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Abstract. Text image machine translation (TIMT) has been widely
used in various real-world applications, which translates source language
texts in images into another target language sentence. Existing methods
on TIMT are mainly divided into two categories: the recognition-then-
translation pipeline model and the end-to-end model. However, how to
transfer knowledge from the pipeline model into the end-to-end model
remains an unsolved problem. In this paper, we propose a novel Multi-
Teacher Knowledge Distillation (MTKD) method to effectively distillate
knowledge into the end-to-end TIMT model from the pipeline model.
Specifically, three teachers are utilized to improve the performance of the
end-to-end TIMT model. The image encoder in the end-to-end TIMT
model is optimized with the knowledge distillation guidance from the
recognition teacher encoder, while the sequential encoder and decoder
are improved by transferring knowledge from the translation sequen-
tial and decoder teacher models. Furthermore, both token and sentence-
level knowledge distillations are incorporated to better boost the transla-
tion performance. Extensive experimental results show that our proposed
MTKD effectively improves the text image translation performance and
outperforms existing end-to-end and pipeline models with fewer param-
eters and less decoding time, illustrating that MTKD can take advan-
tage of both pipeline and end-to-end models. Our codes are available at:
https://github.com/EriCongMa/MTKD TIMT.
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1 Introduction

Text image machine translation (TIMT) is a cross-modal generation task, which
translates source language texts in images into target language sentences. Various
real-world applications have been conducted for TIMT, such as digital document
translation, scene text translation, handwritten text image translation, and so
on. Existing TIMT systems are mainly constructed with a recognition-then-
translation pipeline model [1,4,7,9,15], which first recognizes texts in images
by a text image recognition (TIR) model [2,16,17,27,28], and then generates
target language translation with a machine translation (MT) model [20,22,29,
30]. However, pipeline models have to train and deploy two separate models,
leading to parameter redundancy and slow decoding speed. Meanwhile, errors in
TIR model are further propagated by MT models, which causes more translation
mistakes in the final translation results.

To address the shortcomings of pipeline models, end-to-end TIMT models
are proposed with a more efficient architecture [14]. Although end-to-end models
have fewer parameters and faster decoding speed, the end-to-end training data is
limited compared with recognition or translation datasets, leading to inadequate
training and limited translation performance of end-to-end models. As a result,
how to explicitly incorporate external recognition or translation results has been
studied by existing research [6,13]. Furthermore, transfer knowledge from TIR
or MT models has been conducted to end-to-end TIMT models through feature
transformation [18] and cross-modal mimic framework [5].

However, sub-modules in end-to-end TIMT models play quite different func-
tions, which need different knowledge from various teacher models. Although
existing methods explore to transfer knowledge from external models, how to
introduce different knowledge into each sub-modules of the end-to-end TIMT
model remains unsolved.

In this paper, we propose a novel multi-teacher knowledge distillation
(MTKD) approach for end-to-end TIMT model, which is designed to transfer
various types of knowledge into end-to-end TIMT model. Specifically, three sub-
modules in end-to-end models are considered to optimize by distilling knowledge
from different teacher models.

• Image encoder aims at extracting features of input images from pixel space to
dense feature space, which has a similar function as the TIR image encoder.
As a result, TIR image encoder is utilized as the teacher model for image
encoder in end-to-end TIMT model to improve the image feature extraction.

• Sequential encoder in end-to-end TIMT model fuses the local image features
into contextual features, which learns advanced semantic information of the
sentences in text images. To guide semantic feature learning, MT sequential
encoder offers the teacher guidance for TIMT sequential encoder to better
map image features into semantic features.

• Decoder in end-to-end TIMT model generates target translation autoregres-
sively, which has a similar function as the MT decoder. As so, the prediction
distribution on target language vocabulary is utilized as the teacher distri-
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bution to guide the decoder in end-to-end TIMT generate better prediction
distribution.

By transferring different knowledge into corresponding sub-modules in end-
to-end TIMT model, fine-grained knowledge distillation can better improve the
translation quality of end-to-end TIMT models. In summary, our contributions
are summarized as:

• We propose a novel multi-teacher knowledge distillation method for end-
to-end TIMT model, which is carefully designed for fine-grained knowledge
transferring to various sub-modules in end-to-end TIMT models.

• Various teacher knowledge distillation provides more improvements compared
with single teacher guidance, indicating different sub-modules in end-to-end
models need different knowledge information to better adapt corresponding
functions.

• Extensive experimental results show our proposed MTKD method can effec-
tively improve the translation performance of end-to-end TIMT models. Fur-
thermore, MTKD based TIMT model also outperforms pipeline system with
fewer parameters and less decoding time.

2 Related Work

2.1 Text Image Machine Translation

Text image machine translation models are mainly divided into pipeline and
end-to-end models. Pipeline models deploy text image recognition and machine
translation models respectively. Specifically, the source language text images
are first fed into TIR models to obtain the recognized source language sen-
tences. Second, the source language sentences are translated into the target
language with the MT model. Various applications have been conducted with
the pipeline TIMT architectures. Photos, scene images, document images, and
manga pages are taken as the input text images. The TIR model recognizes the
source language texts, and the MT model generates target language transla-
tion [1,3,4,7,9,23,25,26].

End-to-end TIMT models face the problem of end-to-end data scarcity and
the performance is limited. To address the problem of data limitation, a multi-
task learning method is proposed to incorporate external datasets [6,13,18].
Feature transformation module is proposed to bridge pre-trained TIR encoder
and MT decoder [18]. The hierarchy Cross-Modal Mimic method is proposed
to utilize MT model as a teacher model to guide the end-to-end TIMT student
model [5].

2.2 Knowledge Distillation

Knowledge distillation has been widely used to distillate external knowledge into
the student model to improve performance, speed up the training process, and
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Fig. 1. Overall Diagram of (a) Text Image Recognition, (b) Text Image Machine Trans-
lation, (c) Machine Translation models and Multi-Teacher Knowledge Distillation.

decrease the parameter amounts in teacher models. Specifically, in sequence-
to-sequence generation related tasks, token-level and sentence-level knowledge
distillation have been proven effective in generation tasks [10,11]. Various tasks
have been significantly improved through knowledge distillation method, like bi-
lingual neural machine translation [19], multi-lingual translation [21], and speech
translation [12].

To incorporate more knowledge into one student model, multiple teacher
models are utilized in some studies to further transfer knowledge into student
model. [21] proposed to use various teacher models in different training mini-
batch to make the multilingual NMT model learn various language knowledge.
DOPE is designed to incorporate multiple teacher models to guide different
subnetworks of the student model to provide fine-grained knowledge like body,
hand, and face segmentation information [24].

However, existing methods lack exploration in integrating various knowledge
into end-to-end TIMT models. Our proposed multi-teacher knowledge distilla-
tion effectively addresses this problem by transferring different knowledge into
various sub-modules to meet the corresponding functional characteristics of dif-
ferent modules.
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3 Methodology

3.1 Problem Definition

The end-to-end TIMT model aims at translating source language texts in images
into target language sentences. Let I be the source language text image and cor-
responding target language sentence is Y containing z tokens {y1, y2, ..., yz}. The
training object for the end-to-end TIMT model is to maximize the translation
probability:

P (Y|I; θTIMT) =
z∏

i=1

P (yi|I,Y<i) (1)

where Y<i represents the translation history at the i-th decoding step, and
θTIMT denotes the parameters of end-to-end TIMT model.

Specifically, to generate target language translation, end-to-end TIMT model
is divided into three sub-modules: image encoder, sequential encoder, and
decoder as shown in Fig. 1 (b). Image encoder I extracts image features from
pixel space and ResNet [8] is utilized as the image encoder in our work:

FI = I(I; θI) = ResNet(I) (2)

where I ∈ R
H·W ·C denotes the input text image, and H,W,C represent the

height, width, and channel of input image respectively. FI ∈ R
lI∗c denotes

the image feature, and lI , c represent length and channel of feature sequence
respectively. Generally, image features encoded by convolutional network are
F ′

I ∈ R
h·w·c, where h,w, c represent the height, width, and channel of feature

maps respectively. To meet the requirement of following sequential encoding, fea-
ture maps are resized to feature sequence by reducing height and width dimen-
sion into feature length: lI = h·w. Thus, the output of image encoder is a feature
sequence containing local information of input text image.

Sequential encoder S(·) aims at encoding contextual semantic features given
local features of input text image. Transformer encoder is utilized as the sequen-
tial encoder in this paper:

FS = S(FI ; θS) = TransformerEncoder(FI) (3)

where FS ∈ R
lS ·hS represents the sequential features that contains contextual

semantic information of the whole feature sequence. lS , hS represent sequence
length and hidden dimension of sequential features.

Finally, target language decoder D(·) generates translation results autore-
gressively and transformer decoder is utilized in our work:

FD = D(FS ; θD) = TransformerDecoder(FS) (4)

where FD ∈ R
lD·hD represents the output of decoder. lD, hD represent sequence

length and hidden dimension of decoder features respectively. The final decoded
word ŷi

TIMT is calculated by:
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ŷi
TIMT = arg max

j∈[1,|VY|]
P (ŷi

j |I, Ŷ<i), where P (ŷi
j |I, Ŷ<i) ∝ WoF

i
D (5)

where P (ŷi
j |I, Ŷ<i) denotes the probability that the decoder predicts the j-th

word ŷi
j in vocabulary at i-th decoding step. Wo ∈ R

|VY|·hD denotes a linear
matrix that maps decoder features into target language words. |VY|, hD represent
the size of target language vocabulary and the hidden dimension of decoder
respectively. F i

D means the i-th element of decoder feature FD, which represents
the decoder information at position i. Ŷ<i represents the translation history
before i-th step. In summary, end-to-end TIMT model utilizes image encoder,
sequential encoder, and target language decoder to generate target language
translation results word by word.

To optimize the end-to-end TIMT model, the log-likelihood loss function is
utilized:

LTIMT = −
∑

(I,Y)∈DTIMT

log P (Y|I)

log P (Y|I) =
z∑

i

|VY|∑

j

I(ŷi
j = yi) log P (ŷi

j |I, Ŷ<i)
(6)

where I(ŷi
j = yi) is an indicator function which eques 1 when predicted word

ŷi is the same as the ground-truth yi, otherwise it equals 0. z denotes the sen-
tence length of target language ground-truth. DTIMT represents the text image
translation training dataset.

3.2 Architecture of Teacher Models

Different sub-modules in end-to-end TIMT model play quite different functions
and need various knowledge guidance. Image encoder is utilized to extract local
visual features from input text images, while a sequential encoder further encodes
contextual semantic information from local visual features. Finally, a decoder
is designed to generate translation results given sequential features. To incor-
porate various knowledge into sub-modules of end-to-end TIMT model, three
teacher models are utilized to guide the optimization of image encoder, sequen-
tial encoder, and decoder respectively. Specifically, knowledge of extracting text
image features is transferred from TIR encoder. MT sequential encoder pro-
vides the guidance of contextual semantic feature learning, while MT decoder
distillates the target language generation knowledge into TIMT decoder.

Text Image Recognition Teacher Model. Considering image encoder
extracts local visual features from input text images, which is consistent between
TIMT and TIR tasks, TIR model is incorporated to provide guidance for image
feature learning. In this paper, TIR models are also divided into three sub-
modules as end-to-end TIMT model to better understand the information flow
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between teacher and student models. Similar to TIMT image encoder, TIR image
encoder also aims at extracting local visual features of input text images:

FTIR
I = ITIR(I; θTIR

I ) = ResNet(I) (7)

where FTIR
I denotes the image features encoded by TIR image encoder ITIR(·)

and the dimension of FTIR
I is same as the image feature FI of end-to-end TIMT

model introduced in Sect. 3.1. θTIR
I represents the model parameters of TIR

image encoder. The architecture of TIR image encoder is similar to TIMT image
encoder, but these two models are trained with different supervised data.

TIR Sequential encoder is also designed to further extract contextual infor-
mation by considering whole local visual features:

FTIR
S = STIR(FTIR

I ; θTIR
S ) = TransformerEncoder(FTIR

I ) (8)

where FTIR
S ,STIR(·), θTIR

S denote TIR sequential features, TIR sequential
encoder, and parameters of TIR sequential encoder respectively.

Different from generating target language in TIMT decoder, TIR decoder
predicts source language words autoregressively:

FTIR
D = DTIR(FTIR

S ; θTIR
D ) = TransformerDecoder(FTIR

S ) (9)

where FTIR
D ,DTIR(·), θTIR

D denote TIR decoder features, TIR decoder, and
parameters of TIR decoder respectively. To further map TIR decoder feature
into source language space, a transformation matrix is utilized to transform
decoder feature into source language word:

x̂i
TIR = arg max

j∈[1,|VX|]
P (x̂i

j |I, X̂<i), where P (x̂i
j |I, X̂<i) ∝ WTIR

o FTIRi

D (10)

where x̂i
j represents the j-th word in source language vocabulary at decod-

ing position i, while x̂i
TIR represents the final predicted word of decoder at

i-th decoding step. WTIR
o ∈ R

|VX|·hTIR
D denotes the transformation matrix from

decoder feature space to source language space. |VX|, hTIR
D represent the size

of source language vocabulary and feature dimension of TIR decoder respec-
tively. FTIRi

D denotes the TIR decoder feature at position i. X̂<i represents the
recognition history before i-th decoding step.

The overall architecture of TIR and TIMT models is similar, but the super-
vised data is different. TIR model is trained with recognition data pair < I, X >,
where X means the source language recognition label of input text image I.
While TIMT model is trained with text image translation pair < I, Y >, where
Y means the target language translation of corresponding source language sen-
tence X. To optimize the parameters in TIR model, the log-likelihood loss is
utilized similar to TIMT optimization:

LTIR = −
∑

(I,X)∈DTIR

log P (X|I)

log P (X|I) =
z∑

i

|VX|∑

j

I(x̂i
j = xi) log P (x̂i

j |I, X̂<i)
(11)
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where x̂i
j denotes the j-th word in source language vocabulary at i-th decod-

ing step, while xi represents the ground-truth word at i-th decoding step. z
denotes the sentence length of ground-truth. I(·) means the indicator function
as introduced in Eq. (6). DTIR represents the text image recognition dataset.

Machine Translation Teacher Model. Different from cross-modal genera-
tion TIR and TIMT models, MT model is a text-to-text transformation network.
Thus, the encoder of raw data is quite different from TIR and TIMT models. To
obtain text features from source language sentence strings, an embedding layer
based text encoder is utilized to map the input words into word embedding:

FMT
T = T MT(X; θMT

T ) = Embedding(X) (12)

where FMT
T , T MT(·), θMT

T represent text features, MT text encoder, and param-
eters of MT text encoders respectively.

Word embedding only contains single word information rather than global
semantic information. To better extract contextual semantic features, MT
sequential encoder further encodes contextual information by considering all
input words:

FMT
S = SMT(FMT

T ; θMT
S ) = TransformerEncoder(FMT

T ) (13)

where FMT
S ,SMT(·), θMT

S denote MT sequential feature, MT sequential encoder,
and parameters of MT sequential encoder respectively. Similar to TIR and TIMT
sequential encoder, transformer encoder is utilized to extract contextual semantic
features given MT text features.

MT decoder generates target language translation word by word given MT
sequential features:

FMT
D = DMT(FMT

S ; θMT
D ) = TransformerDecoder(FMT

S ) (14)

where FMT
D ,DMT(·), θMT

D represent MT decoder features, MT decoder, and
parameters of MT decoder respectively. To further map MT decoder features
into target language space, a transformation matrix is utilized to calculate the
translation probability:

ŷi
MT = arg max

j∈[1,|VY|]
P (ŷi

j |X, Ŷ<i), where P (ŷi
j |X, Ŷ<i) ∝ WMT

o FMTi

D (15)

where ŷi
j represents the j-th word in target language vocabulary at i-th decoding

step, while ŷi
MT represents the final predicted word of target language decoder at

decoding position i. X, Ŷ<i denote source language sentence and translation his-
tory before i-th decoding step respectively. WMT

o ∈ R
|VY|·hMT

D denotes the trans-
formation matrix which maps MT decoder features into target language space.
|VY|, hMT

D denote the size of target language vocabulary and hidden dimension
of MT decoder feature respectively.
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LMT = −
∑

(X,Y)∈DMT

log P (Ŷ|X)

log P (Ŷ|X) =
z∑

i

|VY|∑

j

I(ŷi
j = yi) log P (ŷi

j |X, Ŷ<i)
(16)

where ŷi
j denotes the j-th word in target language vocabulary at i-th decoding

step, while yi represents ground-truth word at i-th decoding step. z denotes the
sentence length of ground-truth. I(·) means the indicator function as introduced
in Eq. (6). DMT represents the text machine translation dataset.

From the comparison of TIR, MT, and TIMT architectures, they have sim-
ilar and different functions. For example, TIR image encoder and TIMT image
encoder have similar structure and functions. All the sequential encoders are
similar in architecture and the functions all aim at extracting contextual seman-
tic information. Furthermore, MT decoder and TIMT decoder are both designed
to predict target language sentences, which has similar structure and function.
As a result, sub-modules of TIMT model with similar architecture and function
can as that of TIR or MT models can be improved by multi-teacher knowledge
distillation.

3.3 Knowledge Distillation from TIR Image Encoder

TIMT image encoder and TIR image encoder both extract local visual features
from input text images. Compared with TIMT task, TIR task has much more
training data, thus TIR models can be better optimized to encode image fea-
tures of text images. To address the data limitation of end-to-end TIMT task,
knowledge distillation from TIR image encoder is proposed to transfer text image
encoding knowledge into TIMT image encoder. As shown in Fig. 1, TIMT image
encoder is optimized not only by end-to-end text image translation loss but also
by the guidance from TIR image encoder. To align the TIMT image features
with TIR image features, both token-level and sentence-level knowledge distil-
lation are incorporated to guide TIMT image encoder to predict similar image
features as TIR image features:

Token-Level Image Encoder Knowledge Distillation. TIMT and TIR
image features are feature sequences as introduced in Sect. 3.1. To provide fine-
grained guidance information, L2-Norm constraint is utilized to guide TIMT
image encoder outputs:

LI
TKD =

1
B · lI

B∑

j

lI∑

i

‖F ij
I − FTIRij

I ‖2 (17)

where LI
TKD denotes the token-level image encoder knowledge distillation loss

function. F ij
I , FTIRij

I represent TIMT and TIR image features of j-th sample at
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position i respectively. lI denotes the length of TIMT image feature sequence,
and lI = lTIR

I in our experiments, indicating the sequence length of TIMT and
TIR image features are the same. B denotes the batch size.

Sentence-Level Image Encoder Knowledge Distillation. To provide
sentence-level guidance, both TIMT and TIR global image features are calcu-
lated by average pooling:

LI
SKD =

1
B

B∑

j

‖ 1
lI

lI∑

i

F ij
I − 1

lTIR
I

lTIR
I∑

i

FTIRij

I ‖2 (18)

where LI
SKD represents the loss function of sentence-level image encoder knowl-

edge distillation. By calculating the global image features, the optimization of
TIMT image encoder is guided by the global alignment between TIMT and TIR
image features.

Finally, the token-level and sentence-level image encoder knowledge distilla-
tion loss functions are fused to obtain image encoder knowledge distillation loss
function LI

KD, which provides multi-granularity knowledge distillation guidance
information:

LI
KD = LI

TKD + LI
SKD (19)

3.4 Knowledge Distillation from MT Sequential Encoder

The sequential encoder is vital to TIMT task, because the contextual semantic
features are important for cross-lingual generation. To improve the ability of
TIMT sequential encoder, knowledge distillation from MT sequential encoder is
incorporated to guide the optimization of TIMT sequential encoder as shown
in Fig. 1. Similar to image encoder knowledge distillation, sequential encoder
knowledge distillation also has token-level and sentence-level knowledge distilla-
tions:

Token-Level Sequential Encoder Knowledge Distillation. Similar to the
token-level image encoder knowledge distillation, MT sequential features are
regarded as the guidance for TIMT sequential features through L2-Norm con-
straint:

LS
TKD =

1
B · lS

B∑

j

lS∑

i

‖F ij
S − FMTij

S ‖2 (20)

where LS
TKD represents sequential knowledge distillation loss function.

F ij
S , FMTij

S represent TIMT and MT sequential features of j-th sample at posi-
tion i respectively. lS denotes the length of TIMT sequential feature sequence,
which is set the same as the length of MT sequential feature sequence lMT

S .
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Sentence-Level Sequential Encoder Knowledge Distillation. To further
provide global guidance of sequential feature learning, the sentence-level sequen-
tial encoder knowledge distillation is proposed by performing average pooling on
TIMT and MT sequential features:

LS
SKD =

1
B

B∑

j

‖ 1
lS

lS∑

i

F ij
S − 1

lMT
S

lMT
S∑

i

FMTij

S ‖2 (21)

where LS
SKD denotes the sequential encoder knowledge distillation loss function.

The length of TIMT and MT sequential features are the same (lS = lMT
S ) as

introduced in token-level sequential encoder knowledge distillation.
Overall sequential encoder knowledge distillation loss function LS

KD is
obtained by combining token-level and sentence-level sequential encoder knowl-
edge distillation:

LS
KD = LS

TKD + LS
SKD (22)

3.5 Knowledge Distillation from MT Decoder

Different from image and sequential encoder knowledge distillation, decoder
knowledge distillation is proposed to align the predicted target language vocab-
ulary distribution between TIMT and MT decoders. Token-level decoder knowl-
edge distillation aims at aligning the prediction probability between TIMT and
MT decoders at each decoding step, while sentence-level decoder knowledge dis-
tillation takes the MT predicted target language sentence as the ground-truth
to calculate the decoding loss for the optimization of TIMT model.

Token-Level Decoder Knowledge Distillation. As introduced in Eq. (5),
TIMT decoder predicts the j-th target language word at i-th decoding step
with the probability of P (ŷi

j |I, Ŷ
TIMT

<i ), while MT decoder generates the j-th

target language word at i-th step with the probability of P (ŷi
j |X, Ŷ

MT

<i ) as in
Eq. (15). To align the decoding distribution, I and X are paired text images and

corresponding source language text sentences. Ŷ
TIMT

<i , Ŷ
MT

<i represent decoding
history of TIMT and MT models respectively. The token-level decoder knowledge
distillation loss is calculated by updating the vanilla cross-entropy loss:

LD
TKD = −

z∑

i

|VY|∑

j

P (ŷi
j |X, Ŷ

MT

<i ) log P (ŷi
j |I, Ŷ

TIMT

<i ) (23)

where LD
TKD denotes the token-level decoder knowledge distillation loss. By

transferring decoding knowledge from MT teacher decoder, the TIMT decoder
is guided to have a similar predicted probability of target language words.
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Sentence-Level Decoder Knowledge Distillation. To provide sentence-
level decoding knowledge distillation, the MT model decoded target language
sentences are utilized to replace original ground-truth sentences. Different from
token-level decoder knowledge distillation, which is designed to align the decod-
ing probability between TIMT and MT decoders, sentence-level decoder knowl-
edge distillation aims at guiding the TIMT decoder to have similar translation
results as MT decoder:

LD
SKD = −

z∑

i

|VY|∑

j

I(ŷi
j = ŷi

MT) log P (ŷi
j |I, Ŷ

TIMT

<i ) (24)

where LD
SKD denotes sequence-level decoder knowledge distillation loss function.

Different from the vanilla log-likelihood loss function, the ground-truth sentence
is replaced as the MT prediction results. Thus the indicator function I(ŷi

j = ŷi
MT)

equals 1 when the TIMT decoded word ŷi
j is the same as the MT predicted word

ŷi
MT. By incorporating both token-level and sentence-level decoder knowledge

distillation, the overall loss function of decoder knowledge distillation is formu-
lated as:

LD
KD = LD

TKD + LD
SKD (25)

The final loss function is the combination of end-to-end text image translation
and knowledge distillation loss functions:

LALL = (1 − λKD)LTIMT + λKDLKD

LKD = λILI
KD + λSLS

KD + λDLD
KD

(26)

where λKD, λI , λS , λD represent the loss weight of overall knowledge distillation,
image encoder knowledge distillation, sequential encoder knowledge distillation,
and decoder knowledge distillation respectively.

Fig. 2. Examples of synthetic, subtitle and street-view text image translation datasets.
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4 Experiments

4.1 Datasets

To train the end-to-end TIMT model, the publicly available dataset released
by [13] is utilized in our experiments. As shown in Fig. 2, this dataset con-
tains samples from three domains: synthetic, subtitle, and street-view domains.
The training and validation samples are all from synthetic domain, while sam-
ples in evaluation set are from all three domains. Three translation directions
are conducted in this dataset: English-to-Chinese (EnCh), English-to-German
(EnDe), and Chinese-to-English (ChEn) translation. There are 1,000,000 train-
ing samples, 2,000 validation samples, and 2,000 evaluation samples in synthetic
domain. The subtitle test set contains 1,040 samples, while the street-view test
set has 1,198 samples. To implement knowledge distillation, triple-aligned sam-
ples {source language images, source language texts, target language
texts} are utilized to transfer the pre-trained knowledge from TIR and MT
teacher models into the TIMT student model.

Table 1. Results of various knowledge distillation combinations on English-to-Chinese
translation validation set. TKD and SKD represent using single token-level or sentence-
level knowledge distillation loss. TKD+SKD means the fused token-level and sentence-
level knowledge distillation are used for knowledge distillation loss function. BLEU
Score is utilized to evaluate the translation performance.

No λI λS λD TKD SKD TKD+SKD

1 0 0 1 23.02 22.68 23.16

2 0 1 0 22.63 22.44 22.85

3 0 1 1 23.47 23.04 23.79

4 1 0 0 22.45 22.30 22.68

5 1 0 1 23.28 22.95 23.52

6 1 1 0 23.19 22.73 23.34

7 1 1 1 23.86 23.51 24.13

4.2 Experimental Setup

To provide a faire comparison with existing research on end-to-end TIMT task, a
similar model architecture as [13] is utilized in our experiment. The TIMT image
encoder is composed of TPS Net and Res Net, which extracts the image features
from the raw input text images. The TIMT sequential encoder and decoder are
6-layer transformer encoder and 6-layer transformer decoder respectively, which
is also the same as [13]. The MT model replaced the TIMT image encoder with
an embedding layer based text encoder. The sequential encoder and decoder of
the MT model are kept the same as the TIMT model. The preprocessing method
and experimental setting are the same as [13]. For decoding results, sacre-BLEU
1 is calculated to evaluate the translation performance.
1 https://github.com/mjpost/sacrebleu.

https://github.com/mjpost/sacrebleu
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4.3 Results of Various Knowledge Distillation

Table 1 shows the results of various knowledge distillation (KD) combinations.
Line No.1, No.2, and No.4 show the results of single-teacher KD. Single decoder
KD (No.1) achieves the best single-teacher performance due to the strong guid-
ance from decoding knowledge. Sequential encoder KD (No.2) outperforms image
encoder KD (No.4), indicating semantic knowledge transferring is more impor-
tant for TIMT task. For bi-teacher KD comparison, sequential encoder and
decoder KD combination (No.3) performs well by incorporating semantic and
decoding guidance. Finally, triple-teacher KD (No.7) achieves the best perfor-
mance by transferring image encoder, sequential decoder, and decoder knowledge
into end-to-end TIMT model, indicating incorporating accurate knowledge into
various sub-modules is vital for performance improvements.

4.4 Comparison with Existing TIMT Methods

Compared with existing end-to-end TIMT models, MTKD has significant
improvements by incorporating various knowledge into sub-modules of TIMT
model. Table 2 shows the comparison between MTKD and existing TIMT mod-
els. TRBA [2] is a vanilla TIR model trained with translation dataset. CLTIR [6]
proposed to train TIMT model with TIR multi-task learning. RTNet [18] bridges
pre-trained TIR and MT models with feature transformer. METIMT [13] trains
TIMT model with MT auxiliary task. MHCMM [5] is a mimic learning based
method by introducing MT teacher for TIMT model. Different from existing
research, MTKD incorporates both TIR and MT teachers into TIMT optimiza-
tion. Meanwhile, various knowledge distillation is utilized to transfer accurate

Table 2. Comparison of existing end-to-end models with our proposed multi-teacher
knowledge distillation (MTKD) method. MTKD utilizes the knowledge distillation set-
ting of line No.7 in Table 1.

Architecture Synthetic Subtitle Street

EnCh EnDe ChEn EnCh ChEn ChEn

Existing End-to-End Models

TRBA [2] 9.61 7.36 4.77 12.12 5.18 0.36

CLTIR [6] 18.02 15.55 10.74 16.47 9.04 0.43

CLTIR+TIR [6] 19.44 16.31 13.52 17.96 11.25 1.74

RTNet [18] 18.91 15.82 12.54 17.63 10.63 1.07

RTNet+TIR [18] 19.63 16.78 14.01 18.82 11.50 1.93

MTETIMT [13] 19.25 16.27 13.16 17.73 10.79 1.69

MTETIMT+MT [13] 21.96 18.84 15.62 19.17 12.11 5.84

MHCMM [5] 22.08 18.97 15.66 19.24 12.12 5.87

Our Proposed Multi-Teacher Knowledge Distillation Method

MTKD 22.26 19.38 15.84 19.31 12.17 6.08
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Table 3. Comparison of TIR+MT pipeline method with MTKD method on English-
to-Chinese synthetic test set. Model size represents the parameter amount of the model.
Decoding time means the time of predicting a sentence and the unit is second. BLEU
score is utilized to evaluate the translation performance on valid and test set.

Architecture Model Size↓ Decoding Time↓ Valid BLEU↑ Test BLEU↑
Pipeline 195.1M 0.33s 23.52 20.46

MTKD 121.9M 0.19s 24.13 22.26

knowledge into sub-modules of TIMT model. Finally, MTKD outperforms the
existing best MHCMM model with 0.18 BLEU scores on average. Improvements
in all three evaluation domains reveal the good generalization of MTKD.

4.5 Comparison with Pipeline Method

Table 3 shows the comparison of MTKD with the TIR+MT pipeline model. By
transferring knowledge into TIMT model, MTKD has better translation perfor-
mance, which effectively addresses the error propagation problems in pipeline
model. With an end-to-end architecture, MTKD has fewer parameters than
pipeline model. Meanwhile, MTKD has less decoding time than pipeline model,
which is vital in real-world applications (Table 3).

4.6 Analysis of Hyper-parameter

The loss weight of knowledge distillation is a key hyper-parameter to balance
the end-to-end TIMT loss and knowledge distillation losses. When λKD = 0, the

Fig. 3. Hyper-parameter analysis on the loss weight of knowledge distillation.
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model is only optimized with end-to-end loss function and the performance is
limited due to the end-to-end data scarcity and the difficulty of TIMT task. By
incorporating KD loss, the performance is getting better and the optimal value
for λKD is 0.8. When λKD = 1, the performance drops a bit, indicating end-to-
end TIMT loss by guiding the model learns to predict as the ground-truth is
also important for TIMT task.

5 Conclusion

In this paper, we propose a novel multi-teacher knowledge distillation (MTKD)
method for end-to-end text image machine translation task. Three pre-trained
teacher models are utilized to provide accurate knowledge for corresponding
sub-modules in end-to-end TIMT model. By transferring various knowledge
into sub-modules of TIMT model, the translation performance is significantly
improved compared with existing methods. Meanwhile, token-level and sentence-
level knowledge distillation are complementary for knowledge transferring, indi-
cating that multi-granularity knowledge distillation is vital for TIMT improve-
ments. Furthermore, MTKD based TIMT model outperforms pipeline models
with a smaller model size and less decoding time, which has the advantages of
both end-to-end and pipeline models. In the future, we will explore to transfer
more knowledge into end-to-end TIMT model to further improve the translation
performance.
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