as the generative model does, and as humans are be-
lieved to do when segmenting words). It thus gives unsatisfactory performance for IV
words. That is, the generative and discriminative approaches complement each other
in handling IV words and OOV words. To take advantage of these complementary ca-
pacities, a joint model is thus further proposed to combine the character-based discrim-
inative approach and the proposed character-based generative approach. A closed-test
on the SIGHAN Bakeoff 2005 corpora shows that this joint model significantly outper-
forms all the state-of-the-art systems reported in the literature. Although the proposed
approaches have been tested on Chinese corpora only, we believe that they should
also be applicable to other languages with similar characteristics (e.g., Japanese and
Korean), since no Chinese-specific features (e.g., prefixes, suffixes, or Chinese family
names) are adopted in the models.

After the remaining errors of the Joint model were analyzed, we observed that many
of them (24.2% of the OOV Critical section for the CITYU corpus, and 36.1% for MSR)
were caused by failure to take the character-type into account – that is, failure to dis-
tinguish punctuation-symbols, Arabic numbers, and English characters from common
Chinese characters. And indeed, after we incorporated such character-type informa-
tion, most errors related to numerical expressions, English character sequences, and
punctuations were corrected. We thus suspect that more character-related features
(showing for example whether the character is a prefix or suffix, a surname-character,
etc) should be added in the future if further improvement is required.

Finally, cross-domain performance has been evaluated on the SIGHAN 2010 cor-
pora, and a semi-supervised method has been proposed for conducting domain adap-
tation. The results show that this approach is effective, especially when the mismatch
between two domains is large.
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