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Coaching the Exploration and Exploitation in
Active Learning for Interactive Video Retrieval
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Abstract— Conventional active learning approaches for inter-
active video/image retrieval usually assume the query distribution
is unknown, as it is difficult to estimate with only a limited
number of labeled instances available. Thus, it is easy to put
the system in a dilemma whether to explore the feature space in
uncertain areas for a better understanding of the query distrib-
ution or to harvest in certain areas for more relevant instances.
In this paper, we propose a novel approach called coached
active learning that makes the query distribution predictable
through training and, therefore, avoids the risk of searching on
a completely unknown space. The estimated distribution, which
provides a more global view of the feature space, can be used to
schedule not only the timing but also the step sizes of the explo-
ration and the exploitation in a principled way. The results of the
experiments on a large-scale data set from TRECVID 2005–2009
validate the efficiency and effectiveness of our approach, which
demonstrates an encouraging performance when facing domain-
shift, outperforms eight conventional active learning methods,
and shows superiority to six state-of-the-art interactive video
retrieval systems.

Index Terms— Coached active learning, interactive video
retrieval, query-distribution modeling.

I. INTRODUCTION

MOST of the video retrieval applications are imple-
mented with a single-round searching scheme, where

a user types a query (usually a short text phrase) and then
waits aside in the hope that the system is able to figure out
what she/he wants and returns the results on demand. However,
the system can seldom do so because it is often difficult
for the user to describe her/his specific need with a short
phrase. As a complementary technique to this single-round
scheme, interactive retrieval models the search as an iterative
process and allows the users to give relevance feedback so
as to help the systems “understand” their query intentions. In
each iteration, once the system returns a set of resulting items,
a user can label some of them as “relevant” or “irrelevant”.
These labeled instances are then used for further estimating
the user’s query intention, on the basis of which the system
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starts a new round of searching. As users cannot keep constant
patience with the iterative labeling, how to learn users’ query
intentions effectively is critical in designing an interactive
retrieval system, a problem called query learning [1].

Active learning [2] is a commonly adopted scheme for this
purpose, which speeds up the process by reducing the number
of instances needed to be labeled. In active learning, the search
is considered a process to train a classifier which distinguishes
relevant instances from irrelevant ones. The training is gener-
ally conducted on the labeled instances (with relevant instances
as positive examples and irrelevant ones as negative) and
repeats every time when freshly labeled instances are obtained
through the users’ labeling. To reduce the efforts of labeling,
existing approaches usually choose the instances closest to the
decision boundary to query the users, because those are the
instances the machine is most uncertain of, and the labeling of
them will potentially cause a significant change of the classifer
in the next round so as to ensure a faster convergence. This
greedy strategy is termed as uncertainty sampling [3]–[10].

Even probably being the most popularly employed, however,
uncertainty sampling has been found not of a “kindred soul”
with interactive search. The spirit of uncertainty sampling is
to reduce the efforts of labeling by avoiding querying users
with instances that the machine is most confident with, e.g.,
those farthest from the decision boundary on the positive side.
Nevertheless, in interactive search, those are exactly what
the users are looking for and delay of labeling them may
frustrate the users at early stages, resulting in abortion of the
learning. In other words, uncertainty sampling aims to achieve
a high quality classifier at the final stage and thus is not
eager to “harvest” relevant instances returned by the precursor
classifiers. In interactive search (especially at early stages),
we concentrate more on the harvest and put less attention on
the quality of the final classifier, a conflict also observed by
A. G. Hauptmann et al. [11]. The problem can be related
to an open question known as trade-off between exploitation
and exploration [12], [13], where a learner always hesitates
whether to exploit knowledge at hand for obtaining immediate
rewards or to explore the unknown area for improving future
gains. This is a dilemma encountered by any learning process
conducted on an unknown distribution, but has not been
addressed sufficiently by prior studies of active learning.

In terms of uncertainty sampling, the dilemma refers to the
fact that in each run, a leaner has to choose between the
exploitation of harvesting the instances that the machine is
confident with so as to fulfill the retrieval and the exploration
of querying the user with instances that the machine is
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Fig. 1. Interactive retrieval framework consisting of three modules: initial search, query modeling, and coached active learning.

uncertain about so as to have a better understanding of the
target space. The reason here is that the exploration of uncer-
tainty sampling relies too much on the posterior knowledge
indicated by the decision boundary, which provides only the
local information about a small portion of the space, and,
therefore, the exploitation and exploration cannot be balanced
because of the lack of the global perspective. To address this
problem, we have conducted a pilot study [14] in attempting
to utilize prior knowledge (learnt from training dataset) to
guide the active learning globally, so that the exploitation and
exploration can be well scheduled and balanced. However, due
to the expensiveness of the human experiments, the nature of
the method has not been fully revealed in [14]. Furthermore,
we notice that the prior knowledge learnt from training will
sometimes suffer cross-domain issue when the target domain
is different from that of the training.

In this paper, we extend our prior work [14] and propose
a more sophisticated approach for active learning, which
balances the exploitation and exploration, and addresses the
cross-domain issue within an unified framework. Though a
much more comprehensive study on a larger dataset, we will
demonstrate that the extension is not only able to offer further
performance improvements, but also reveals the principal fac-
tors (and their interdependence) related to interactive retrieval
on the basis of which we can improve our future design. In
the sense that the learning is jointly guided by the prior and
posterior knowledge, we name it as coached active learning
(C AL) to distinguish it from conventional approaches without
the coaching process. Compared with existing methods in
active learning, C AL offers the following advantages:

1) Predictable Query Distribution: Conventional
approaches of active learning usually assume the
query distribution is unknown, because it is difficult to
estimate with only a limited number of labeled instances.
We argue that the query distribution is predictable in
the scenario of interactive video search when enough
training examples are available. To bypass the difficulty
of estimating it on labeled instances directly, we use
a statistical test to find training examples which are
from the same distribution(s) as the labeled instances,
and utilize the distribution(s) of those examples (much
more abundant than the labeled instances) to predict
that of the query. We will show that by analyzing

the semantics carried by the training examples (found
by the statistical test), we can even obtain the users’
query intention semantically. With the estimated query
distribution, we avoid the risk of blindly searching on
a completely unknown distribution;

2) Exploitation Versus Exploration: The estimated query
distribution, together with the distribution inferred from
the decision boundary of current classifier, will be
used to evaluate the relevancy and uncertainty of the
instances, on the basis of which we can balance the
exploitation and exploration in a principled way by con-
trolling the proportion of two types of instances to query
next, namely those with high relevancy (for boosting
the exploitation) and those with high uncertainty (for
improving exploration). The proportion is determined on
the harvest history, so that we encourage exploitation to
keep the users’ patience if the number of freshly labeled
relevant instances maintains a growth momentum statis-
tically, and, otherwise, we encourage exploration to push
the decision boundary towards uncertain area so as to
increase the chance of locating more relevant instances
in a long run;

3) Domain Adaptivity: It often happens that the domain
of the testing dataset are different from that of the
training dataset, making the prior knowledge learnt from
training less applicable to the target domain. In C AL, we
narrow the domain gap by gradually mixing the predictor
distributions (learnt from the training examples) with the
distribution of the labeled relevant instances (represent-
ing knowledge from target domain) in each round. This
will keep the prior knowledge update-to-date and thus
result in a more precise model of the query distribution.

With C AL, our interactive retrieval framework is shown
in Fig. 1. It consists of three modules: initial search, query
distribution modeling, and coached active learning. We employ
a concept-based search method [15] to perform the initial
search, which returns an initial ranked list for labeling. In
query modeling, every time when the labeled set is updated
by freshly labeled instances, we find training examples which
are statistically from the same distribution(s) as the labeled
relevant instances through a statistical test, and use their dis-
tributions as predictors to estimate a query distribution. During
the coached active learning, the estimated query distribution
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together with the distribution of the current classifier outputs
will be used to coach the sampling process, which selects
unlabeled instances to organize a new ranked list to query
the user in the next round. At the end of each round, we can
integrate the distribution of the labeled instances into those of
the predictor distributions to address the cross-domain issue.

II. RELATED WORK

A. Active Learning

Active learning has been intensively studied over the last
two decades, and has been applied to solve a diverse range
of problems. In this section, we mainly review active learning
within the scenario of video/image retrieval. For more compre-
hensive surveys, the reader is referred to B. Settles et al. [16]
for active learning on general-purpose and T. S. Huang et al.
[17] on multimedia retrieval.

The term active learning in literature is popularly referred to
as pool-based active learning [18], where a classifier is trained
iteratively on a small set of labeled instances and a large pool
of unlabeled instances. In every iteration of learning, the major
task is to selectively sample instances from the unlabeled pool
to query users, so as to retrain the classifier with the updated
labeled set in the next round. The sampling strategy, which is
designed to minimize the number of instances needed to be
labeled, is thus the core of active learning and a fundamental
mark that distinguishes one existing method from others. Two
types of strategies are popularly used: uncertainty sampling
[3]–[10], and query-by-committee [18]–[20].

Uncertainty sampling is probably the most commonly
employed scheme, where the idea is to select the instances
that the learner is most uncertain of their labels. For a binary
classification problem using a probabilistic model, it can be
done by simply querying the instances whose posterior prob-
ability of being positive is nearest 0.5 [3], or more generally
(and possibly most popularly), by using entropy to measure the
uncertainty of an instance based on its posteriors probability
predicted by the current classifier(s) [4], [5]. In video/image
retrieval with active learning, the SVM classifier is widely
adopted [6]–[10], [12], with which uncertainty sampling can
be straightforwardly implemented to select the instances clos-
est to the separating hyperplane where the classifier is usually
confused and works awkwardly.

Different from uncertainty sampling in which inference is
normally obtained through a single hypothesis (boundary),
query-by-committee (QBC) organizes a committee with sev-
eral classifiers for making a decision with the “wisdom of
the crowds” [18]–[20]. Instances whose predicted labels are
most inconsistent among committee classifiers are usually
candidates to query next. Although being claimed to reduce the
classification error and variance more efficiently than a single
expert (classifier), QBC introduces computational burden in
training more classifiers. Therefore, it is seldom used in large-
scale video/image indexing and retrieval.

Additional to uncertainty sampling and QBC, there are
other sampling strategies proposed with different premises,
for example, of maximizing the expected model change
(e.g., [21]), and of reducing the expected generalization

error (e.g., [22]). The reader is referred to [16] for more
details.

B. Exploitation–Exploration Dilemma

In the scenario of multimedia retrieval, uncertainty sampling
with a SVM classifier is still the most prevalent scheme
[3]–[10]. However, as we have introduced, the current way of
using active learning for reducing labeling efforts may delay
the harvest of relevant instances, which is inconsistent with the
ultimate goal of multimedia retrieval [11], [23]. The algorithms
proposed by Mitra et al. [12] and Thomas Osugi et al. [13]
are two examples of the few works we found to address this
open question of exploitation-exploration dilemma.

The algorithm in [12] adaptively estimates a confidence
factor based on the population proportion of relevant instances
to irrelevant ones along the current decision boundary, so as to
encourage exploitation when the two groups of instances are
well balanced (an indication that the current decision boundary
is approaching the optimal position) and to encourage explo-
ration otherwise. However, the searching along the boundary in
this method is expensive on a larger-scale dataset. In [13], the
authors propose an algorithm which randomly decides whether
to exploit or explore according to a probability of exploring,
which is dynamically determined and is proportional to the
change of decision boundary in two consecutive rounds.
Nevertheless, defining an appropriate function to measure the
change is not a trivial task. Furthermore, in either [12] or [13],
without knowing the prior query distribution, the step size of
exploitation or exploration is still difficult to decide, which
may either causes an unstable learning (if the step size is too
larger) or slows down convergence (if too small).

Considering the way of incorporating prior data distribution
into active learning, our work is also related to [7] and its
successor [24]. Although these works have not been proposed
for solving the exploitation-exploration dilemma, the use of
prior knowledge for adjusting the learning has made them
exhibit “coached-like” nature, which can address the dilemma
to some extent. In [7], prior to the learning, the authors
divide the target dataset by clustering and learn the prior
distributions of the clusters in advance. The knowledge about
those prior distributions is then used to weight the uncertainty
of an unlabeled instance with reference to which cluster it
belongs to. This method is further combined with uncertainty
sampling in [24] for balancing between representativeness
(indicated by the instances’ prior distributions on clusters)
and uncertainty. However, the parameters for clustering (e.g.,
number of clusters) are difficult to be determined adaptively
in these two methods. More importantly, it is well known that
instances in the same cluster of a feature space may carry
diverse semantic information, because instances similar in low-
level feature space are not necessarily related semantically.

C. Three Principal Factors Related to Interactive Retrieval

To summarize the discussions above, there are indeed three
principal factors related to interactive video retrieval, namely,
exploitation vs. exploration, prior vs. posterior knowledge and
domain adaptation. Understanding the impacts of these factors
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can help not only to explain the advantages/disadvantages of
existing methods, but also to improve our future designs of
the sampling strategies. As shown below,
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the three factors are indeed interdependent, in the way that, 1)
as the final goal of retrieval, exploitation is usually conducted
based on our posterior understanding about a local area of
the space; 2) therefore, to avoid to be stuck locally, we need
to explore; 3) however, to be well-scheduled, the exploration
relies on the guidance of the prior (global) knowledge; 4) the
knowledge is dependent on the exploitation to keep up-to-date
through domain adaptation. In this case, we can see that the
intuition by always sampling the most relevant instances to
query next is easy to be stuck locally because only relationship
1) is considered, and that most active learning approaches
focus only on the relationship 2) and thus have an inconsistent
goal with video retrieval. The works by Mitra et al. [12] and
Thomas Osugi et al. [13] try to balance the exploitation and
exploration may have considered both relationships 1) and
2) but ignored 3) and therefore are lack of global perspective,
while the approaches [7] and [24] utilizing prior knowledge
have considered 3) but put less emphasis on 1) and 2) because
they are not designed for solving the exploitation-exploration
dilemma. Our prior work [14] has considered 1), 2) and
3) but still ignored 4), making the “collaboration” between
the prior and posterior knowledge not in a “mutual” manner
(i.e., only the prior knowledge can influence the posterior
knowledge, but not vice versa). In this paper, we consider
all these relationships within an unified and more principled
framework. We will demonstrate that, by further considering
relationship 4), not only can the prior knowledge be kept
up-to-date for more precise query modeling, but also are the
three factors concerning interactive retrieval connected into a
“virtuous circle”, which brings further performance gains.

III. MODELING QUERY DISTRIBUTION

At each round, we can obtain a set L+ consisting of
instances which are labeled as “relevant”. Since L+ is just
an incomplete sampling of the query distribution with limited
number of instances, it is difficult to infer the query distrib-
ution from L+ directly. We propose an indirect way to infer
the query distribution: first we organize training examples into
nonexclusive groups according the semantics they carry; then
we employ statistical test to find groups which are from the
same distribution as L+; finally, the distributions of those
semantic groups (which include much more abundant instances
than L+) are used to approximate that of the query. At
the end of each round, we use domain adaption to update
the distribution of each semantic group, aiming to address
the domain shift between the target and the training domains.

A. Organizing Semantic Groups

In organizing training examples into semantic groups, we
propose to maximize the semantic generalizablity of the result-
ing groups so that they can semantically cover as many queries
as possible. We use concept combination [25] to achieve this
goal. The idea is first organizing examples into elementary
groups of concepts, and then combining those groups to create
new groups covering more complicated semantics. Given one
of the abundantly available concept definition and annotation
collections1 (e.g., Large-Scale Concept Ontology for Multime-
dia (LSCOM) [27]), we denote Gi the set of instances labeled
with concept i . Intersection or union operators are then used to
combine those sets into new groups (i.e., Gi∩ j and Gi∪ j ). The
combination can be done recursively among existing groups
(Gi ’s, Gi∩ j ’s and Gi∪ j ’s) to achieve more complicated ones,
as long as the number of training examples in every combined
group is larger than a fixed threshold (say 30), so that the group
is statistically meaningful.

B. Mapping Between L+ and Semantic Groups

With L+, the set including instances labeled as “relevant”,
we need to find groups that are from the same distribution
as those in L+. This is a two-sample test problem which
has a solid foundation in statistics. In our case, we employ
the widely-used two-sample Hotelling T-Square test [28],
where the hypothesis is that two samples are from the same
multivariate distribution, and the significance level is 0.01.
However, conducting Hotelling test which uses L+ to compare
with candidate semantic groups (G’s) one by one is time-
consuming, because the number of G’s can be up to a scale of
hundreds of thousands. We employ two techniques to address
this problem. First, we represent each G with three parameters
(|G|, μG , �G ), namely the number of examples, the mean
feature vector, and the covariance matrix of G respectively,
which we can learn offline. As L+ can also be represented
in a similar way, the Hotelling test is thus performed between
parameters instead of the direct comparison between instances
in L+ and examples in G, effectively avoiding the intensive
computation. Second, we reduce the number of candidate
groups to compare by pruning groups not semantically related
to the query. More specifically, at query time, we use query-
to-concept mapping [15], [29], [30] to select a set of concepts
(denoted as C) which are semantically related to the query.
In Hotelling test, we only test L+ with groups that concern
any concept in C, while the sematic groups not including
any concept in C will be pruned. For example, if car is
one of the concepts in C, we only investigate groups Gcar ,
Gcar∩road , Gcar∪bus and so on. In our experiment, this reduces
the number of candidate groups to a scale of thousands,
significantly accelerating the comparison.

C. Estimating Query Distribution

With L+ and semantic groups selected in the last section,
we use a gaussian mixture model (GMM) to estimate the

1These annotation collections are previously developed for training concept
classifiers to fulfill the task of high-level concept indexing in TRECVID [26].
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distribution of the current query Q. Instances in L+ are used
as training examples in GMM. Denoting the set of selected
groups as P (predictor set), the probability density function
(pdf ) of the Q in GMM is:

P(x|Q) =
∑

G∈P
ωG P(x|G) (1)

where x is the feature vector of any instance, P(x|G) is the
pdf of semantic group G, and ωG is the weight for P(x|G)
with the summation of all ωG equal to one. Assuming each
G is generated by a standard multivariate normal distribution,
P(x|G) can be easily estimated using the three parameters
(|G|, μG , �G ). To estimate the weights ωG , we employ
the most popular and well-established algorithm expectation-
maximization (EM). With the instances in L+ as training
examples, EM seeks an optimal set of weights ω∗

G (i.e.,
{ω∗

1, ω∗
2, . . . , ω∗

|P |}) which maximizes the GMM likelihood

{ω∗
1, ω∗

2, . . . , ω∗
|P |} = argmax

{ω1,ω2,...,ω|P|}

|L+|∏

i=1

P(xi |Q). (2)

To accelerate the convergence of EM, we assign each predictor
distribution an initial weight

ω0
i = sim(L+, Gi )∑

G∈P sim(L+, G)
(3)

where sim(.) is a function to compute similarity of two
distributions. We implement this function as

sim(L+, G) = exp
{
−1

2

(√
(μ+ − μG)′(�+)−1(μ+ − μG)

+
√

(μG − μ+)′(�G )−1(μG − μ+)
)}

.

(4)

The similarity is indeed determined by the Mahalanobis dis-
tances between the mean vectors of the two distributions,
with the intuition that the closer G’s distribution to L+’s, the
larger the contribution of P(x|G) to P(x|Q). The EM will
start from the initial ω0

i and finally converges to ω∗
G . Note

that there might be other metrics available for measuring the
distribution distance in Eq. (4) (e.g., Jensen-Shannon diver-
gence). In our experiment, however, ω∗

G basically converges
to the same optimal point even different metrics are used. This
is an indication that searching for GMM weights in Eq. (2)
is a convex optimization problem, and thus using different
metrics will not affect the performance of C AL. We employ
Eq. (4) because it is simple and can work seamless with our
parameter-based representation of semantic groups.

D. Addressing the Cross-Domain Problem in C AL

It could happen to all learning problems that, during testing,
the target domain is different from the development domain
where the models are trained. In C AL, we address this
issue by involving a domain adaptation process to update
the candidate sematic distributions (i.e., pdf for all semantic
groups) at the end of each round. The idea is to merge the
newly labeled relevant instances L+ of current round into each
candidate semantic group G and relearn the three parameters

(|G|, μG , �G ) (cf. Section III-B) of G using the mixed
examples/instances. To be computationally effective, we will
show this can also be implemented at a “parameter-level”
without recalling the training examples of each group. To
distinguish the data in different rounds, we add a subscript i
(indicating the i -th round) for these parameters. It is easy to
prove that the parameters of group G at the (i + 1)-th round
can be calculated as

|Gi+1| = |Gi | + |L+
i | (5)

μG
i+1 = μG

i |Gi | + μ+
i |L+

i |
|Gi | + |L+

i | (6)

�G
i+1 = �i + �+

i − μi+1(μ
G
i+1)

′|Gi+1|
|Gi | + |L+

i | − 1
(7)

where �i and �+
i are the inner product matrices of feature

vector matrices of G and L+ respectively. The proof can be
found at our demo page2. To be practical, we have indeed
maintained �i at each round instead of �G

i , since it can be
obtained easily through Eq. (7). At the end of each round,
we update these parameters for semantics groups that have
been selected for modeling the query distribution in the current
round. Note that, even this domain adaptation is not proposed
to solve the general problem of domain-shift, it helps to
keep the distributions of sematic groups up-to-date, on the
basis of which we can obtain a more accurate estimation of
the query distribution. More importantly, as we discussed in
Section II-B, the domain adaptation connects the balance
between the exploitation and exploration, and the collaboration
between the prior and posterior knowledge into a “virtuous
circle”, which brings further performance improvements of
C AL (as we will validate experimentally in Section VI).

IV. COACHED ACTIVE LEARNING

In this section, we jointly utilize the prior knowledge
(indicated by the estimated query distribution) and posterior
knowledge (indicated by current decision boundary) to balance
exploitation and exploration. This can be formulated as a
function ρ(x) that gives the priority of selecting an instance
to query next. That is

ρ(x) = λ H arvest (x) + (1 − λ) Ex plore(x) (8)

where H arvest (x) is a function to compute how likely the
exploitation will be boosted if selecting x to query next,
Ex plore(x) computes how likely the exploration will be
improved if selecting x to query next, and λ is a balancing
factor to control the exploitation-exploration trade-off. In our
proposed method, the use of λ is mainly for determining
the timing of exploitation and exploration, and the step size
is controlled in H arvest (x) and Ex plore(x) respectively.
We will introduce the implementations of H arvest (x) and
Ex plore(x) first, and then turn to λ.

2http://www.cs.cityu.edu.hk/∼xiaoyong/CAL/
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A. Exploitative Priority

To boost the exploitation, one will intuitively select
instances with high posterior probabilities P(Q|x) (i.e., the
most relevant instances estimated by current classifier) to
query next. However, as the current classifier is trained with
L+ (a biased sampling of relevant instances to Q), instances
with high P(Q|x) are not necessarily lying in the densest area
of query distribution. To encourage the exploitation to shift
towards the dense area where the instances have high prior
probabilities3 P(x|Q), we implement the H arvest (x) as

H arvest (x) = P(x|Q)P(Q|x). (9)

The function indeed adjusts the posterior probability of x
by further considering its prior probability. As in Fig. 2(b),
the function will put higher priority to harvest the instances
between the centers of prior and posterior distributions, instead
of those around the center of the posterior distribution. During
the iterative harvesting, the two centers will merge step by
step. The step size is indirectly controlled with respect to the
distance between the two centers.

B. Explorative Priority

By considering both prior and posterior probabilities, we
implement Ex plore(x) as

Ex plore(x) =
{
−P(x|Q) log(P(x|Q))

}

×
{
−P(Q|x) log(P(Q|x))

}
(10)

which is intuitively a summarization of two uncertainties
inferred from the entropies of prior and posterior distributions
respectively. As in Fig. 2(c), Ex plore(x) puts high priority
on exploring the instances residing in the intersection of the
uncertain areas of prior and posterior distributions. There
are three peaks for Ex plore(x). The leftmost one is the
highest peak which corresponds to the area both the prior
and posterior distributions are most uncertain of, and the area
where the left side of the optimal boundary is probably located.
The peak in the middle corresponds to the area where prior
and posterior distributions have a conflicting understanding.
Referring to Fig. 2(a), the area corresponds to the region where
the current decision boundary passes through the central area
of the prior distribution, and it is thus also worth exploring
to clarify the misunderstanding (if the centers of prior and
posterior distributions are aligned exactly, the middle peak
will disappear.) The rightmost peak corresponds to the area far
from the current decision boundary but the prior distribution
“thinks” that the right side of the optimal boundary should
be located there. Exploring this area helps to clarify the right
side of the optimal boundary. If the query distribution is well
estimated, exploring the areas under the three peaks will have
the effect of pulling the current boundary towards the optimal
one. The step size of the exploration is indirectly controlled
by the distance between the current decision boundary and the
“imagined” optimal one by prior distribution.

3Here we have slightly abused the term “prior probability” for P(x|Q) to
emphasize the probability is learnt from the prior knowledge.
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Fig. 2. Illustration of exploitative priority and explorative priority.
(a) Example of a query distribution in target space. (b) Prior and posterior
distributions and the distribution of the corresponding exploitative priority
H arvest (x). (c) Distributions of the uncertainties determined on the prior and
posterior distributions and the distribution of the corresponding explorative
priority Explore(x ). (d) Effect of using.

C. Balancing Exploitation and Exploration

To balance the exploitation-exploration trade-off adaptively,
every time when L+ is updated by freshly labeled instances,
we update λ based on the harvest history, i.e., number of
relevant instances obtained in each round. We encourage
exploitation when there are potentially more relevant instances
to label, and encourage the exploration otherwise. To dis-
tinguish the data in different rounds, we add a subscript i
(indicating the i -th round) for both L+ and λ. The λi+1,
balancing factor at the (i + 1)-th round, can be updated as

λi+1 = λi + |L+
i+1| − R̄

R̄
(11)

where |L+
i+1| is the number of relevant instances in L+

i+1, and
R̄, which we present later, is the expected number of relevant
instances to be labeled in the (i + 1)-th round. In Eq. (11),
λ increases when the previous round harvested more relevant
instances than expected, so that the learner will put more
emphasis on exploitation, otherwise, λ decreases resulting in
more emphasis on exploration. When the updating in Eq. (11)



WEI AND YANG: COACHING THE EXPLORATION AND EXPLOITATION IN ACTIVE LEARNING 961

causes λ out of the interval [0,1], we cut its value to the
corresponding boundary. The expected number of relevant
instances R̄ in the (i + 1)-th round, is computed according
to the harvest history as

R̄ =
i∑

k=1

1

2(i−k+1)
|L+

k | (12)

which is a weighted summarization of the number of instances
harvested so far. Becasue the weight 1

2(i−k+1) decreases dramat-
ically from the current round to those of the previous rounds,
the result of Eq. (12) is mainly influenced by the harvest
of several most recent iterations4. The intuition is that we
expect to harvest in the new round a little bit more than the
number of relevant instances we have harvested recently. The
effect of balancing with λ is illustrated in Fig. 2(d), where the
distribution of the priority function ρ(x) appears more similar
to that of exploitative priority H arvest (x) if λ is larger, and
more similar to that of the explorative priority Ex plore(x)
otherwise.

D. On the Use of Irrelevant Instances

So far, we have only discussed the use of labeled relevant
instances (i.e., L+) in C AL. We should notice the use of
labeled irrelevant instances (denoted as the set L− hereafter)
is also of great importance, as argued by Gosselin et al. [31].
The major concern is that the sizes of L+ and L− should be
balanced when selected for training. Since in C AL the size
of L− is often larger than that of L+, we simply address
this issue by randomly sampling irrelevant instances from L−
with the constrain that the number of negative samples is not
greater than 3 times of |L+|, avoiding the number of negative
samples in training is overwhelming to that of positive ones.
Even appearing heuristic, the constrain has been reported with
promising results in TRECVID evaluations in recent years.
Since how to make a good use of negative samples for training
is still an open question for machine learning, we leave its
practice in C AL for future investigations, because it is beyond
the topic of this paper.

V. EXPERIMENT-I: STUDY OF THE ESSENTIAL

CHARACTERISTICS OF C AL

Due to the large scale of the experiments, we divide the
study of C AL into three parts. In this section, we investigate
C AL in a real interactive retrieval environment for obtaining
the essential characteristics of C AL and the statistics about
the users’ behavior, on the basis of which, in Section VI, we
pay particular attention to the coaching process of C AL, and
finally conduct a comprehensive comparison between C AL
and the state-of-the-art in Section VII.

4The estimation of the expected harvest iteratively is a Nonstationary
Problem, to which Exponential, Recency-Weighted Average is a commonly
adopted solution. Eq. (12) is in fact a special case of this solution.
A mathematical justification can be found on our demonstration webpage2.
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Fig. 3. Performance comparison of CAL and US at increasing depths of
results, using the TRECVID 2005 test set. The MAP at each point is the
average of MAPs of 36 users. The balancing factor λ for CAL is also the
average over 24 queries and across all users.

A. Learning Candidate Semantic Distributions

With the method introduced in Section III-A, we first learn
the candidate semantic distributions using LSCOM [27], the
largest concept definition and annotation collection publicly
available. LSCOM includes 2000+ concepts, of which 449
have been labeled on the development dataset of TRECVID
2005. To be practical, when learning semantic groups using
the concept combination, we limit our interests to semantic
groups being combined with no more than 2 concepts. After
filtering out those with less than 30 training examples, we
obtain 79,514 non-exclusive semantic groups, with the three
parameters (|G|, μG , �G ) learnt for each group G. To
further fulfill the normality assumption in Section III-C, we
perform Mardia’s test [28] (at significance level 0.05) on each
distribution to check its similarity to the multivariate normal
distribution and filter out those being rejected in the test. This
finally results in 23,046 candidate distributions which will be
used at query time to estimate the query distribution. The
results can be downloaded from our demo webpage2.

B. Experimental Setting

We conduct experiments in this section using the TRECVID
2005 (TV05) test set, which is composed of 45,765 shots
of news videos from multi-lingual sources including English,
Chinese and Arabic. Twenty four search topics, together with
their ground-truth provided by TRECVID, are used in the
experiments. We only consider the text queries, imagining
that most users perform search with a short sentence. We
represent each shot with a concept vector which is composed
of the detection scores on the shot by a set of semantic
concept detectors. In our case, we use VIREO-374 [32] which
includes detectors for 374 LSCOM semantic concepts. The
dimensionality of our concept vector is thus 374. To train the
classifier for each round, we use the well-known LIBSVM
[33] with radial basis function (RBF) as kernel, gamma and
cost empirically set to 0.386 and 8 respectively, and “−b”
parameter enabled to output probability estimations (used as
posterior probabilities in the experiments).
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To compare the performance of our method to conventional
approaches of active learning, we conduct an experiment of
interactive search involving 36 searchers (volunteers aging
from 19 to 26, 8 females and 28 males, 29 undergraduates
and 7 graduates) on 3 PCs with exactly the same configuration
(Intel(R) Core(TM) i3 CPU M3502.27GHz, 2GB Memory).
Note that, to save the human power, we reuse data from 12
searchers which have been obtained in our previous work
[14], where no domain adaptation (cf. Section III-D) has been
employed in C AL. Therefore, for the rest of 24 searchers,
in this section, we temporarily remove the domain adaptation
in C AL, making the querying strategies consistent over all
searchers. The impact of with and without integrating domain
adaptation in C AL will be studied specifically in the next
section. Due to the expensiveness of the human experiment
again, we only compare our coached active learning (C AL)
with the most popularly employed uncertainty sampling (U S),
which chooses the instances closest to the SVM separating
hyperplane to query next. In this case, each searcher has
to conduct a total of 48 searches (24 TV05 queries for
each method), resulting in 1,728 searches in total. To avoid
the situation that the users might be negatively involved in
searching new queries when they were frustrated by some
“difficult” queries previously, the users are recommended to
separate the task into several times within twenty weeks with
each time at most 6 queries being taken. Queries are assigned
to a user in stochastic order and experimented at each time
with a randomly selected active learning method (i.e., the
order of using C AL or U S is also stochastic). We restrict
the interval between the searches with C AL and U S on a
same query to at least four weeks, for reducing the effect that
a user’s experience on searching the query with one method
may facilitate the searching with another.

The two sampling strategies are experimented within the
same user interface as shown at our demo webpage2, and
the interactive search is conducted with the framework we
present in Fig. 1 (to search with U S, we replace the active
learning module with uncertainty sampling). For initial search,
we employ the work in [15], a concept-based search method
which has been reported with encouraging results. All searches
are experimented using the TRECVID model of interactive
search, where a search has to be finished within 15 minutes,
but users can give up early if they feel that there is no hope to
find new relevant shots. The final result (i.e., the retrieved list)
is evaluated with average precision (AP), following TRECVID
standard. To aggregate the performance over multiple queries,
we use the mean of their APs (known as MAP).

C. Comparison With Uncertainty Sampling

Fig. 3 shows performance comparison of C AL and U S,
where the MAP at each number of examined instances is the
average MAP of 36 users. As a reference, we also plot the
change of balancing factor λ in C AL. It is easy to see that
C AL outperforms U S across the X-axis.

There are basically four stages for C AL, divided by the
points 200, 1050, and 1800, and contributing 22.26%, 44.98%,
7.14%, and 25.62% of the total MAP growth, respectively.
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Fig. 4. Performance comparison of CAL and US over 24 TRECVID 2005
queries. The MAP for each query is the average of APs of 36 users. The texts
of queries is manually modified to fit the figure.

Overall, the λ decreases gradually from left to right, indicating
the fact that, while more and more relevant instances are
harvested, C AL can adaptively shift its focus from exploitation
to exploration. This becomes more clear when looking at the
second stage (from 200 to 1050), in which, even the relevant
instances returned by the initial search are usually harvested
out at the first stage, the estimated query distributions can
successfully lead the classifiers to the dense areas, and the
abundant relevant instances there results in fruitful harvest and
stimulates the MAP growth. Accordingly, the value of λ drops
a little to encourage searching of the dense areas and remains
as high as 0.90 to harvest in these areas.

Compared with that of C AL, MAP of U S increases more
gently. The major disadvantage of U S is that, by always
encouraging exploration and ignoring harvesting, U S may
easily frustrate the users and cause an early give-up of search.
To validate if there is true, we investigate C AL and U S from
three perspectives, namely the query-dependent, classifier-
dependent, and user-dependent performance comparison.

1) Query-Dependent Comparison: The query-dependent
comparison of C AL and U S is illustrated by Fig. 4, where
the final MAPs are obtained by evaluating the top-1000 shots
in ranked lists that have been submitted after the 15-minute
search. One can easily find that the performance superiority
of C AL over U S are more apparent among those “difficult”
queries (in which both approaches exhibit moderate MAPs)
than among the rest. For example, C AL obtains performance
gains over U S on queries “G. Bush entering or leaving a
vehicle” and “Condoleeza Rice” by 1661% and 183.17%
respectively. However, those of queries “tanks or other military
vehicles” and “a ship or boat” are just by 16.85% and
15.09% respectively, even the MAPs on these two queries
are comparably high. The former two queries include named
entities. It is well known that this type of queries is too specific
to enable an initial search without text-based search modules
to collect enough instances. This is exactly what happened
in our concept-based search, which thus returns insufficient
relevant shots to satisfy the users at the beginning. In the pure
exploration-oriented U S, it becomes even worse and finally
causes the user to give up early. On the contrary, C AL, with



WEI AND YANG: COACHING THE EXPLORATION AND EXPLOITATION IN ACTIVE LEARNING 963

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 160.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of Iterations

M
ea

n 
A

ve
ra

ge
 P

re
ci

si
on

 (M
A

P
)

US Classifier
CAL Classifier
US Harvest
CAL Harvest

Fig. 5. Quality comparison of classifiers trained in C AL and U S. The harvest
rate (measured by MAP) at each iteration is plotted for reference.

TABLE I

STATISTICS ABOUT USERS’ PATIENCE ON LABELING INCLUDING: THE

NUMBER OF SHOTS EXAMINED PER QUERY (#EXAMINED SHOTS), THE

NUMBER OF IRRELEVANT SHOTS CONTINUOUSLY ENCOUNTERED

BEFORE SUBMITTING CURRENT LABELS IN EACH ROUND (#IRRELEVANT

SHOTS), AND THE AVERAGE RATE AND TIME OF USERS’ EARLY GIVE-UP

(IN MIN) BEFORE THE 15-min LIMIT

Method
#Examined Shots #Irrelevant Shots Early Give-Up

Max Avg. Min Max Avg. Min Rate Time

CAL 5381 2402 213 213 62 14 12.51% 13.23

US 4705 2013 132 132 31 13 18.63% 10.42

the help of prior knowledge on query distribution, may have
better chance to locate the dense areas and consequentially
encourage the users on labeling in the succeeding iterations.

2) Classifier-Dependent Comparison: As introduced, in
U S, the learning focuses more on the quality of the classifier
but ignores the harvest meanwhile. This is confirmed in Fig. 5,
where we measure the quality of a classifier at each round by
applying it on all the instances (no matter labeled or not) for
classification, then sorting the instances in descending order
according to their relevancy, and finally evaluate the top-1000
instances in the sorted list with AP. Each point in Fig. 5 is thus
the average AP across 24 queries. For reference, the harvest
rate at each iteration has also been evaluated by using AP on
all the labeled relevant instances so far. It is easy to see that the
harvest rate of U S at early iterations climbs slower than that of
C AL, even the quality of its classifier is improving faster. By
contrast, the classifier of C AL increases moderately at early
iterations, when it focus on harvest and its decision boundary
is stuck locally. However, the situation starts to change after
the 6-th iteration, where C AL reaches its limit on harvesting
in the dense area and moves its emphasis to exploration. The
iterations from 5 to 10 of C AL is roughly corresponding to
its stage-3 in Fig. 3.

3) User-Dependent Comparison: It is worth mentioning
that, compared with those in our previous study [14] where
only 12 searchers are involved, the AP and MAP performances
of U S in this section (with 36 searchers) generally decrease.
This is due to the fact that the proportion of undergraduate stu-

dents has increased from 66.7% to 80.5%. Since most of them
are less experienced and patient than the graduate students, it is
easier for them give up early in purely explorative strategies
like U S. The increase of undergraduate students, therefore,
finally degrades the performance of U S. By contrast, for C AL,
we have not observed significant drop on its performance,
which may further confirm C AL’s better ability to maintain
users’ patience.

D. Study of User Patience on Labeling

To further study the effects of different sampling strategies
on user patience, in Table I, we present some statistics about
the users’ patience recorded during the experiment. The sta-
tistics show that users are evidently more patient with C AL
than with U S, indicated by their willingness to examined more
shots overall and patience of waiting when irrelevant shots are
continuously appeared. The maximum numbers of irrelevant
shots continuously encountered before each submission are
collected from the query “Mahmoud Abbas”, where initial
search fails to find any irrelevant shots. In this extreme case,
the users are still able to examine 213 shots with C AL before
giving up, 81 more than with U S. Moreover, the give-up rate
of C AL is 6.12% lower than that of U S, and the users are able
to sticking on the labeling for 2.81 minutes longer in C AL
than in U S before they give up early.

It is worth mentioning that, even C AL has introduced
two additional processes for estimating query distribution and
adjusting step size of exploration, the online time cost per
round for C AL estimation is only 0.547 seconds on average.
According to our questionnaire, no searcher has noticed the
difference between the online time costs of C AL and U S
(0.113 seconds per round). In addition, despite which sampling
strategy is used, we observe that the labels provided by users
include errors by 2.04% on average for an user to label an
irrelevant instance as relevant and by 5.38% vice versa.

VI. EXPERIMENT-II: INVESTIGATION OF THE THREE

FACTORS RELATED TO THE PERFORMANCE OF CAL

In this section, we study C AL’s performances by varying
its configurations on three factors related to the coaching
process, namely exploitation vs. exploration, prior vs. poste-
rior knowledge, and domain adaptation. The aim is to investi-
gate the questions like: Is the balance between exploration and
exploitation important, or which one of them is more important
than another? What the influence of the prior and posterior
knowledge to the performance? Will a joint consideration of
both the knowledge better than utilizing them separately? Is
the domain adaptation able to boost the performance, and in
what conditions it will or will not work?

A. Experimental Setting

In the experiments, we further include shots from TRECVID
(TV) 2006-2009 test datasets, which consist of 79,484 shots
from TV06, 18,142 shots from TV07, 67,452 shots from
TV08, and 93,902 shots from TV09. This finally results in a set
of 304,745 shots from various domains (news and documen-
tary), various periods (black-and-white and colored), various
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TABLE II

PERFORMANCE COMPARISON OF CAL VARIANTS. THE BEST RESULT FOR EACH YEAR IS IN BOLD

TRECVID-
Adaptive λ Fixed λ Prior Versus Post. Adaptive λ Fixed λ Prior Versus Post.

C AL C AL0 C AL .5 C AL1 PriC AL PosC AL C AL A C AL A
0 C AL A

.5 C AL A
1 PriC AL A PosC AL A

2005 0.563 0.459 0.482 0.32 0.324 0.461 0.558 0.465 0.497 0.334 0.331 0.469

2006 0.422 0.316 0.397 0.283 0.275 0.318 0.432 0.318 0.403 0.296 0.294 0.327

2007 0.493 0.391 0.448 0.293 0.283 0.402 0.508 0.405 0.473 0.312 0.308 0.449

2008 0.331 0.208 0.266 0.169 0.164 0.213 0.352 0.215 0.291 0.170 0.182 0.225

2009 0.380 0.248 0.309 0.148 0.136 0.252 0.397 0.257 0.358 0.172 0.151 0.274

cultures (English, Chinese, Arabic and Dutch), and various
photographic styles. There are 120 queries in our experiments
(24 per year). Following the standard of TRECVID, we
use average precision (AP) on TV05 and inferred average
precision (InfAP) [34] on TV06–09 to evaluate each list.

Due to the expensiveness of human experiments, however, it
is impractical to conduct the study in such a large scale using
human searchers as in Experiment-I. To bypass the difficulty,
we use machine searchers instead. A machine searcher is an
agent program who “knows” the groundtruth and behaves in
the interactive process according to the patience parameters we
have learned in Table I. Random errors are added according
to two error probabilities (that we learnt in Section V-D) by
2.04% for a machine searcher to label an irrelevant instance
as relevant and by 5.38% vice versa. A 0.08 second delay are
empirically added for the machine searchers to “browse” each
shot, imitating the behavior of real searchers.

B. Insights Into the Coaching Process

To fully study the nature of C AL, we investigate several
variants of C AL obtained by fixing the balancing factor λ (cf.
Section IV-C), by considering the prior or posterior knowledge
separately or jointly, or by adding the domain adaptation
(cf. Section III-D). In the following text, we represent all
variants in an unified form of C AL A

λ , where the superscript
A appears if the distribution adaptation has been embedded
in the coaching (no superscript, otherwise), and the subscript
λ is a value ranging from 0 (purely explorative) to 1 (purely
exploitative) if the balancing factor is fixed (no subscript if
the λ is adaptively determined). In addition, we add prefixes
to these variations with Pri to indicate only prior knowledge
is considered (i.e, the P(Q|x) will be removed from both
Eq. (9) and Eq. (10), and with Pos to indicate only posterior
knowledge is considered (i.e, the P(x|Q) will be removed
from both Eq. (9) and Eq. (10)). No prefixes will be added if
the two knowledge are considered jointly.

The performances of these variations on TV05-09 are shown
in Table II. It is clear that C AL A and C AL can always outper-
form the six variants using fixed balance factor λ (i.e., C ALλ’s
and C AL A

λ ’s) with the improvements of M AP ranging from
6.27% to 156.76%, and also outperform the four variants
considering prior and posterior knowledge separately (i.e.,
PriC AL, PosC AL, PriC AL A and PosC AL A) with the
improvements of M AP ranging from 13.14% to 179.41%. The
superiorities have confirmed the importance of the adaptive
exploitation-exploration balancing strategy and that of the joint
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Fig. 6. Detailed performance comparison of CAL variants under different
configurations of λ’s on datasets of (a) TV05 and (b) TV07. The advantage
of employing domain adaptation becomes clearer in (b) when the problem of
domain shift is much more serious on TV07 than on TV05.

consideration of prior and posterior knowledge. Comparing
the two groups of variants with and without domain adapta-
tion, the variants with domain adaptation have demonstrated
superior performances over those of their correspondences
without the adaptation, which confirms the effectiveness of
the domain adaptation. To further investigate the influence
(and the interdependence) of the three factors (i.e., exploitation
vs. exploration, prior vs. posterior knowledge, and domain
adaptation), Fig. 6 shows a detailed performance comparison
of the variants with a more diverse range of configurations of
these factors.

1) Exploitation Versus Exploration: It is easy to observe
from Fig. 6 that, by varying the balance factor λ, basically all
variants are approaching their maxima when the exploitation-
exploration are well balanced at a certain point of λ. In
addition, except PriC ALλ and PriC AL A

λ , it is a consistent
phenomenon that these variants perform better when more
emphasis are put on the exploration (i.e., when λ is low)
than on the exploitation. This has confirmed our analysis of
exploitation-exploration interdependence in Section II-C that
it will be intuitively better to explore the unknown areas for
finding new relevant instances than to purely harvest and be
stuck locally. However, by considering the two exception runs
PriC ALλ and PriC AL A

λ , we will see that the conclusion is
dependent on the use of the prior and posterior knowledge.

2) Prior Versus Posterior Knowledge: In Fig. 6, PosC ALλ

and PosC AL A
λ have demonstrated apparently superior perfor-

mances over those of PriC ALλ and PriC AL A
λ . The reason is

that, by only considering the prior knowledge, PriC ALλ and
PriC AL A

λ can only harvest from either the dense or uncertain
area of the global distribution which seldom changes, and
thus will be stuck when the relevant instances from these two
areas are all exploited. By contrast, by only considering the
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posterior knowledge, the active learner’s understanding about
the feature space, even being local, is expanding because the
posterior knowledge will be updated after each iteration, which
thus brings better ability for PosC ALλ and PosC AL A

λ to
locate novel instances. However, without the global guidance
of the prior knowledge, the exploration is still in a blind
manner. Therefore, by jointly considering prior and posterior
knowledge, C ALλ and C AL A

λ obtain superior performances
over those variants that consider the two knowledge separately.
This has confirmed our analysis of the prior and posterior
knowledge interdependence in Section II-C. Furthermore, by
combining the analysis in Section VI-B.1, we can see that the
interdependence of prior and posterior knowledge has caused
the interdependence of the exploitation and exploration, but the
“collaborations” between the prior and posterior knowledge
are also conducted through the exploitation and exploration.

3) Addressing Cross-Domain Issue: Due to the fact that
our training dataset (TV05 development set) for learning
the semantic groups is from news domain and the testing
datasets are from both news (TV05-TV06 testing sets) and
documentary (TV07-TV09 testing sets) domains, we are able
to study the performance of C AL when facing domain shift.
As shown in Table II, the superiorities of C AL A to C AL has
increased when moving from news to documentary domain,
indicated by the observation that C AL A outperforms the
C AL by 0.74% (±2.3%) on TV05-TV06, but the superiority
rises up to 4.62% (±1.66%) on TV07-TV09. Therefore, by
further considering domain adaptation, C AL A may have better
capacity of handling the cross-domain issue. This has also
been validated in Fig. 6 by the superiorities of C AL A

λ ’s to
C ALλ’s, PriC AL A

λ ’s to PriC ALλ’s and PosC AL A
λ ’s to

PosC ALλ’s. It is interesting to see that C AL A’s does not
always outperform C AL’s on TV05. There are one such
exception in Table II and several others in Fig. 6(a) where
C AL A’s performances are just comparable to those of C AL’s.
However, all those exceptions disappear on TV07-TV09 (see
the consistent superiority of C AL A’s over C AL’s in Table II
and Fig. 6(b)), indicating that domain adaptation gives its full
play at where the domain-shift becomes serious on TV07-
TV09. The advantage of using domain adaptation has also
confirmed our analysis in Section II-C on the interdependence
of the three factors, in the way that, in the variants with domain
adaptation, posterior knowledge has obtained the chance to
affect the prior knowledge and enables the “collaborations”
between the two knowledge to be “interactive”. However, in
the variants without domain adaptation, the posterior dose not
have any impact on the prior knowledge and thus the prior
knowledge may not be up-to-date.

After the investigation of this section, we can see that the
three factors contribute to the interactive retrieval through
different paths, in the way that exploitation and exploration
manipulate the active learning directly, the prior and posterior
knowledge have to put their impacts on retrieval indirectly
by affecting the exploitation and exploration, and domain
adaptation has the longest path that updates prior and posterior
knowledge first with the hope that its impacts will be trans-
ferred to exploitation and exploration and later to retrieval.
However, our experimental results show that the three factors

do help each other so as to form the “virtuous circle” as we
discussed in Section II-C.

VII. EXPERIMENT-III: COMPARISONS WITH THE

STATE-OF-THE-ART

In this section, we conduct a more comprehensive study
of C AL’s performance from two aspects: the effectiveness
comparing with eight querying strategies which are popularly
employed in literature or closely related to the proposed
method, and the comparison to five best interactive search
systems reported in TRECVID. The experiments have been
conducted on TV05-09 with machine searchers.

A. Effectiveness of Querying Strategies

With the help of the machine searchers, we are able to
compare C AL and C AL A with a wide range of querying
strategies as follows:

1) Nearest Neighbors (N N): samples instances to query
next according to their proximities to the labeled relevant
instance set L+, the simplest and most intuitive strategy
which is purely exploitative;

2) Most Relevant (M R): samples instances according to
their posterior probabilities by current classifier, an
exploitative strategy utilizing only local information
(current decision boundary);

3) Uncertainty Sampling (U S) [3]–[10]: samples instances
closest to the current decision boundary, a purely explo-
rative strategy utilizing only local information;

4) Query by Committee (QBC) [18]–[20]: samples
instances whose predicted labels are most inconsis-
tent among committee classifiers (3 SVMs here), an
explorative strategy but utilizing more comprehensive
information than U S because of the employment of
multiple classifiers;

5) Statistical Queries SVM (Stat Q) [12]: samples
instances according to a confidence factor which indi-
cates the quality of current classification boundary, so
as to encourage the exploitation when the boundary is
approaching optimal and encourage exploration other-
wise;

6) Hybrid Learning (H ybrid) [13]: a hybrid method which
selectively chooses either an exploitative or an explo-
rative strategy to sample instances according to a “prob-
ability of exploring” which is determined by the change
of decision boundary of two consecutive rounds;

7) Pre-Clustering (PreCls) [7]: sample instances by con-
sidering both uncertainty and the prior data distribution
learnt from clustering, so as to give higher probabilities
to instances which are both uncertain to current classifier
and representative in their clusters;

8) Dual Strategy (DU AL) [24]: sample instances using
PreCls before the derivative of the expected error is
approaching zero and then combining PreCls with
conventional uncertainty-based strategy after that;

Table III shows the performances of these strategies on TV05-
09 respectively, with the results of significance test (at level
0.05) on each year attached. It is clear that C AL A and C AL
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TABLE III

PERFORMANCE COMPARISON OF DIFFERENT QUERYING STRATEGIES AND THE RESULTS OF SIGNIFICANCE TEST (AT LEVEL 0.05, AND X � Y

INDICATES THAT X IS SIGNIFICANTLY BETTER THAN Y). THE BEST RESULTS ARE IN BOLD

TRECVID-
Coached Coached-Like Exploitative Explorative

Results of Significance Test
C AL C AL A Stat Q H ybrid PreCls DU AL N N M R U S QBC

2005 0.563 0.558 0.423 0.363 0.446 0.463 0.208 0.317 0.431 0.452
C AL , C AL A � DU AL , QBC, PreCls �

U S, Stat Q � H ybrid � M R � N N

2006 0.422 0.432 0.284 0.309 0.297 0.368 0.193 0.224 0.294 0.287
C AL A � C AL � DU AL � H ybrid, PreCls, U S

� QBC, Stat Q � M R � N N

2007 0.493 0.508 0.388 0.397 0.403 0.442 0.237 0.286 0.374 0.382
C AL A � C AL � DU AL � PreCls, H ybrid �

Stat Q, QBC � U S � M R � N N

2008 0.331 0.352 0.169 0.203 0.198 0.249 0.113 0.158 0.186 0.179
C AL A � C AL � DU AL � H ybrid, PreCls �

U S, QBC � Stat Q, M R � N N

2009 0.380 0.397 0.213 0.249 0.242 0.277 0.129 0.136 0.227 0.235
C AL A � C AL � DU AL � H ybrid, PreCls �

QBC,U S, Stat Q � M R � N N

can always outperform other eight conventional strategies with
the improvements of M AP ranging from 11.54% to 211.5%.

1) Comparison With Purely Exploitative and Explorative
Strategies: The advantage of C AL over the conventional
exploitative strategies can be seen more clearly when we set
C AL to be purely explorative (i.e,. λ = 1). By referring
to Table III, even C AL1 and C AL A

1 can outperform N N
and M R by 41.86% (±15.07%) and 12.68% (±11.21%),
respectively. The reason is that, as introduced in Section IV-A,
by further utilizing the global information indicated by the
estimated query distribution, the coaching process can itera-
tively guide the leaner to the center of the estimated distrib-
ution, putting the harvest in an orderly manner (i.e., from the
places with densely located relevant instances to those with
less). By contrast, the harvest processes of N N and M R are
more “short sighted” in the way that they blindly search the
neighboring areas around the relevant instances found in the
previous rounds with the assumption that relevant instances are
continuously distributed. However, this assumption is rarely
true, because relevant instances are often mixed with irrelevant
ones. It thus takes N N and M R a great effort filtering
out the irrelevant instances before finding the true query
distribution.

In cases that C AL are purely explorative (i.e., λ = 0),
by referring to Table III, C AL0 and C AL A

0 also outperform
the conventional explorative strategies U S and QBC by
9.28% (±3.32%) and 8.49% (±6.10%), respectively. This
is again attribute to the coaching of the estimated query
distribution, which selectively sample instances at places
where the prior and posterior distributions both unsure of
or have conflicting understandings, making the exploration
well-targeted (cf. Section IV-B). However, U S and QBC ,
which sample instances only referring to local information,
are lack of global perspective and easy to be stuck at local
optimums.

2) Comparison With Coached-Like Strategies: Compared
to the four coached-like strategies, C AL A and C AL
outperform Stat Q, H ybrid , PreCls and DU AL by
59.26% (±30.33%), 48.58% (±15.88%), 45.33% (±27.43%)
and 24.98% (±16.25%), respectively. By investigating the
confidence factor of Stat Q [12], we find a dramatic fluctuation

during retrieval which makes Stat Q extremely unstable on
TRECVID dataset. The reason can date back to the basic
assumption of Stat Q that the decision boundary is approach-
ing optimal when the positive and negatives examples along
it are well balanced. It is generally true when the distribu-
tions of relevant and irrelevant instances are far apart from
each other. However, on TRECVID dataset, the majorities of
the two distributions are often mixed, which will frequently
change Stat Q’s confidence about whether the boundary is
approaching optimal. By contrast, we do not have this issue
in C AL, because the prior distribution for coaching is learnt
by excluding the influence of irrelevant instances, which will
thus lead the learner to the most dense areas of the relevant
instances, no matter how the relevant and irrelevant are mixed.

To measure the change of decision boundary, H ybrid [13]
concatenates the real-valued hypothesis (i.e., the probabilities
to be relevant in case of SVM) of all samples in the dataset
into a vector at each round and calculates the inner product
of the two vectors in two consecutive rounds. It also meets
problem on TRECVID dataset, because the population of the
irrelevant instances is extremely overwhelming compared to
the relevant ones. This results in most of the entities of the
hypothesis vector seldom change.

Benefitting from the idea of integrating prior knowledge
into active learning, PreCls [7] has demonstrated better
performance than all the conventional approaches using the
exploitative, explorative and coached-like strategies. However,
there are still several issues when PreCls is applied to
interactive video retrieval. First, the clusters in PreCls are
obtained by performing clustering on the whole dataset using
the the similarity between feature vectors as the metric. This
makes the instances in the same cluster are those visually
similar to each other, but not necessarily sharing the same
semantic meaning, on the basis of which it is thus inherently
difficult for PreCls to model the query distribution accurately.
Second, the number of clusters in PreCls is a highly sensitive
parameter. We have done a large-scale of experiments to search
the optimal number of clusters for PreCls and finally we
obtain a diverse results across TV05-09 (i.e., 507, 323, 435,
713, and 649 on TV05-09, respectively). The results reported
in Table III are using these optimal numbers. However, the
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parameter tuning is impossible to conduct in real applications
because the groudtruth is usually unavailable. Furthermore, the
authors of [7] have suggested that performing a re-clustering
after each round to update the prior knowledge can further
improve the results. However, this is impractical in our case
due to the large-scale of TRECVID dataset. It is easy to
see that in CAL we can address the first issue by using
semantic groups to model the query distribution, and address
the last issue by updating the prior knowledge with domain
adaptation.

By combining PreCls with uncertainty sampling, DU AL
[24] has obtained the best performance among the eight
conventional strategies. However, compared to PreCls, the
improvement (16.02% (±8.58%)) is not as significant as
reported in [24]. The reason is that, in our experiments,
DU AL spends a much longer period on PreCls than on
the combined strategy, making its performance mainly relying
on that of PreCls. This is simply due to the large-scale of
TRECVID dataset, on which, within the 15-minute limitation,
it is not easy for PreCls to reach to switching point where the
derivative of the expected error is approaching zero. Therefore,
the advantage of DU AL has been limited on the large-scale
interactive video retrieval.

B. Comparisons With State-of-the-art

In this section, we compare the performance of C AL
with six state-of-the-art interactive search systems including:
(1) MediaMill’05 [35], the best interactive search system
reported in TRECVID 2005; (2) Extreme Video Retrieve
(EVR) [11], the one reported with comparable performance
to MediaMill’05. For EVR, we can only compare to the MAP
of the method called manual paging with variable pagesize
(M PV P) in [11], because even there are other methods
proposed in the paper which can beat M PV P , but no exact
MAPs are reported; (3) CMU’06 [36], (4) IBM’07 [37],
(5) MediaMill’08 [38] and (6) MediaMill’09 [39] the best
interactive search systems reported in TRECVID 2006–2009,
respectively. Table IV shows the results. It is easy to see
that C AL (C AL A) outperforms the best interactive systems
by 38.67% (37.44%), 39.27% (42.57%), 36.19% (40.33%),
70.62% (81.44%), and 54.47% (61.38%) on TRECVID 2005–
2009, respectively, and outperforms M PV P by 35.99%
(37.44%). A significance test also shows that both C AL and
C AL A outperform the five best interactive search systems5

of TRECVID 2005–2009 at level 0.05. It again confirms that
both C AL and C AL A have state-of-the-art performance.

VIII. CONCLUSION

We have presented C AL for addressing the exploration-
exploitation dilemma in interactive video retrieval. By using
pre-learnt semantic groups, C AL makes the query distrib-
ution predictable, and thus avoids the risk of searching on
a completely unknown feature space. With the coaching of
the predicted query distribution and the posterior distribution

5 M PV P has not been included in this significance test, because the detailed
APs for the 24 queries of TRECVID 2005 are not reported in [11].

TABLE IV

PERFORMANCE COMPARISON ON TV 2005–2009 BETWEEN CAL AND

THE BEST INTERACTIVE SEARCH SYSTEMS (Best ). THE RESULTS ARE

EVALUATED WITH THE AVERAGE OF APS OVER TOPICS ON 2005, AND

OF InfAPs ON THE REST OF YEARS. THE BEST RESULTS ARE IN BOLD

2005 2006 2007 2008 2009

M PV P 0.414 N/A N/A N/A N/A

Best 0.406 0.303 0.362 0.194 0.246

C AL 0.563 0.422 0.493 0.331 0.38

C AL A 0.558 0.432 0.508 0.352 0.397

indicated by current decision boundary, C AL can balance
between the exploration and exploitation in a principled way
so as to keep the user’s patience on searching as well as
find their query intention effectively. The experiments on a
large-scale dataset show that the proposed approach works
satisfactorily when facing domain-shift and outperforms eight
popular querying strategies, as well as six state-of-the-art
systems. Through the study of C AL, we have identified the
three principal factors related to interactive retrieval and their
interdependence, which provides not only a higher perspective
to review the existing works along the same line, but also a
reference for improving our future design of sampling strategy.
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