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a b s t r a c t

This paper proposes a novel feature extraction method based on ensemble learning. Using the error-

correcting output codes (ECOC) to design binary classifiers (dichotomizers) for separating subsets

of classes, the outputs of the dichotomizers are linear or nonlinear features that provide powerful

separability in a new space. In this space, the vector quantization based meta classifier can be viewed as

an ECOC decoder, where each learned prototype of a class can be seen as a codeword of the class in the

new representation space. We conducted extensive experiments on 16 multi-class data sets from the

UCI machine learning repository. The results demonstrate the superiority of the proposed method over

both existing ECOC approaches and classic feature extraction approaches. In particular, the decoding

strategy using a meta classifier is shown to be more computationally efficient than the linear loss-

weighted decoding in state-of-the-art ECOC methods.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Feature extraction is an essential issue in many areas of pattern
recognition and machine learning. Informative features extracted
from data can benefit the subsequent learning, analysis and
recognition. Traditional linear feature extraction methods, such as
principal components analysis (PCA) [1] and linear discriminant
analysis (LDA) [2], have been widely used for finding a linear
subspace of the data. However, they may fail to discover the
intrinsic low-dimensional structure when data lie on a nonlinear
manifold. Since the publication of two seminal manifold learning
algorithms, isometric feature mapping (Isomap) [3] and locally
linear embedding (LLE) [4], a plenty of nonlinear manifold learning
methods have been developed [5–9]. However, most of them
are unsupervised and cannot deal with the out-of-sample problem
easily [10]. Moreover, most of the existing feature extraction
methods learn new representations directly from the data, without
integrating the output information of classifiers. From our observa-
tion, probabilistic outputs of a group of classifiers are fairly effective
features to indicate to which class a sample belongs. This motivates
us to explore an ensemble feature extraction method using a set of
basic classifiers.

The learning algorithms that construct a set of classifiers and
then predict new data points based on these classifiers are generally
called as ensemble learning [11]. The notable ensemble learning
methods include bagging [12], boosting [13], error-correcting output
ll rights reserved.
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g),
codes (ECOC) [14], and stacking (stacked generalization) [15], among
others. Many works in the literature have proven the advantages of
ensemble over single classifiers, both theoretically and experimen-
tally. Meanwhile, ensemble learning methods have been success-
fully applied to many real-world problems, such as optical character
recognition (OCR) [16,17], face recognition [18], speaker recognition
[19], remote sensing [20], and multimodal interaction [21]. In this
paper, we focus on the ECOC technique, which is a framework for
combining binary classifiers (dichotomizers) to address multi-class
problems. Based on the ECOC framework, we present an ensemble
feature extraction method to learning discriminative representa-
tions of the data.

The ECOC framework generally includes two steps: the coding
step and the decoding step. The coding strategies include one-versus-
all [22], one-versus-one [23], data-driven ECOC [24], discriminant
ECOC (DECOC) [25], and ECOC-optimizing node embedding (ECO-
CONE) [26]. Among them, one-versus-all and one-versus-one are
problem-independent ECOC design methods, whilst data-driven
ECOC, DECOC and ECOCONE are problem-dependent. The commonly
used decoding strategies are Hamming decoding [22] and Euclidean
decoding [23]. Some researchers have introduced loss-based function
[27] or probabilities [28,29] in decoding. Recently, Escalera et al. [30]
proposed two novel ternary ECOC decoding strategies, b-density
decoding and loss-weighted decoding, and showed their advantages
over the state-of-the-art decoding strategies. To the best of our
knowledge, however, there has not been a published work that
attempts to integrate feature extraction into the ECOC framework.
That is, all the existing methods train dichotomizers in the data space
and combine the classifiers using decoding strategies, but not try to
explore the intrinsic geometric structure of the data belonging to
different classes. On the other hand, learning new features via the
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combination of the basic classifiers can significantly benefit the
classification accuracy. In addition, as far as we know, all the existing
ECOC methods endow only one codeword for each class. Actually,
from the perspective of vector quantization [31], if the data distribu-
tion is relatively complex, more than one codewords (or called
prototypes) can be helpful to characterize the distribution of the
class.

In this paper, we propose a novel ensemble feature extraction
method based on the ECOC framework. It takes advantage of the
discrimination ability of the dichotomizers for separating subsets
of classes designed by ECOC. Accordingly, we call it ECOC based
ensemble feature extraction (ECOC-EFE). In ECOC-EFE, the new
representation of a datum is actually the probabilistic outputs of
the combined dichotomizers, where each element indicates the
probability that the datum belongs to the corresponding positive
class. Based on the extracted features, we employ a generalized
learning vector quantization (GLVQ) classifier [32] as a meta
learner for classification in the new feature space. The learned
prototypes of a class by GLVQ can be viewed as codewords of the
class in the new space, while the classification of the meta learner
can be viewed as a decoding step, corresponding to that in the
ECOC framework. From the viewpoint of ensemble learning,
our method can be considered as a new framework for multi-
class learning problems, which includes four steps—ECOC coding,
feature extraction, recoding (or meta learning) and decoding
(or classification). In experiments on 16 data sets from the UCI
machine learning repository using linear and nonlinear binary
classifiers, the proposed method is demonstrated superior classi-
fication performance compared to state-of-the-art feature extrac-
tion and ECOC decoding methods.

In the remainder of this paper, Section 2 gives a brief review of
related works on feature extraction and ECOC based ensemble
learning; Section 3 introduces the notation used in this paper;
Section 4 describes the proposed method in detail; Section 5
presents the experimental results; Section 6 concludes this paper
with remarks.
2. Related works

Over the past few decades, many feature extraction methods
have been proposed, such as PCA [1], LDA [2], kernel PCA (KPCA)
[33] and generalized discriminant analysis (GDA) [34]. From the
nature of feature representation, these methods can be classified
into two categories: linear and nonlinear. Linear methods, such as
PCA and LDA, generally find a linear projection to map the data
into a low-dimensional subspace. In contrast, nonlinear methods,
such as KPCA, GDA and some manifold learning methods, usually
connect the original space with the feature space or low-dimen-
sional manifold via a nonlinear function. Compared to linear
methods, nonlinear feature extraction methods can be applied
to more complex data, but they mostly suffer from a common
problem that they can hardly deliver the exact mapping function
except the coordinates of the training data in the new space.
Moreover, most of the existing linear and nonlinear feature
extraction methods do not explore the class structure of the data
adequately to yield sufficiently high classification accuracy.

The ECOC framework is to combine binary classifiers (dichoto-
mizers), such as support vector machines (SVMs) [35] and Adaboost
[36], to solve multi-class classification problems. Dietterich and
Bakiri [14] presented the basic ECOC framework represented using
a coding matrix of binary symbols. Each column of the coding matrix
represents a binary partition of the whole classes in two subsets
f�1,þ1g. Alternatively, each row of the matrix is a codeword
assigned to the corresponding class. The one-versus-all [22] strategy
is a special case of the binary-symbol-based ECOC. Afterwards,
Allwein et al. [27] extended the coding strategy by introducing a
third symbol ‘0’, which allows some classes to be neglected by the
dichotomizers and leads to the increment of subgroups of classes to
be considered in the ternary ECOC framework. The one-versus-one
(pairwise) classification strategy [23] can be viewed as a special case
of the ternary ECOC framework. Most of the ECOC methods specify
the coding matrix just in the coding step, i.e., predefine it indepen-
dently of the problem, such as the above one-versus-all, one-versus-
one, and the dense and sparse random coding strategies [27].

Considering the nature of classification problem or the structure
of the data can lead to better coding matrix design. The first
problem-dependent ECOC design method was proposed by Utschick
and Weichselberger [37]. However, their experimental results
showed that for many multi-class problems, the best performance
was still given by the one-versus-all method. Crammer and Singer
[38] have reported improvement in the design of ECOC matrix, but
they proved that finding the optimal discrete codes is NP-hard with
the number of classes. The discriminant ECOC (DECOC) [25] is a
heuristic method for learning the coding matrix by exploring the
hierarchical structure of the class space. It generates a binary tree
structure for the hierarchical partition by maximizing a discrimina-
tive criterion. In addition to its superior classification performance,
DECOC leads to a very compact codeword with length C�1, where C

is the number of classes. Pujol et al. [26] proposed a new approach
that improves the initial ECOC matrix in a sub-optimal way. It
creates new dichotomizers by minimizing the confusion matrix
among classes guided by a validation subset. A length of 2C bits for
the codeword has been suggested. Recently, Escalera et al. [39]
proposed a method to redefine the ECOC matrix without re-training.
This re-coding strategy can be applied over any coding design.

However, all these ECOC coding strategies, either problem-
dependent or problem-independent, suffer from two shortages:
they do not use the combined dichotomizers to extract useful
features of the data, and they endow only one codeword for each
class. Addressing these two problems may lead to significant
improvement of classification accuracy.

We noticed that some researchers have tried meta learning for
combining binary classifiers for multi-class classification [40–42].
Savický and Fürnkranz [40], Lezoray and Cardot [41] combine
pairwise (one-versus-one) classifiers using meta classifier (C4.5)
trained with stacking. They observed more or less improved classi-
fication performance compared to the other pairwise coupling and
fusion algorithms. Shiraishi and Fukumizu [42] combine one-versus-
all or one-versus-one binary classifiers using the multinomial logistic
regression as the meta learner. These methods were tested on binary
classifiers in only one-versus-one or one-versus-all coding strategy,
and were not compared to the advanced decoding methods like the
recent loss-weighted decoding methods [30]. The results of [30] show
that the ECOCONE coding strategy mostly give the best classification
performance and the loss-weighted decoding is among the best
for combining binary classifiers. Hence, we build our ensemble
method on the ECOCONE coding strategy and compare with the
loss-weighted decoding.

On the hand of feature extraction, Rueda et al. [43] proposed a
method to extract linear subspace features from pairs of classes
and combine the two-class decisions by voting and meta learning.
This falls in the framework of ECOC but is limited in the sense that
it considers only one-versus-one encoding and linear feature
extraction.
3. Notation

We use boldface uppercase letters to denote matrices, such as
K, and boldface lowercase letters to denote vectors, such as v. The
ith row of a matrix K is denoted as Kin. Kij denotes the entry at the
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ith row and jth column of K. vi denotes the ith entry of v. KT and
vT are the transpose of K and v, respectively. trðKÞ is the trace of
matrix K.

For multi-class problems, we denote the given training data
as X ¼ fðx1,c1Þ,ðx2,c2Þ, . . . ,ðxNtrn

,cNtrn
Þg, where Ntrn is the number of

training samples, xiARD is a D-dimensional input vector, and ci is
the class label of xi. The number of classes is denoted as C, i.e.,
ciAf1, . . . ,Cg. The test data is denoted as Y ¼ fy1,y2, . . . ,yNtst

g,

where Ntst is the number of test samples. We use the matrices

X¼ ½x1,x2, . . . ,xNtrn
�T and Y¼ ½y1,y2, . . . ,yNtst

�T to denote the train-

ing data matrix and test data matrix, respectively.
For ECOC, we denote the coding matrix as M, where

MijAf�1,0,1g. The length of codewords is denoted as p, i.e.,
MAf�1,0,1gC�p.
4. ECOC based ensemble feature extraction (ECOC-EFE)

In this section, we describe the details of the proposed method
ECOC-EFE. For clarity, we present each step of ECOC-EFE—coding,
feature extraction, recoding and decoding, respectively in the
following subsections.

4.1. Coding

The coding step of ECOC-EFE is to design an ECOC matrix
specifying the dichotomizers to be combined for multi-class
classification. For completeness, we analyze the advantages and
disadvantages of some existing coding strategies and describe the
strategies used in our experiments.

The widely used coding strategies include one-versus-all [22],
one-versus-one [23], dense random [27], sparse random [27],
DECOC [25], and ECOCONE [26]. Among them, one-versus-all
and dense random are binary-symbol-based strategies, while
the others are ternary-symbol-based ones. On the other hand,
the one-versus-all, one-versus-one, dense random and sparse
random are problem-independent coding strategies, while DECOC
and ECOCONE are problem-dependent ones.

The one-versus-one strategy can be considered as the most
effective with respect to (w.r.t.) the training of the combined
dichotomizers. However, it is the one that needs to combine the
most number of dichotomizers, which is OðC2

Þ, against O(C) for one-
versus-all and DECOC. For large number of classes, the complexity of
dischotomizers training and combining is formidable. On the other
hand, the one-versus-all strategy, though combines C dichomizers
only, needs to use all the training data to learn each dichotomizer.
For some dichotomizers (such as the SVM), the training complexity
is OðN2

trnÞ or higher, where Ntrn is the number of training samples.
DECOC pursues a tree structure of the classes, and only involves all
the classes in the first column of the ECOC matrix, whose length
of codeword is fixed to C�1. Thus, DECOC can be considered as an
ideal coding strategy for its compactness. ECOCONE is a method that
extends incrementally an initial, any type of ECOC matrix. Hence,
ECOCONE can be considered as a useful design to capture the
discrimination between the subsets of the classes. Based on the
experimental results reported in [30] that dense random and sparse
random rarely outperform the four coding strategies discussed
above, we will not take them into account in our discussion and
experiments.

For our ECOC-EFE, we adopt ECOCONE as the coding strategy,
which is initialized via a DECOC configuration. Thus, the length of
the codewords in our method is generally around C, resulted from
the extension of the DECOC initialization. For more algorithmic
details of DECOC and ECOCONE, refer to [25,26]. The choice of the
coding strategy actually determines the dimensionality of the
new feature space of ECOC-EFE since the length of the codeword,
i.e., the number of combined dichotomizers, is equal to the
dimensionality of the new feature space. We use DECOC to
initialize the ECOCONE algorithm such that the dimensionality
of the resulting feature space is moderate. Due to the adaptation
of ECOCONE, the dimensionality is not necessarily limited to C�1,
i.e., the dimensionality can be intelligently learned depending
on the data structure and separability so as to maximize the
discrimination between classes.

After the ECOC matrix is specified, we can train p dichotomi-
zers independently according to the columns of the ECOC matrix,
where p is the length of the codeword, and as well, the dimen-
sionality of the new feature space.

4.2. Feature extraction

On training dichotomizers according to the ECOC matrix, the
outputs of the dichotomizers on a new input vector can be
taken as the features in a new space. In principle, all types of
binary classifiers can be used for this purpose. We nevertheless
adopt the state-of-the-art SVM [35] as the base classifier and
transform its output to probabilistic confidence using the sigmoid
function [44–46]. Using the SVM as dichotomizer enables perfor-
mance comparison with the state-of-the-art multi-class SVM
classifier and kernel feature extraction (KPCA and GDA). Trans-
forming the outputs of dichotomizers to probabilities (each value
indicates the probability that the input pattern belongs to
the corresponding positive class), as a measure of feature normal-
ization, may help improve the classification performance in
the new feature space. More specifically, we use the linear SVM
dichotomizer for linear feature extraction (ECOC-LFE) and
the SVM with radial basis function (RBF) kernel for nonlinear
feature extraction (ECOC-NLFE). The RBF kernel has been
shown to be among the best choices for nonlinear SVM for
classification.

Before introducing the details of feature extraction, we briefly
outline the linear and nonlinear SVMs. The linear SVM solves a
quadratic programming problem

min
w,b,xi

JðwÞ ¼
1

2
JwJ2

s:t: cif ðxiÞZ1�xi, xiZ0, i¼ 1, . . . ,Ntrn, ð1Þ

where ciAfþ1,�1g, w is the weight vector, xi’s are the slack
variables. The binary discriminant function is

f ðxÞ ¼wT xþb: ð2Þ

We solve this problem and obtain

w¼
XNtrn

i ¼ 1

aicixi ð3Þ

and

b¼
1

NSV

XNSV

i ¼ 1

ðwT xi�ciÞ, ð4Þ

where ai’s are the non-negative Lagrange multipliers, NSV is the
number of support vectors. The dual form of Problem (1) can be
written as

max
a

XNtrn

i ¼ 1

�
1

2

X

i,j

aiajcicjxixj ¼
XNtrn

i ¼ 1

�
1

2

X

i,j

aiajcicjkðxi,xjÞ

s:t: 0rairl, i¼ 1, . . . ,Ntrn,

XNtrn

i ¼ 1

aici ¼ 0, ð5Þ
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where kðxi,xjÞ ¼ xT
i xj is the linear kernel function, l is a constant

number and a¼ fa1, . . . ,aNtrn
gT is the vector of Lagrange

multipliers.
Replacing the linear kernel function in Problem (5) with a

nonlinear kernel function gives the formulation of the nonlinear
SVM. We use the RBF kernel

kðxi,xjÞ ¼ expð�g�1Jxi�xjJ
2
Þ, ð6Þ

where g is the parameter for the kernel function. On solving
Problem (5), we can obtain ai’s, b and the discriminant function

f ðxÞ ¼
XNSV

i ¼ 1

aicikðxi,xÞþb: ð7Þ

In our experiments, we empirically set g as half of the average
within-class variance, i.e.

g¼ 1

2Ntrn

XC

l ¼ 1

XNCl

j ¼ 1

Jxj�mlJ
2, ð8Þ

where NCl
is the number of samples in class l and ml is the mean

vector of data in class l.
To extract new features of the data, we use the trained

dichotomizers to classify each training sample xi and transform
the output discriminant function to approximate posterior prob-
ability using the sigmoid function

Zi,j ¼ sðajf jðxiÞþbjÞ ¼
1

1þexp½�ðajf jðxiÞþbjÞ�
, j¼ 1, . . . ,p: ð9Þ

The parameters faj,bjg, j¼ 1, . . . ,p, can be estimated on a valida-
tion data set using a regularized cross-entropy criterion [44].
In practice, however, we found that for SVMs, the simple choice
of ðaj ¼ 1,bj ¼ 0Þ gives fairly high performance. On testing the
training samples in the original space, Z¼ fz1, . . . ,zNtrn

gT is the
data matrix of new representation for training meta classifiers
in the p-dimensional space. More precisely, for linear feature
extraction (ECOC-LFE), we use Eqs. (2) and (9) to calculate p

confidence outputs of the linear SVMs as a new representation;
while for nonlinear feature extraction (ECOC-NLFE), we use
Eqs. (7) and (9) to calculate the new features based on the nonlinear
SVMs.

4.3. Recoding (meta learning)

Although many approaches have been developed to learn the
ECOC matrix from data, as far as we know, all the existing
ECOC methods only define one codeword for each class. As
discussed earlier, if the structure of the data is relatively complex,
one codeword for each class may not guarantee satisfactory
decoding. We address this problem by introducing a meta learn-
ing procedure.

We formulate the recoding as a learning vector quantization
(LVQ) problem. Specifically, we learn m prototypes for each class in
the new feature space of dichotomizers outputs and take the learned
prototypes as codewords of that class. We choose the generalized
learning vector quantization (GLVQ) [32] as the meta learner, which
has demonstrated superiority in nearest-prototype-based classifica-
tion. The GLVQ algorithm is outlined in the following.

Let f1 be the nearest prototype vector that belongs to the same
class of z, f2 be the nearest prototype vector that belongs to a
different class from z. The relative distance difference jðzÞ is
defined as

jðzÞ ¼ d1�d2

d1þd2
, ð10Þ
where d1 ¼ Jz�f1J
2 and d2 ¼ Jz�f2J

2 are the squared Euclidean
distance of z from f1 and f2, respectively. The GLVQ learns
the prototypes on a labeled data set by minimizing an empirical
loss

min E¼
XNtrn

i ¼ 1

sðjðziÞÞ, ð11Þ

where sð�Þ is the sigmoid function. To minimize E, f1 and f2 are
updated by stochastic gradient descent

f1’f1þ4t @s
@j

d2

ðd1þd2Þ
2
ðz�f1Þ, ð12Þ

f2’f2�4t @s
@j

d2

ðd1þd2Þ
2
ðz�f2Þ, ð13Þ

where t is the step size and @s=@j¼ sð1�sÞ is the gradient of s
w.r.t. j. To speed up learning, the modified updating rules were
suggested [32]

f1’f1þ4t @s
@j

d2

ðd1þd2Þ
ðx�f1Þ, ð14Þ

f2’f2�4t @s
@j

d2

ðd1þd2Þ
ðx�f2Þ: ð15Þ

To recode the codewords for each class, we train the GLVQ
meta classifier on the new features of the data and take the
learned prototypes of each class as new codewords. In our
experiments, we empirically set the number of prototypes for
each class as dNtrn=ð100� CÞe � 3, where dte is the most close
integer that is larger than t. We use the k-means clustering
algorithm to cluster the training samples of each class and use
the cluster centers as initial prototypes of GLVQ.

4.4. Decoding (classification)

In the decoding step, we feed all the test data into the learned
dichotomizers and obtain the p-dimensional representation of
them. The new feature vectors are then tested using the learned
meta classifier. In the case of prototype based meta classifier
learned by GLVQ, specifically, the test sample (in the new feature
space) is assigned to the class of nearest prototype. This classifi-
cation rule can be viewed as the extension of distance-based
decoding with multiple codewords.

In summary, we show the process of our ECOC-EFE framework
in Algorithm 1.

Algorithm 1. Process of ECOC-EFE.
1:
 Input:

2:
 X ¼ fðx1,c1Þ,ðx2,c2Þ, . . . ,ðxNtrn

,cNtrn
Þg; Y ¼ fy1,y2, . . . ,yNtst

g;
3:
 Output:

4:
 Decoding result;

5:
 Steps:

6:
 Coding:

7:
 (1) Learn the ECOC matrix, MAf�1,0,1gC�p;

8:
 (2) Train the dichotomizers according to M;

9:
 Feature extraction:

10:
 (1) Test each training sample using the learned

dichotomizers;

11:
 (2) Get the confidence outputs of each dichotomizer;

12:
 (3) Take the confidence values of each sample as its new

features;

13:
 Recoding:

14:
 (1) Train a GLVQ meta classifier based on the new

feature representation;

15:
 (2) Take the learned prototypes of each class as new

codewords;
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16:
1 h
Decoding:

The UCI data sets (T, training samples; A, attributes; C, classes).
17:
 (1) Test each test sample using the dichotomizers and

obtain the new feature representation;

Problem ] of T ] of A ] of C Problem ] of T ] of A ] of C
18:
 (2) Decode via the meta classifier.
Balance 625 4 3 Satimage 6435 36 7

Dermatology 366 34 6 Segmentation 2310 19 7

Ecoli 336 8 8 Shuttle 14,500 9 7

Glass 214 9 7 Thyroid 215 5 3

Iris 150 4 3 Vehicle 846 18 4

Letter 20,000 16 26 Vowel 990 10 11

Optdigits 5620 64 10 Wine 178 13 3

Pendigits 10,992 16 10 Yeast 1484 8 10
5. Experiments

To evaluate the classification performance of the proposed
ECOC-EFE (including ECOC-LFE and ECOC-NLFE), we conducted
extensive experiments on 16 multi-class data sets from the UCI
machine learning repository. We compared ECOC-EFE with classic
feature extraction methods and start-of-the-art ECOC methods.
As below, we present the used data sets, parameter settings,
statistical comparison methods, detailed results and discussions,
respectively.
5.1. Data sets

Following [30], we test the compared methods on 16 multi-
class data sets from the UCI machine learning repository. These
data sets have various numbers of classes, attributes and samples.
The details of them are summarized in Table 1. Particularly, for
data sets that include class with less than 10 samples, we perturb
the samples by adding standard Gaussian noise and append them
to that class until its sample size exceeds 10. For each data set, we
rescale all the features to be within ½�1,1�. For two data sets:
Segmentation and Optdigits, some attributes have the same value
over all the samples. In this case, we use 1=

ffiffiffiffi
D
p

to replace the
invalid scaled value, where D is the number of attributes. For each
data set, the classification results and running times are reported
based on average over stratified 10-fold cross-validation.
5.2. Parameter settings

As mentioned earlier, we use ECOCONE as the coding strategy
of ECOC-EFE, which is initialized using DECOC. Thus, the dimen-
sionality of the new feature space is around C based on the
extension of the initial configuration, where C is the number of
classes. Following [30], in the implementation of ECOC-EFE and
all the compared ECOC methods, the penalty factor for SVMs is set
as l¼ 1. The kernel width for RBF kernel is set to half of the
average within-class variance as shown in Eq. (8). We did not
attempt to optimize the parameters of SVMs, but it is fair to
compare different ECOC methods using the same parameter
setting for the dichotomizers. For the GLVQ meta learner, the
number of prototypes of each class is empirically set as
dNtrn=ð100� CÞe � 3, where dte is the most close integer that is
larger than t, and Ntrn is the number of training samples.

Besides, we use the ECOC library [47] to implement the ECOC
algorithms. The parameters for coding and decoding just follow
what the library defined. Moreover, we use the OSU-SVM tool-
box1 to train the SVMs.
5.3. Statistical comparison

To statistically compare the classification results, we conduct
the Wilcoxon signed-ranks test [48] for the comparison between
two methods, whilst the Friedman test [49] and the Nemenyi test
[50] for comparing multiple methods, as suggested by [51]. The
details of these tests can be found in [51].
ttp://www.support-vector-machines.org/SVM_soft.html.
5.4. Visualization of features

In this experiment, we show the 2D embedding learned by
ECOC-NLFE, PCA and LDA. Fig. 1 plots the results of four data sets:
Balance, Iris, Thyroid and Wine, which all have three classes. The
training and test data are randomly partitioned with ratio around
9:1. As we can see from Fig. 1, the overlapping between classes in
the 2D embeddings obtained by PCA and LDA is generally heavier
than that obtained by ECOC-NLFE. As a result, the discrimination
between classes yielded by ECOC-NLFE is much better than that
yielded by PCA and LDA. The classification results shown in
Table 6 confirm this observation.
5.5. Comparison with state-of-the-art ECOC methods

In this experiment, we compare the proposed ECOC-EFE
method with some state-of-the-art ECOC methods. The compared
coding strategies include one-versus-one (OnevsOne), one-
versus-all (OnevsAll), DECOC and ECOCONE, where ECOCONE is
initialized by the DECOC method. For all the coding strategies, we
use the linear loss-weighted (LLW) decoding method, which was
shown superior for multi-class classification [30]. For ECOC-NLFE
and the compared ECOC methods, SVMs with RBF kernel are used
as dichotomizers. Similarly, for ECOC-LFE and the correspond-
ing ECOC methods, linear SVMs are used as dichotomizers. The
classification results obtained by ECOC-NLFE and ECOC based
methods are shown in Table 2, while those obtained by ECOC-LFE
and the ECOC methods are shown in Table 3.

To evaluate the significance of the performance differences, we
conduct the Friedman and the Nemenyi test [51] with a con-
fidence value 0.05 on the results presented in Table 2. The
statistical comparison results show that ECOC-NLFE is signifi-
cantly better than the one-versus-all coding design, and at least
comparable with the other ones. We then conduct the same
statistical tests on the results presented in Table 3 and observe
the tendency as that for ECOC-NLFE. Although the mean rank of
ECOC-LFE is a little lower than the one-versus-one method, the
performance difference of them is not statistically significant. It is
noteworthy that the ECOC-EFE uses much less dischotomizers
than the one-versus-one strategy despite their comparable
performance.

Table 4 shows the average decoding time of ECOC-NLFE (not
including the recoding time) and the compared ECOC methods. It
is easy to see, for all the data sets, that ECOC-NLFE is the fastest
among the compared methods. For some data sets, such as
Dermathology and Ecoli, the decoding of ECOC-NLFE is nearly
50 times faster than that of the one-versus-one method,
and nearly 20 times faster than that of the DECOC method. For
ECOC-LFE and the compared ECOC methods, we have the same
observation that the decoding of ECOC-LFE is dramatically faster
than that of the compared ECOC methods. For simplicity, the
results are not listed here.

http://www.support-vector-machines.org/SVM_soft.html
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Fig. 1. 2D embedding learned by ECOC-NLFE, PCA and LDA on four UCI data sets: Balance, Iris, Thyroid and Wine (from top to bottom). The training data of different classes

are plotted with different symbols and colors, while the test data are shown as points in the same colors with the corresponding class of training data. (a) PCA (b) LDA

(c) ECOC-NLFE (d) PCA (e) LDA (f) ECOC-NLFE (g) PCA (h) LDA (i) ECOC-NLFE (j) PCA (k) LDA (l) ECOC-NLFE.
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From the results shown in Tables 3–5, we know that our
method, either ECOC-NLFE or ECOC-LFE, is promising for the
multi-class classification problems. Compared with the state-of-
the-art ECOC methods, it performs significantly better than or at
least comparable with them. More importantly, the decoding
speed of our method is much faster than that of the other
competitive ECOC methods.

From Tables 2 and 3, we find that the decoding results of one-
versus-all strategy on the Letter and the Vowel data set are
evidently worse than the other compared methods. This is mainly
because the linear loss-weighted (LLW) decoding strategy was
developed for the ternary coding design methods. Actually, for the
one-versus-all coding strategy, straightforward classification
without decoding (i.e., classify to the class of maximum dichot-
omizer output) performs very well. This ‘‘no decoding’’ classifica-
tion rule should be compared with the LLW decoding, for
clarifying the performance of the one-versus-all coding design.

Table 5 shows the classification results of one-versus-all with
both linear and nonlinear dichotomizers. We conduct the
Wilcoxon signed-ranks test [51] with confidence value 0.05 on
the results shown in the second column and the third column of
Table 5. The test results show that the performance difference



Table 2
Classification accuracy obtained by ECOC-NLFE and the compared ECOC methods.

The best results are highlighted in boldface (the same as below).

Data sets OnevsOne OnevsAll DECOC ECOCONE ECOC-NLFE

Balance 0.8855 0.8912 0.8855 0.8855 0.8931
Dermathology 0.9731 0.9702 0.9768 0.9702 0.9711

Ecoli 0.8647 0.8186 0.8667 0.8578 0.8127

Glass 0.6773 0.5347 0.6496 0.6280 0.6108

Iris 0.9600 0.9600 0.9533 0.9600 0.9733
Letter 0.9377 0.7991 0.8550 0.8585 0.9483
OptDigits 0.9872 0.9769 0.9849 0.9853 0.9869

Pendigits 0.9946 0.9916 0.9926 0.9923 0.9941

Satimage 0.8874 0.8714 0.8827 0.8763 0.8837

Segmentation 0.9506 0.9372 0.9281 0.9446 0.9550
Shuttle 0.9964 0.9964 0.9968 0.9963 0.9969
Thyroid 0.9579 0.9579 0.9626 0.9531 0.9742
Vehicle 0.7519 0.7491 0.7534 0.7232 0.7735
Vowel 0.7495 0.4414 0.6283 0.6404 0.7606
Wine 0.9813 0.9875 0.9875 0.9875 0.9813

Yeast 0.5956 0.5470 0.5943 0.5831 0.5545

Mean rank 2.2813 4.0938 2.8750 3.5938 2.1563

Table 3
Classification accuracy obtained by ECOC-LFE and the compared ECOC methods.

Data sets OnevsOne OnevsAll DECOC ECOCONE ECOC-LFE

Balance 0.8670 0.9020 0.8770 0.8703 0.8523

Dermathology 0.9750 0.9673 0.9779 0.9588 0.9691

Ecoli 0.8412 0.7647 0.8235 0.8186 0.8049

Glass 0.5605 0.4849 0.4921 0.4735 0.5677
Iris 0.9733 0.9733 0.9733 0.9733 0.9733
Letter 0.8491 0.3953 0.4509 0.4684 0.9204
OptDigits 0.9748 0.9414 0.8487 0.8549 0.9448

Pendigits 0.9816 0.8971 0.8013 0.8101 0.9626

Satimage 0.8553 0.7800 0.8083 0.7811 0.8569
Segmentation 0.9377 0.9121 0.8091 0.8545 0.9407
Shuttle 0.9698 0.9695 0.9189 0.9444 0.9838
Thyroid 0.9454 0.9454 0.9264 0.9073 0.9742
Vehicle 0.7779 0.7488 0.7711 0.7552 0.7836
Vowel 0.5990 0.2768 0.3697 0.3929 0.6242
Wine 0.9688 0.9658 0.9721 0.9721 0.9596

Yeast 0.5818 0.4778 0.5239 0.5578 0.5323

Mean rank 2.0313 3.7813 3.4063 3.5938 2.1875

Table 4
Comparison of decoding time among OnevsOne, OnevsAll, DECOC, ECOCONE, and

ECOC-NLFE.

Data sets OnevsOne OnevsAll DECOC ECOCONE ECOC-NLFE

Balance 0.1200 0.1877 0.1149 0.3853 0.0069
Dermathology 0.2561 0.2514 0.1168 0.1386 0.0045
Ecoli 0.2071 0.2490 0.1007 0.1390 0.0042
Glass 0.0954 0.1198 0.0588 0.0923 0.0032
Iris 0.0282 0.0376 0.0215 0.0510 0.0010
Letter 70.5732 182.5049 78.9832 80.6523 15.9956
OptDigits 8.6260 19.0988 8.8707 10.2497 0.6246
Pendigits 10.5128 19.5035 6.8941 9.8230 1.8789
Satimage 6.1888 16.3594 7.1908 18.4864 0.8366
Segmentation 1.4128 2.4341 1.0462 1.3222 0.0671
Shuttle 11.3091 14.3191 5.5555 12.3292 4.9062
Thyroid 0.0363 0.0547 0.0297 0.1036 0.0014
Vehicle 0.3529 0.5869 0.3169 1.0180 0.0280
Vowel 0.8855 1.3607 0.4672 0.5278 0.0211
Wine 0.0313 0.0470 0.0262 0.1058 0.0015
Yeast 1.3556 1.9763 0.7689 1.0972 0.0541

Table 5
Comparison of decoding methods for the one-versus-all strategy with linear and

nonlinear dichotomizers.

Data sets OnevsAll linear OnevsAll nonlinear

No decoding LLW No decoding LLW

Balance 0.8570 0.9020 0.8883 0.8912
Derma 0.9693 0.9673 0.9750 0.9702

Ecoli 0.8225 0.7647 0.8647 0.8186

Glass 0.5476 0.4849 0.6472 0.5347

Iris 0.9000 0.9733 0.9600 0.9600
Letter 0.6016 0.3953 0.9162 0.7991

OptDigits 0.9612 0.9414 0.9872 0.9769

Pendigits 0.9306 0.8971 0.9942 0.9916

Satimage 0.8151 0.7800 0.8832 0.8714

Segmentation 0.9169 0.9121 0.9481 0.9372

Shuttle 0.9063 0.9695 0.9968 0.9964

Thyroid 0.9026 0.9454 0.9579 0.9579
Vehicle 0.7351 0.7488 0.7296 0.7491
Vowel 0.4121 0.2768 0.6828 0.4414

Wine 0.9750 0.9658 0.9875 0.9875
Yeast 0.5299 0.4778 0.5986 0.5470
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between ‘‘no decoding’’ and LLW is not significant. However, we
can see that the classification results of ‘‘no decoding’’ is much
better than that of LLW on the Letter and the Vowel data set.
The statistical tests on the results in the fourth column and the
fifth column of Table 5 (nonlinear dichotomizers) show that the
performance of ‘‘no decoding’’ is significantly better than that of
LLW. Further statistical tests between the results of ‘‘no decoding’’
with nonlinear dichotomizers and those of ECOC-NLFE show that
their performance difference is not significant though the average
classification accuracy of ECOC-NLFE is higher. This is consistent
with Rifkin and Klautau’s assertion [52] that the one-versus-
all strategy combining well-tuned SVMs as base classifiers can

achieve similar classification results with other sophisticated
methods. The proposed ECOC-EFE yields higher accuracies than
the one-versus-all coding with ‘‘no decoding’’ on most of the data
sets, however.

Since the experimental results of all the compared methods
using either linear or nonlinear dichotomizers lead to similar
conclusion, we only show the results using nonlinear dichotomi-
zers in the following parts.

5.6. Comparison with classic feature extraction methods

In this experiment, we compare ECOC-NLFE with some classic
feature extraction methods, including PCA, KPCA, LDA and GDA.
For fair comparison, the dimensionality of the new feature space
is set as minfC�1,D�1g, where C is the number of classes and D is
the original dimensionality of the data. The classification results
are shown in Table 6. We conduct the Friedman and the Nemenyi
test [51] with confidence value 0.05 on the results. The statistical
tests show that ECOC-NLFE performs significantly better than
PCA, KPCA and LDA. Note that the dimensionality of learned
features by LDA and GDA is at most C�1ðif CrDÞ. However,
ECOC-NLFE does not have this limitation since its dimensionality
equals the number of dichotomizers, and has the potential
of extracting more features and yielding higher classification
performance.

5.7. Effect of the meta learner

In this experiment, we compare the classification performance
of ECOC-NLFE using different types of meta learner. We first
consider different prototype classifiers for meta learning: one
prototype per class learned by GLVQ, nearest class mean, multiple
prototypes learned by k-means clustering. For k-means clustering
and the proposed ECOC-NLFE, the number of prototypes per class
is dðNtrn=ð100� CÞÞe � 3. The classification results are shown in
Table 7, where ‘‘1-prototype’’ denotes one prototype per class
learned by GLVQ. We conduct the Wilcoxon signed-ranks test



Table 6
Comparison with classic feature extraction methods on the UCI data sets.

Data sets PCA KPCA LDA GDA ECOC-NLFE

Balance 0.4700 0.4531 0.8236 0.7707 0.8931
Dermathology 0.9188 0.9188 0.9779 0.9636 0.9711

Ecoli 0.8284 0.8294 0.8588 0.8304 0.8127

Glass 0.6012 0.5716 0.5716 0.6084 0.6108
Iris 0.9600 0.9467 0.9800 0.9800 0.9733

Letter 0.9038 0.9043 0.9349 0.9392 0.9483
OptDigits 0.9615 0.9584 0.9143 0.9893 0.9869

Pendigits 0.9753 0.9743 0.9654 0.9904 0.9941
Satimage 0.8636 0.8685 0.8589 0.8788 0.8837
Segmentation 0.9208 0.9203 0.6398 0.9511 0.9550
Shuttle 0.9866 0.9888 0.9862 0.9930 0.9969
Thyroid 0.9656 0.9626 0.9522 0.9570 0.9742
Vehicle 0.5040 0.4944 0.7827 0.8340 0.7735

Vowel 0.5717 0.5727 0.5434 0.7343 0.7606
Wine 0.9750 0.9750 0.9875 0.9658 0.9813

Yeast 0.4999 0.5244 0.5033 0.5405 0.5545
Mean rank 3.8125 3.7813 3.3750 2.3438 1.6875

Table 7
Classification results of ECOC-NLFE using different meta learners.

Data sets 1-prototype Class mean ECOC-NLFE k-means

Balance 0.8820 0.8070 0.8931 0.8617

Dermathology 0.9711 0.9711 0.9711 0.9750
Ecoli 0.8529 0.8353 0.8127 0.7892

Glass 0.6510 0.5831 0.6108 0.4984

Iris 0.9533 0.9533 0.9733 0.9600

Letter 0.8190 0.8097 0.9483 0.9448

OptDigits 0.9816 0.9801 0.9869 0.9886
Pendigits 0.9872 0.9871 0.9941 0.9934

Satimage 0.8773 0.8757 0.8837 0.8612

Segmentation 0.9442 0.9472 0.9550 0.9442

Shuttle 0.9880 0.9757 0.9969 0.9914

Thyroid 0.9665 0.9742 0.9742 0.9608

Vehicle 0.7537 0.7400 0.7735 0.7482

Vowel 0.7212 0.7313 0.7606 0.7424

Wine 0.9875 0.9875 0.9813 0.9813
Yeast 0.5987 0.5664 0.5545 0.4497

Fig. 2. Comparison of GLVQ meta learner with multiple prototypes per class and

that with only one prototype per class. Here, each data set was re-grouped into

three classes. For the letter data set, the standard deviation obtained by the GLVQ

meta learner with one prototype per class is 0.0003, which is not obvious to see.
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[51] with confidence value 0.05 to compare the results in the
second column (one prototype learned by GLVQ) and the third
column (one prototype as class mean) of Table 7 and compare
the results in the fourth column (multiple prototypes learned by
GLVQ) and the fifth column (multiple prototypes by clustering).
The statistical tests show that when using learned proto-
types, GLVQ performs significantly better than the class mean
(one prototype) or k-means clustering (multiple prototypes). This
indicates that prototype learning by GLVQ is a right choice for
meta learning in ECOC-NLFE.

However, the Wilcoxon signed-ranks test [51] with confidence
value 0.05 between the second column and the fourth column of
Table 7 shows that the GLVQ meta learner with multiple proto-
types per class and that with only one prototype per class perform
comparably on these multi-class learning problems. This is
because for most of the data sets, the data of each class are in
single mode. Consequently, GLVQ with only one prototype per
class performs fairly well for these problems. However, if the data
of each class distribute in multiple modes, GLVQ with only one
prototype per class may fail for the multi-class classification
problems. To show the performance difference between GLVQ
with multiple prototype per class and that with only one proto-
type per class, we carry out experiments on Letter, Pendigits and
Vowel, where the classes are randomly grouped to form a three-
class classification problem. Fig. 2 shows the obtained classifica-
tion results. We conduct the Wilcoxon signed-ranks test [51] with
confidence value 0.05 on the classification accuracies obtained by
10-fold cross-validation on each data set. The statistical tests
show that the GLVQ meta learner with multiple prototypes per
class performs significantly better than that with only one
prototype per class on all these three data sets. This indicates
the necessity of using the GLVQ meta learning with multiple
prototypes for each class.

Besides the GLVQ, many classifiers can also be applied as meta
learner, such as the one nearest neighbor (1-NN) classifier and
SVMs combined with one versus one strategy or one versus all
strategy. To evaluate the performance of different meta learners,
we compare ECOC-NLFE with GLVQ as meta learner against that
with one nearest neighbor meta learner (1-NN meta), that with
combined SVMs based on the one-versus-all strategy (with no
decoding as introduced in Section 5.5, SVM meta1vA), that with
combined SVMs based on the one-versus-one strategy (using
majority voting for the decoding, SVM meta1v1), 1-NN classifier
in the original space (1-NN original), and GLVQ in the original
space (GLVQ original). Both the SVMs based meta learners are
implemented using linear kernels, which perform sufficiently well
in the new feature space spanned by the dichotomizers outputs.
The classification results are shown in Table 8. We conduct the
Wilcoxon signed-ranks test [51] with confidence value 0.05 to
compare the results in the second column (1-NN meta) and third
column (1-NN original), the results in the fourth column (GLVQ
original) and the seventh column (ECOC-NLFE), the results in the
second column (1-NN meta) and the seventh column (ECOC-
NLFE), the results in the fifth column (SVM meta1vA) and the
seventh column (ECOC-NLFE), and the results in the sixth column
(SVM meta1v1) and the seventh column (ECOC-NLFE), respec-
tively. The statistical tests show that ECOC-NLFE with 1-NN meta
learner performs significantly better than the 1-NN classifier in
the original space, and meanwhile, ECOC-NLFE with GLVQ meta
learner performs significantly better than GLVQ in the original
space. The performance of ECOC-NLFE with 1-NN meta learner
and that with GLVQ meta learner are comparable, but the GLVQ
meta learner is far more efficient since it stores only a few
prototypes per class, while the 1-NN classifier needs to store all
the training samples as prototypes. Moreover, statistical tests
show that the performance of ECOC-NLFE with combination of



Table 8
Comparison of ECOC-NLFE with 1-NN meta learner, SVM meta learner and the

ones in the original space.

Data sets 1-NN

meta

1-NN

original

GLVQ

original

SVM

meta1vA

SVM

meta1v1

ECOC-NLFE

Balance 0.8988 0.6549 0.7517 0.9131 0.8976 0.8931

Dermathology 0.9702 0.9606 0.9739 0.9750 0.9750 0.9711

Ecoli 0.8186 0.8069 0.8529 0.8627 0.8608 0.8127

Glass 0.5821 0.6280 0.6031 0.6333 0.6759 0.6108

Iris 0.9533 0.9533 0.9600 0.9533 0.9600 0.9733
Letter 0.9708 0.9601 0.9039 0.9144 0.9421 0.9483

OptDigits 0.9870 0.9840 0.9779 0.9864 0.9878 0.9869

Pendigits 0.9946 0.9933 0.9789 0.9939 0.9945 0.9941

Satimage 0.8697 0.8777 0.8785 0.8815 0.8870 0.8837

Segmentation 0.9654 0.9719 0.9286 0.9481 0.9554 0.9550

Shuttle 0.9984 0.9986 0.9865 0.9970 0.9973 0.9969

Thyroid 0.9647 0.9599 0.9445 0.9674 0.9665 0.9742
Vehicle 0.7476 0.6901 0.6926 0.7635 0.7656 0.7735
Vowel 0.7646 0.7141 0.5727 0.7071 0.7424 0.7606

Wine 0.9688 0.9408 0.9563 0.9750 0.9813 0.9813
Yeast 0.5059 0.4881 0.5208 0.5974 0.6001 0.5545

Table 9
Classification accuracy obtained by variants of stacking-FE and ECOC-NLFE on the

UCI data sets.

Data sets S-OnevsOne S-OnevsAll S-DECOC S-ECOCONE ECOC-NLFE

Balance 0.9178 0.9165 0.9009 0.8883 0.8931

Derma 0.9750 0.9807 0.9682 0.9779 0.9711

Ecoli 0.8480 0.8108 0.8333 0.8206 0.8127

Glass 0.5663 0.4572 0.4490 0.5079 0.6108
Iris 0.9533 0.9600 0.9667 0.9467 0.9733
Letter 0.9423 0.9485 0.9469 0.9466 0.9483

OptDigits 0.9847 0.9881 0.9855 0.9867 0.9860

Pendigits 0.9932 0.9948 0.9932 0.9933 0.9941

Satimage 0.8774 0.8783 0.8712 0.8767 0.8837
Segmentation 0.9571 0.9558 0.9476 0.9541 0.9550

Shuttle 0.8951 0.8652 0.8920 0.8923 0.9969
Thyroid 0.9733 0.9685 0.9685 0.9647 0.9742
Vehicle 0.7565 0.7503 0.7311 0.7332 0.7735
Vowel 0.7626 0.7313 0.7313 0.7162 0.7606

Wine 0.9813 0.9750 0.9750 0.9750 0.9813
Yeast 0.5600 0.5238 0.5410 0.5277 0.5545

Mean rank 2.4375 2.8750 3.8438 3.7500 2.0938
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SVMs based meta learners and that with GLVQ meta learner are
comparable. In contrast to combination of SVMs based meta
learners, the GLVQ meta learner has better interpretation because
the learned prototypes can be seen as codewords. However, it is
hard to consider the support vectors learned by the base classi-
fiers, SVMs, as codewords. All these results indicate the effective-
ness of GLVQ as the meta learner of ECOC-NLFE.

5.8. Comparison with stacking based feature extraction

Our method trains the meta learner by ‘reusing’ the trans-
formed data from the training samples for training the dichot-
omizers. This raises a question of possible overfitting. On the
other hand, the stacking strategy, that generates training data for
meta learning by cross-validation, has been demonstrated effec-
tive in combining multiple classifiers, including multi-class clas-
sification by combining dichotomizers. We hence compare the
performance of ECOC-NLFE with stacking based feature extraction
(Stacking-FE).

For Stacking-FE, we use 10-fold cross-validation on the train-
ing data to extract new features for meta learning. To guarantee
the same length of codewords for different partitions of data by
ECOCONE, we learn the ECOC matrix using all the training data
before the cross-validation. Except the difference of meta learner
training data generation (reuse versus stacking), the settings
of dichotomizers and meta learner (GLVQ) are the same for
ECOC-NLFE and Stacking-FE. We implement Stacking-FE with
four ECOC coding strategies: one-versus-one (S-OnevsOne), one-
versus-all (S-OnevsAll), DECOC (S-DECOC) and ECOCONE (S-ECO-
CONE). The classification results are shown in Table 9.

We conduct the Friedman and the Nemenyi test [51] with
confidence value 0.05 on the results in Table 9. The statistical
test shows that ECOC-NLFE performs significantly better than
S-DECOC and S-ECOCONE, and meanwhile, it is at least compar-
able with S-OnevsOne and S-OnevsAll. This indicates that there is
no evident overfitting caused by ECOC-NLFE (reusing).

The inferior performance of Stacking-FE compared to ECOC-
NLFE can be explained as follows. First, although ECOCONE can
learn the ECOC matrix by extending an initial configuration, it
cannot be used in the cross-validation procedure of Stacking-FE,
since the learned codewords may have different lengths and
render the corresponding partitions of data having different
dimensionalities. To overcome this problem, we learn the ECOC
matrix of Stacking-FE on all the training data. This loses the
optimality of cross-validation for Stacking-FE. In contrast, ECOC-
NLFE is more flexible, which learns the new features of the data
directly from the ECOC matrix and the trained dichotomizers.
Second, when the sizes of the data in different classes are
dramatically unbalanced, such as the Shuttle data set, Stacking-
FE may fail to learn effective new features of the data. Generally
speaking, this problem can be overcome by carefully tuning the
dichotomizers, but it is a time consuming. On the contrary, the
ECOC-NLFE turns out to be less sensitive to data imbalance, as it
generates the meta learner training data directly from all the
training samples.
6. Conclusion

In this paper, we propose an ECOC based ensemble feature
extraction (ECOC-EFE) method to take advantage of the coding
matrix learning ability and discrimination ability of the dichot-
omizers. Both linear features and nonlinear features can be
extracted easily. Using the probabilistic outputs of the dichot-
omizers as new features of the data, we use a meta classifier to
perform multi-class classification. Specifically, we use the gen-
eralized learning vector quantization (GLVQ) for meta learning.
The learned prototype of a class can be viewed as a codeword
of that class. Extensive experiments on 16 data sets from the UCI
machine learning repository demonstrated the effectiveness,
efficiency, robustness and flexibility of our method. Particularly,
the ECOC-EFE performs superiorly or comparably with the state-
of-the-art ECOC methods and feature extraction methods. In the
future, we would like to exploit the fast ECOC-EFE algorithm
and its application to large-scale problems using new models of
dichotomizers [53].
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