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Regularized Discriminative Spectral Regression
Method for Heterogeneous Face Matching

Xiangsheng Huang, Zhen Lei, Member, IEEE, Mingyu Fan, Xiao Wang, and Stan Z. Li, Fellow, IEEE

Abstract— Face recognition is confronted with situations in
which face images are captured in various modalities, such as the
visual modality, the near infrared modality, and the sketch modal-
ity. This is known as heterogeneous face recognition. To solve this
problem, we propose a new method called discriminative spectral
regression (DSR). The DSR maps heterogeneous face images into
a common discriminative subspace in which robust classification
can be achieved. In the proposed method, the subspace learning
problem is transformed into a least squares problem. Different
mappings should map heterogeneous images from the same class
close to each other, while images from different classes should
be separated as far as possible. To realize this, we introduce two
novel regularization terms, which reflect the category relation-
ships among data, into the least squares approach. Experiments
conducted on two heterogeneous face databases validate the
superiority of the proposed method over the previous methods.

Index Terms— Discriminative regularization, face recognition,
heterogeneous data processing, spectral regression, subspace
learning.

I. INTRODUCTION

SUBSPACE learning is an important approach in face
recognition. A large number of methods, including Prin-

cipal Component Analysis (PCA) [1], Linear Discriminative
Analysis (LDA) [2], Locality Preserving Projection (LPP) [3],
Neighborhood Preserving Embedding (NPE) [4] and Marginal
Fisher Analysis (MFA) [5], have been proposed to solve this
problem. These methods have been proved effective in face
recognition [6]. However, all of these methods are designed to
apply the image data in only one modality. On the other hand,
in practical face recognition systems, the image data can be
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captured from more than one modality, including the near
infrared (NIR) modality, the visual (VIS) modality, the sketch
modality and so on. Therefore, it is necessary to solve the
heterogeneous matching problem, which enables the utilization
of all the images in various modalities for recognition. The
Coupled Spectral Regression (CSR) method for heterogeneous
face recognition has been proposed in our previous work [7].
It deals with the face images captured from two different
modalities (i.e., the NIR modality and the VIS modality).
The method maps the heterogeneous images into a common
subspace by two different projective mappings. However,
CSR does not make use of the discriminative information
among images from different classes sufficiently, and its
performance can be further improved by introducing the
category relationship into its objective function.

In this paper, we propose a new method, the Discriminative
Spectral Regression (DSR), for heterogeneous face recognition
to improve our previous work [7]. The DSR method finds the
projective mappings which map heterogeneous face images of
the same person to similar representations and map images
from different persons to significantly different representa-
tions. Specifically, compared with the previous works, the
proposed method has two advantages.

1) The proposed method provides a theoretical framework
for heterogeneous image matching problems. It can
handle data captured in multiple modalities. In com-
parison, most previous heterogeneous subspace learn-
ing methods, such as the CSR [7] method and the
Canonical Correlation Analysis (CCA) based method
[8], can work only on databases captured in two
modalities.

2) We introduce two new regularization terms that can
effectively make use of the class information in the
training set. Therefore, in the DSR method, the class
information is not only considered in the cost function
but also integrated in the two novel regularization terms.
Subsequently, the learned subspace is more discrimina-
tive than conventional CSR.

The remainder of the paper is organized as follows. In
Section II, we describe the heterogeneous face matching
problem and review related heterogeneous matching methods.
A general model for homogeneous subspace learning problem
is introduced in Section III and a general framework for
heterogeneous subspace learning is presented in Section IV.
Experimental results on VIS-NIR and photo-sketch databases
are demonstrated in Section V and in Section VI, we conclude
the paper.

1057–7149/$31.00 © 2012 IEEE
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II. RELATED WORKS

In practical face recognition systems, face images may be
captured in more than one modality. For examples, the NIR
based face recognition methods [9] have been developed to
overcome the illumination variation problem; sketch images
drawn by artists based on the recollection of an eyewitness
have been used in the retrieval of a sketch from the police mug-
shot databases. Therefore, heterogeneous face recognition is a
current topic of interest. Fig. 1 illustrates the heterogeneous
face recognition problem. For each person, multiple images
are captured through more than one modality, such as the
NIR (N) modality, the VIS (V) modality and the sketch (S)
modality. To realize robust classification, subspace learning
should find a common discriminative subspace in which
the representations of heterogeneous images from the same
person are as close as possible while the representations of
heterogeneous images from different persons are as far as
possible.

Tang and Wang [10] proposed an eigen-transform based
method for matching sketch images with photos. Let the
matrix P = [P1, P2, . . . , PN ] ∈ R

D×N be the photo
training set, and S = [S1, S2, . . . , SN ] ∈ R

D×N be the
corresponding sketch training set, where D is the dimen-
sion and N is the number of images. For a new photo
Pr , it first compute the reconstruction coefficients using
the photo training set. Subsequently, the same combination
coefficients are used to synthesize pseudo sketch image Sr

with the corresponding sketch training images. Finally, Sr is
used in the image retrieval from S. Their method has been
proved effective in reducing the difference between photo and
sketch.

The Common Discriminant Feature Extraction (CDFE)
method was proposed by Lin and Tang [11]. Assuming cq

i and
cr

i be the class labels of the query faces and the reference faces,

this method transforms query faces {(xq
i , cq

i )}Nq
i=1 and reference

faces {(xr
i , cr

i )}Nr
i=1 into a common discriminant subspace by

minimizing the following objective function,

J (Aq, Ar ) =
Nq∑

i=1

Nr∑

j=1

ui j ‖Aq xq
i − Ar xr

j ‖2 +
Nq∑

i=1

Nq∑

j=1

v
q
i j

×‖Aq xq
i − Aq xq

j ‖2+
Nr∑

i=1

Nr∑

j=1

vr
i j ‖Ar xr

i − Ar xr
j‖2

where ui j describes the intra-class compactness and inter-class
dispersion, v

q
i j and vr

i j reflect the affinity of nearby data points,
Aq is the projective mapping for query faces and Ar is the
mapping for reference faces. CDFE method is somewhat time-
consuming because of its pairwise way to compute the scatter
matrices.

The Canonical Correlation Analysis (CCA) method for
heterogeneous data is proposed by Yi et al. [8]. At the first step
of their method, the PCA or LDA method is applied to find
the low-dimensional representations X ′

n and X ′
v of the NIR

images Xn and the VIS images Xv , respectively. At the second
step, it computes the best correlational regression projections
An and Av between X ′

n and X ′
v by maximizing the following

Fig. 1. Illustration of the heterogeneous face recognition problem. Images
of different modalities [the NIR (N) modality, the VIS (V) modality, and
the sketch (S) modality] from C persons are mapped into a common
discriminative space.

correlation function

ρ(An, Av ) = AT
n Cnv Av√

AT
n Cnn An AT

v Cvv Av

where Cnv , Cnn and Cvv are the correlation matrices computed
from the representations X ′

n and X ′
v . Let xn ∈ X ′

n and xv ∈
X ′

v . At the third step, the correlation value <An xn ·Av xv>‖xn‖‖xv‖ is
calculated as the matching score. In [12], Yang et al. proposed
the regularized kernel CCA method to learn the relationship
between subspaces of VIS images and 3D depth images.

In our previous work [7], the CSR method first models the
properties of the NIR images Xn and the VIS images Xv

separately and then learns two associated projective mappings
for the heterogeneous images. Assuming An and Av are linear
projective matrices, the objective optimization of CSR method
is formulated as follows

{An, Av} = arg min
An Av

{
1

Nn
‖Yn − An Xn‖2+ 1

Nv
‖Yv − Av Xv‖2

+η‖An − Av‖2+λ(‖An‖2+‖Av‖2)
}

where Nn denotes the number of the NIR images, Nv is
the number of the VIS images, Yn and Yv are pre-computed
low-dimensional representations of Xn and Xv , respectively.
Experiments on VIS-NIR face database prove that CSR
method outperforms previous methods. However, CSR method
does not consider the category relationship during the regres-
sion from the image data to the low-dimensional represen-
tations, so there is potential to extract the discriminative
information more sufficiently.
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III. SPECTRAL REGRESSION FOR HOMOGENEOUS

SUBSPACE LEARNING

In this section, we will consider the case when the data
are captured through a single modality, such as by NIR or by
VIS. Up to now, almost all the works on subspace learning
have been studied for this case.

Without loss of generality, we assume that there are N data
points in the training set, then X can be written in the matrix
form X = [x1, . . . , xN ]. Suppose that Y = [y1, y2, . . . , yN ] is
the low-dimensional embedding of X where yi ∈ R

d (d � D)
denotes the low-dimensional representation of xi . In the graph
embedding framework [5], the optimal embedding Y can be
obtained as

Y ∗ = arg min
tr(Y BY T )=1

∑

i, j

‖yi − y j‖2wi j

= arg min
tr(Y BY T )=1

tr(Y LY T ) (1)

where wi j measures the similarity between data points xi and
x j , W = {wi j }, L = B − W is the graph Laplacian, and B
is a diagonal matrix with Bii = ∑

j wi j . The extra constraint
tr(Y BY T ) = 1 is imposed to avoid the ill posed problem.

For the choice of W in LDA, assuming the t-th class has nt

data points and
∑C

t=1 nt = N , the similarities between data
points are defined as

wi j =
{

1/nt , if xi and x j both belong to the t th class;
0, otherwise.

As a block-wise diagonal matrix, it is easy to check that the
rank of W equals to C , the number of classes, and there is
only one nonzero eigenvalue equal to 1. It is straightforward to
show that the corresponding eigenvectors of LDA based graph
Laplacian are given as follows.

vt = (0, . . . , 0︸ ︷︷ ︸
∑t−1

i=1 ni

, 1, . . . , 1︸ ︷︷ ︸
nt

, 0, . . . , 0︸ ︷︷ ︸∑c
i=t+1 ni

)T , t = 1, . . . , C.

Subsequently, we can get the C − 1 useful orthogonal eigen-
vectors {ṽt , t = 1, . . . , C − 1} by implementing the Gram-
Schmidt orthogonalization algorithm on {vt , t = 1, . . . , C}. As
is shown in [13], the C − 1 orthogonal eigenvectors are suffi-
cient to represent a C class problem. So the low-dimensional
representations are obtained as Y ∗ = [ṽ1, . . . , ṽC−1]T , where
Y ∗ ∈ R

(C−1)×N . In our methods, we first compute Y ∗ using
the LDA based graph Laplacian method and then let Y =
[y1, y2, . . . , yN ] = Y ∗ be the low-dimensional representation
of data for regression.

The graph Laplacian method can only provide the low-
dimensional representations for the training data. The mapping
f from the observation space to the discriminative space is
implicit. However, the mapping from xi to yi is essential to
classify the newly introduced data. To address this problem,
one need to find the mapping function f : R

D → R
C−1, where

the relationship holds:

yi = f (xi), i = 1, . . . , N. (2)

Here the mapping function f can be linear or nonlinear. In
real applications, the equality in (2) may not hold exactly.

To deal with this, we just require that f (xi ) and yi be as close
as possible in the least squares sense, which is presented as

f ∗ = arg min
f

N∑

i=1

‖yi − f (xi )‖2. (3)

However, using the least squares approach in Eq. (3) is not
enough for fitting a faithful mapping because that the least
squares approach may lead to the problem of over fitting and
thus has poor generalization ability.

To make the mapping f more discriminative, we modify
the objective function in Eq. (3). On one hand, we hope that
f maps data from the same class to the same area in low-
dimensional space, i.e., their low-dimensional representations
would be close to each other. Mathematically, we realize this
goal through minimizing the sum of distances after mapping
in low-dimensional subspace

λ ·
∑

xi ,x j∈s.c.
‖ f (xi ) − f (x j )‖2

where “s.c.” is the abbreviation for “same class” and λ is a
nonnegative parameter which can be learned from the training
set or just given some empiric value.

On the other hand, for the data from different classes, we
wish to separate them as far as possible in the discriminative
space. Contrary to the within-class case, we just need to maxi-
mize the distances among the low-dimensional representations.
Equivalently, we minimize

−η ·
∑

xi ,x j∈d.c.
‖ f (xi) − f (x j )‖2.

Here, “d.c.” is the abbreviation for “different class”, η is also
a nonnegative trade-off parameter.

In addition, in order to control the complexity of pro-
jective mapping, an extra normalization term ξ‖ f ‖2 needs
to be included, where ξ > 0 is a parameter. To sum up,
the discriminative spectral regression model dealing with the
homogeneous subspace learning is formulated as follows:

f ∗ = arg min
f

{
N∑

i=1

1

N
‖yi − f (xi )‖2+ λ·

∑

s.c.
‖ f (xi )− f (x j )‖2

−η ·
∑

d.c.
‖ f (xi ) − f (x j )‖2 + ξ‖ f ‖2

⎫
⎬

⎭. (4)

IV. SPECTRAL REGRESSION FOR HETEROGENEOUS

SUBSPACE LEARNING

Intuitively different data modalities should be equipped with
different projective mappings for feature extraction. Similar
idea was introduced in [7]. In this section, we will give a
new method to extract the discriminative feature for hetero-
geneous databases. This new method is designed to minimize
the distances between low-dimensional representations of the
same class and maximizes distances between low-dimensional
representations of the different classes. Compared with previ-
ous methods, it can handle data captured from more than two
modalities.
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For simplicity, we introduce some concepts and notations.
Assume that there are r kinds of data modalities. Accordingly,
there are r projective mappings from the observation spaces
to the discriminative space that we need to find. Denote them
as { f 1, f 2, . . . , f r }(r ≥ 2). In the i -th kind of modality, we
capture li data points, denoted as {xi

1, . . . , xi
li
}(li ≥ 1). Here

f i can only work on those data {xi
j }li

j=1. For each data point
xi

j ∈ R
D (i = 1, . . . , r; j = 1, . . . , li ), which is labeled, yi

j
is denoted as its pre-computed low-dimensional representation
in R

d . For W in the LDA, the vectors yi
j , (i = 1, . . . , r; j =

1, . . . , li ) are learned via graph Laplacian in the preprocessing
stage, as is described in the Section III.

To define a model which can describe the heterogeneous
subspace learning problem well, some issues need to be
considered. Firstly, since for any mapping function f i , its
motivation is to map high-dimensional data xi

j close to its
low-dimensional representation yi

j . It is natural to minimize
the distances between f i (xi

j ) and yi
j for all the training data

in the least squares sense

r∑

i=1

li∑

j=1

1

li
‖yi

j − f i (xi
j )‖2. (5)

Besides Eq. (5), it is also necessary to consider both within-
class and between-class information. From the point of geo-
metric distance, it is desirable that heterogeneous data from
the same class should be forced to be close to each other in
the discriminative space. So it is desirable that the projective
mappings minimize

∑

xi
j ,x

k
l ∈s.c.

‖ f i (xi
j ) − f k(xk

l )‖2. (6)

And also for data from different classes, it is expected
that the projective mappings can maximize the distances
among their low-dimensional representations. Therefore, it is
reasonable to minimize

−
∑

xi
j ,x

k
l ∈d.c.

‖ f i (xi
j ) − f k(xk

l )‖2. (7)

Combining the cost function in (5), the two novel reg-
ularization terms in (6)-(7), and balancing their different
contributions, and also considering the regularization on the
projective mappings themselves, we propose the general model
for solving the heterogeneous subspace learning problem as

{ f 1, . . . , f r } = arg min

⎧
⎨

⎩

r∑

i=1

li∑

j=1

1

li
‖yi

j − f i (xi
j )‖2

+λ ·
∑

s.c.
‖ f i (xi

j ) − f k(xk
l )‖2

−η ·
∑

d.c.
‖ f i (xi

j ) − f k(xk
l )‖2

+ξ

r∑

i=1

‖ f i‖2

}
. (8)

However, in the optimization problem (8), the superscripts
i, k and subscripts j, l are correlated to each other. Because of

this, it is impossible to transform Eq. (8) into a matrix
optimization which can be solved efficiently. As follows, we
will discuss several variations of the optimization problem (8).

A. Linear Heterogeneous Subspace Learning

In linear case, the projective mappings are linear transfor-
mations given by

f i (x) = Ai x

where Ai ∈ R
d×D is the projective matrix for the i -th data

modality. So the original optimization problem in Eq. (8) is
specialized to the following minimization problem

min
A

⎧
⎨

⎩

r∑

i=1

li∑

j=1

1

li
‖yi

j − Ai x i
j‖2 +λ ·

∑

s.c.
‖Ai x i

j − Ak xk
l ‖2

−η ·
∑

d.c.
‖Ai x i

j − Ak xk
l ‖2 + ξ

r∑

i=1

‖Ai‖2

⎫
⎬

⎭. (9)

To formulate above problem Eq. (9) in a simple matrix-
vector form, we just minimize or maximize (depending on
wether they are of the same class or not) the distances
between representations of the same modality instead of all
modalities. This variation brings a concise but slightly dif-
ferent optimization problem for subspace learning. By matrix
manipulation, we can check that the new optimization problem
for heterogeneous subspace learning does not compromise our
original motivation. We reformulate the data matrix X̃ in the
form

X̃ =
[

X̃1, X̃2, . . . , X̃r
]

∈ R
D·r×N

where X̃ i = [0; · · · ; 0︸ ︷︷ ︸
(i−1)D

; Xi ; 0; · · · ; 0︸ ︷︷ ︸
(r−i)D

], Xi = [xi
1, . . . , xi

li
] and

N is the number of all the training data points. Correspond-
ingly, we group the projective matrix and the representation
matrix as

A =

⎛

⎜⎜⎜⎝

A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · Ar

⎞

⎟⎟⎟⎠, Y =

⎛

⎜⎜⎜⎝

Y1 0 · · · 0
0 Y2 · · · 0
...

...
. . .

...
0 0 · · · Yr

⎞

⎟⎟⎟⎠ (10)

where Yi = (yi
1, . . . , yi

li
) and yi

j ∈ R
d is the pre-computed

representation of xi
j . The cost function of Eq. (9) can then be

reformulated as

1

N
‖Y − AX̃‖2.

In the following, we replace the regularization terms (the
summation of within or between scatters of all modalities) with
new terms (the summation of within or between scatters of
the same modality), which does not compromise our original
motivation.
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Let xi denotes the i -th sample data, we define two symmet-
ric matrices W sc, W dc ∈ R

N×N as

W sc
i j =

⎧
⎨

⎩

1, xi , x j belong to the same
class and the same modality

0, otherwise

W dc
i j =

⎧
⎨

⎩

1, xi , x j belong to different
classes and the same modality,

0, otherwise

and two Laplacian matrices Lsc = Dsc − W sc and Ldc =
Ddc − W dc, where Dsc and Ddc are diagonal matrices with
Dsc

ii = ∑
j W sc

i j and Ddc
ii = ∑

j W dc
i j .

The following two regularization terms of Eq. (9)
∑

s.c.
‖Ai x i

j − Akxk
l ‖2,

∑

d.c.

‖Ai x i
j − Ak xk

l ‖2

are replaced, although not equivalent, with
∑

i, j

‖Ax̃i − Ax̃ j‖2W sc
i j , and

∑

i, j

‖Ax̃i − Ax̃ j‖2W dc
i j

respectively, where x̃i denotes the i -th column of X̃ .
Finally, the optimization problem described in (9) can be

transformed to the matrix form as

min
A

{
1

N
‖Y − AX̃‖2 + λ ·

∑

i, j

‖Ax̃i − Ax̃ j‖2W sc
i j

−η ·
∑

i, j

‖Ax̃i − Ax̃ j‖2W dc
i j + ξ‖A‖2

}
. (11)

By algebraic manipulations, we can get the following matrix
transformations

∑

i, j

‖Ax̃i − Ax̃ j‖2W sc
i j = 2 × tr

(
AX̃ Lsc X̃ T AT

)

∑

i, j

‖Ax̃i − Ax̃ j‖2W dc
i j = 2 × tr

(
AX̃ Ldc X̃ T AT

)
.

Therefore, through imposing the derivatives of the objective
function with respect to A to zero, we obtain the solution by
solving the following problem

A
[

X̃ X̃ T + 2λN X̃ Lsc X̃ T − 2ηN X̃ Ldc X̃ T + ξ N I
]

= Y X̃ T.

(12)
The optimal projective matrix A can be computed by the
direct inversion of a Dr × Dr matrix or by using the con-
jugate gradient method which needs O(2Cs Dr N) computa-
tional time, where C is the number of classes and s is the
number of iterations of LSQR algorithm [14]. The projec-
tive mappings A1, . . . , Ar are obtained from the computed
matrix A.

B. Kernel-Based Heterogeneous Subspace Learning

A strategy to extend methods to general nonlinear case is
to take advantage of the kernel trick [15]. This technique is
to map data into high dimensional feature space to make the
problem solvable using linear methods.

Denote the mapping operator from input space to feature
space as

φ : R
D → F .

For the data subset Xi = [xi
1, . . . , xi

li
] obtained by i -th

sampling method, its corresponding mapped data in F is
denoted as

φ(Xi ) = [φ(xi
1), . . . , φ(xi

li )].
Then we perform the linear algorithm in F . Define the
projective mapping related with i -th sampling methods as V i .
Here V i can be considered as a d×Dim transformation matrix,
where Dim is the dimensionality of the feature space F . Then
the relationship can be described as

Yi = V iφ(Xi ).

The subspace learning problem in Eq. (8) becomes to the
following optimization problem

min
V 1,...,V r

⎧
⎨

⎩

r∑

i=1

li∑

j=1

1

li
‖yi

j − V iφ(xi
j )‖2

+λ ·
∑

s.c.
‖V iφ(xi

j ) − V kφ(xk
l )‖2

−η ·
∑

d.c.
‖V iφ(xi

j ) − V kφ(xk
l )‖2 + ξ

r∑

i=1

‖V i‖2

⎫
⎬

⎭.

(13)

The reproducing kernel theory [16] implies that each row
of V i is in span{φ(xi

1), . . . , φ(xi
li
)}, equivalently, there exists

a coefficient matrix Ai such that

V i = Aiφ(Xi )T

which implies that the relationship between high dimensional
data and their pre-defined low dimensional representations can
be expressed as

yi
j = Aiφ(Xi )T φ(xi

j ).

Let k(x, y) denote the inner product of feature points
φ(x) and φ(y) and K (x, Xi ) denote the vector
[k(x, xi

1), · · · , k(x, xi
li
)]T , the subspace learning problem (13)

can be rewritten as

min
A1,...,Ar

⎧
⎨

⎩

r∑

i=1

li∑

j=1

1

li
‖yi

j − Ai K (xi
j , Xi )‖2

+λ ·
∑

s.c.
‖Ai K (xi

j , Xi ) − Ak K (xk
l , Xk)‖2

−η ·
∑

d.c.

‖Ai K (xi
j , Xi ) − Ak K (xk

l , Xk)‖2 + ξ

r∑

i=1

‖Ai‖2
K

⎫
⎬

⎭.

Similar to Sec. IV-A, denoting Ki = [K (xi
1, Xi ),

K (xi
2, Xi ), K (xi

li
, Xi )], K̃i = [0; · · · ; 0︸ ︷︷ ︸

∑i−1
t=1 lt

; Ki ; 0; · · · ; 0︸ ︷︷ ︸∑r
t=i+1 lt

], and
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K̃ = [K̃1, K̃2, . . . , K̃r ], we reformulate the above objective
function as

min
A

⎧
⎨

⎩
1

N
‖Y − AK̃‖2 + λ ·

N∑

i, j=1

‖Ak̃i − Ak̃ j‖2W sc
i j

−η ·
N∑

i, j=1

‖Ak̃i − Ak̃ j‖2W dc
i j + ξ‖A‖2

K̃

⎫
⎬

⎭ (14)

where k̃i is the i -th column of K̃ ; A and Y are defined in the
same way as in Eq. (10).

Similarly, by algebraic manipulations, we can get the fol-
lowing matrix transformations

N∑

i, j=1

‖Ak̃i − Ak̃ j‖2W sc
i j = 2 × tr

(
AK̃ Lsc K̃ T AT

)

N∑

i, j=1

‖Ak̃i − Ak̃ j‖2W dc
i j = 2 × tr

(
AK̃ Ldc K̃ T AT

)
.

Therefore, to solve heterogeneous subspace learning prob-
lem (13), we can obtain A by solving

min
A

{
1

N
‖Y − AK̃‖2 + 2λ · tr

(
AK̃ Lsc K̃ T AT

)

−2η · tr
(

AK̃ Ldc K̃ T AT
)

+ ξ tr
(

AK̃ AT
)}

.

Imposing the derivative of the objective function with respect
to A in the problem above to zero, it follows that

A = Y K̃ T [K̃ K̃ T + 2λN K̃ Lsc K̃ T − 2ηN K̃ Ldc K̃ T + ξ N K̃ ]−1

Naturally, for each input data x̃ from the i -th sampling
method, it can be mapped into the low-dimensional represen-
tation by

ỹ = Ai K (x̃, Xi ).

V. EXPERIMENTAL RESULTS

The following experiments evaluate the proposed DSR
methods in comparison with several existing methods of
LDA [2], CDFE [11], PCA+CCA [8], LCSR and KCSR [7].
In classification phase, we adopt the cosine distance to
measure the dissimilarity of data points in the learned
subspace and the nearest neighbor (NN) classifier is
chosen to do the classification task, where the cosine
distance is

dcos(x, y) = − x T y√
x T xyT y

. (15)

A. Data Sets Description

To evaluate the performance of Linear DSR (LDSR) and
Kernel DSR (KDSR) algorithm, a VIS-NIR database is col-
lected [17]. There are 2095 VIS images and 3002 NIR images
from 202 persons in the database. We apply two test protocols
to evaluate different methods, where the database is split into
training set and test set randomly. In protocol I, there are
1062 VIS and 1487 NIR images from 202 persons in the
training set, and the remaining data points are left as test set.

(a) (b)

Fig. 2. (a) VIS images. (b) NIR images.

It should be noted that all persons in the test set are contained
in training set. In protocol II, the training set consists of
1438 VIS and 1972 NIR images from 168 persons while
the test set consists of 657 VIS and 1075 NIR images from
174 persons. Therefore, the persons in test set are partially
contained in the training set. All the images are scaled,
transformed and cropped to 128 × 128 size according to
automatically detected eye coordinates. Fig. 2 shows some
cropped VIS and NIR face samples from this data set.

On this database, we apply two kinds of features as input for
the compared algorithms. One is the intensity feature where
each image is resized into 32 × 32 and transformed to a 1024
dimension feature vector. The other is LBP feature, which
contains 1000 LBP feature values and is extracted to represent
each face image. Therefore, there are four combinations of
different feature types and protocols. The results are reported
in terms of the receiver operating characteristic (ROC) curve
and recognition rate.

A public available photo-sketch database [18] is also applied
to evaluate the compared algorithms. This database contains
188 pairs of photo and sketch from 188 subjects. In this
database, 88 photo-sketch pairs are applied as training data
and the rest 100 photo-sketch pairs are applied as test data.
All the images are cropped to 128 ×128 size according to the
provided eye coordinates. Fig. 3 presents some photo-sketch
pairs. We also apply two kinds of features as input for the
compared algorithms. One is the intensity feature where each
image is resized into 32 × 32 and then transformed to a 1024
dimension feature vector. The other is LBP features [19] which
are extracted from 128 × 128 face images.

B. Parameters Selection and Experimental Settings

Parameters selection is a key issue for the compared algo-
rithms. For CCA and CDFE methods, on both of the databases,
data of each modality is first processed by PCA and 98 percent
of data energy is preserved, meanwhile, the data are centralized
according to their mean vector.

For CCA, CDFE, LCSR, and KCSR method, we optimize
the parameters according to the recommended values in their
papers. In LDSR and KDSR algorithms, each input data point
is normalized to unit length. So the values of parameters are
easy to choose. We fix Cλ = C(C − 1)η/2 = 0.0001. ξ is
chosen from the set {0.0001, 0.001, 0.01, 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, 0.9} and kernel width σ is chosen from
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Fig. 3. Some photo-sketch examples from the CUHK face recognition
database.

TABLE I

PARAMETERS SELECTION OF PROPOSED ALGORITHM

Database LDSR KDSR

Protocal I intensity ξ = 0.001 ξ = 0.001, σ = 0.7

Protocal I LBP ξ = 0.1 ξ = 0.1, σ = 0.7

Protocal II intensity ξ = 0.001 ξ = 0.001, σ = 0.7

Protocal II LBP ξ = 0.5 ξ = 0.3, σ = 0.5

CUHK face intensity ξ = 0.001 ξ = 0.001, σ = 0.7

CUHK face LBP ξ = 0.001 ξ = 0.001, σ = 0.7

the set {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} by performing
cross-validation on the training data. The exact parameters
settings of LDSR, and KDSR methods are given in Table I,
where λ, η, ξ are corresponding parameters in their algo-
rithms, and σ denotes the kernel width of the Gaussian kernel
function.

C. Experimental Results

Tables II, III and IV demonstrate the recognition results
with different configurations. Table II shows the results of
the compared algorithms on image intensity and LBP features
respectively following the protocol I on VIS-NIR database,
Table III presents the corresponding results of compared algo-
rithms following the protocol II, and Table IV demonstrates
the recognition results of the compared algorithms on the
CUHK face recognition database with image intensity and
LBP features. Figs. 4 and 5 show the ROC curves of different
methods with different configurations.

From the results, we can observe.

1) In Table II, we can see that the compared algorithms
have very close performances following protocol I,
where the recognition rates are all higher than 0.95.
Although LDA method produces high recognition rates,
it has the lowest Area Under Curve (AUC) score. This
means that LDA method is unstable in finding the
discriminative mapping. In term of both the recognition
rate and the AUC score, the linear version of DSR
method has better performance than linear CSR method.
The ROC curves shown in Fig. 4(a) and (b) also support
the conclusion that the proposed methods, LDSR and

TABLE II

RECOGNITION RESULTS ON VIS-NIR DATABASE WITH PROTOCOL I

PI Image Intensity PI Image LBP

Accuracy AUC Accuracy AUC

LDA 0.9801 0.9648 0.9874 0.9861

CDFE 0.9721 0.9889 0.9973 0.9950

PCA+CCA 0.9542 0.9862 0.9761 0.9929

LCSR 0.9748 0.9919 0.9940 0.9950

KCSR 0.9734 0.9899 0.9887 0.9950

LDSR 0.9754 0.9923 0.9980 0.9947

KDSR 0.9834 0.9939 0.9973 0.9951

TABLE III

RECOGNITION RESULTS ON VIS-NIR DATABASE WITH PROTOCOL II

PII Image Intensity PII Image LBP

Accuracy AUC Accuracy AUC

LDA 0.6451 0.7639 0.7903 0.9106

CDFE 0.5487 0.7850 0.6282 0.9202

PCA+CCA 0.5109 0.8460 0.4612 0.8155

LCSR 0.7565 0.9357 0.9384 0.9925

KCSR 0.7306 0.9353 0.9523 0.9925

LDSR 0.7396 0.9177 0.9404 0.9910

KDSR 0.7704 0.9393 0.9533 0.9936

TABLE IV

RECOGNITION RESULTS BASED ON CUHK FACE

RECOGNITION DATABASE

CUHK Intensity CUHK LBP

Accuracy AUC Accuracy AUC

LDA 0.87 0.9803 0.88 0.9707

CDFE 0.75 0.9845 0.67 0.9786

PCA+CCA 0.79 0.9806 0.77 0.9829

LCSR 0.93 0.9944 0.89 0.9918

KCSR 0.83 0.9874 0.86 0.9875

LDSR 0.95 0.9971 0.90 0.9914

KDSR 0.95 0.9969 0.90 0.9903

KDSR, outperform the compared algorithms following
the protocol I.

2) As can be seen from Table III, LDA, CDFE and CCA
methods have poorer performances following the pro-
tocol II in term of both the recognition rate and AUC
socre. This is because that the training data do not con-
tain all the classes contained in the test data. Therefore,
the methods do not generalize to the untrained data
well. The table indicates that the KDSR method has
the best performances on both image intensity and LBP
features. The ROC curves in Fig. 4(c) and (d) show
that LDSR, KDSR, LCSR and KCSR have similar better
performances than LDA, CDFE and CCA methods.

3) Table IV indicates LDSR and KDSR methods have supe-
rior performance on photo-sketch matching problems.
As each data point is normalized to have unit length,
the parameters of the proposed methods do not need to
be carefully tuned. On the other hand, the parameters
for other methods have to be changed to produce the
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Fig. 4. Receiver operating characteristic (ROC) curves of different methods with four configurations on VIS-NIR database. (a) Image intensity + protocol I.
(b) LBP + protocol I. (c) Image intensity + protocol II. (d) LBP + protocol II.
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Fig. 5. Receiver operating characteristic (ROC) curves of different methods on photo-sketch database. (a) Image intensity. (b) LBP.

best results accordingly. On this database, linear methods
have better results than nonlinear methods. The proposed
methods attain 95% rank-1 recognition with the image
intensity feature and 90% rank-1 recognition rate using
LBP feature. Fig. 5 supports the conclusion that LDSR
and KDSR are effective in the photo-sketch matching
problems.

4) Feature is a key issue in heterogeneous face matching.
For VIS-NIR face matching problems, whether follow-
ing protocol I or II, the results of compared methods

with LBP feature are much better than those with image
intensity. This indicates LBP is a good feature descriptor
to represent VIS and NIR faces. However, for photo-
sketch matching problems, the results of compared
methods with image intensity feature are better than
those with LBP feature. This indicates image intensity
feature is the right choice for photo-sketch matching.

We further conduct experiments to evaluate the impact
of the training set size on the recognition accuracy.
We randomly select p percent of the data points in each
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Fig. 6. Rank-1 recognition rate of different methods using various portions of training data on photo-sketch database. (a) Image intensity. (b) LBP.

class from the training set to learn the discriminative map-
ping, where p changes from 10 to 90. The experiment is
repeated 10 times and the mean recognition accuracy with the
standard deviation is reported. Fig. 6 shows the recognition
results with different sizes of the training set on photo-sketch
database. Generally, larger training set produces better recog-
nition performance. The proposed LDSR and KDSR meth-
ods demonstrate competitive performance with other methods
consistently.

VI. CONCLUSION

In this paper, we presented a general approach to deal with
the heterogeneous face matching problem based on multiple
spectral regressions. We extended the method in [7] to the
case with multiple capturing ways. Moreover, the proposed
new algorithm considers both the within-class information and
between-class information. For the former case, we required
the lower representations within the same class be as close as
possible, while for the latter case, as far as possible. To repre-
sent those two cases, we add two regularization terms. The reg-
ularization factors can be obtained through regression. We test
the new model on some problems with multiple image sources.
The experiments results revealed that our new method can
solve those problems effectively. It is an important aspect for
us to evaluate the performance of the proposed DSR method
over data sets that contain varying poses or expressions.
However, we do not have heterogeneous face recognition data
set that contains such variations. This is left as an open
problem for the future, when more challenging data sets are
collected.
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