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Abstract: Image-zooming is a technique of producing a high-resolution image from its low-resolution counterpart. It is also
called image interpolation because it is usually implemented by interpolation. Keys’ cubic convolution (CC) interpolation
method has become a standard in the image interpolation field, but CC interpolates indiscriminately the missing pixels in the
horizontal or vertical direction and typically incurs blurring, blocking, ringing or other artefacts. In this study, the authors
propose a novel edge-directed CC interpolation scheme which can adapt to the varying edge structures of images. The
authors also give an estimation method of the strong edge for a missing pixel location, which guides the interpolation for
the missing pixel. The authors’ method can preserve the sharp edges and details of images with notable suppression of the
artefacts that usually occur with CC interpolation. The experiment results demonstrate that the authors’method outperforms
significantly CC interpolation in terms of both subjective and objective measures.
1 Introduction

Image-zooming is a technique of producing a high-resolution
(HR) image from its low-resolution (LR) counterpart. It is
also called image interpolation because it is usually
implemented by interpolation. Image-zooming is often
required in many image processing applications because an
HR image can offer more details and a better view. For
example, an HR medical image may be very helpful for a
doctor to make a correct diagnosis. For image coding, an
HR image can be effectively compressed by using its LR
counterpart. Classical image-zooming methods include
nearest neighbour (NN) interpolation, bilinear (BI)
interpolation, cubic convolution (CC) interpolation [1] and
cubic spline interpolation [2, 3]. Classical methods attempt
to turn discrete data into a continuous function and then
resample it. The interpolated continuous function g in one
dimension (1D) can be written as [2]

g(x) =
∑K

k=1

ckuk(x) (1)

where ck’s are the coefficients to be determined from the input
data, uk(x)’s are the chosen basis functions or kernels and K is
the number of the given data points. The coefficients ck’s are
simply sample values for NN, BI and CC interpolations.
Equation (1) can be extended to two-dimensional (2D)
images by forming the tensor product of the basis
functions. Classical methods have a very good interpolation
effect on the smooth images. In fact, the intensity surfaces
of almost all natural images are highly irregular. They are
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only smooth along the edge directions, whereas abrupt
discontinuity might happen across edge directions. Fig. 1 is
an example of the intensity surface of ‘Lena’ image
(Fig. 6g). The intensity surfaces of the other images are
also similar. Therefore resampled images obtained by
classical methods typically incur common artefacts [4] such
as blurring, blocking and ringing and so on in the edge
regions.

Many edge-directed interpolation methods [5–11] have
been proposed in order to remedy the disadvantages of the
classical interpolation methods. They try to interpolate a
missing pixel along instead of across the edge direction. A
crucial step of those methods is to explicitly or implicitly
estimate the edge directions in an HR image from its LR
counterpart. Jensen and Anastassiou [5] propose to detect
the edges in an image using projections onto an
orthonormal basis. Li and Orchard [6] use the local
covariances of the LR image to estimate the local HR
image covariances, which implicitly match the edge
directions. This method has been extended by Muresan and
Parks [7] based on the optimal recovery principle. Zhang
and Wu [8] interpolate the missing samples in two mutually
orthogonal directions. Then the two directional estimates
are fused through linear minimum mean-square-error
(MMSE) principle. Cha and Kim [9] use bilinear
interpolation and then try to correct the errors utilising the
interpolation error theorem in an edge-adaptive way. Li and
Nguyen [10] model an image as the Markov random field,
which indicates the edge direction information by an energy
function. Recently Giachetti and Asuni [11] propose an
iterative curvature-based interpolation (ICBI), which
interpolates locally a pixel value along the direction where
627

& The Institution of Engineering and Technology 2012



www.ietdl.org
second-order image derivative is lower. Then the interpolated
value is modified using an iterative refinement minimising
differences in second-order derivatives, maximising second-
order derivative values and smoothing isolevel curves.

Another class of the edge-directed interpolation technique
is based on the wavelet analysis [12–15]. Those methods
try to apply the wavelet transform to an LR image, in order
to extract information about the edges of the LR image.
Then the detail subbands of the HR image are predicted
from those of its LR counterpart. The interpolated HR
image can be reconstructed by the inverse wavelet
transform. Chang et al. [12] and Carey et al. [13] extract
the edge information by the local maxima in the wavelet
domain. Muresan and Parks [14] improve the strategy using
the behaviour of edges across scales (i.e. cone influence) in
the wavelet domain. Zhu et al. [15] characterise edge
behaviour by a parameterised discrete time signal and
extract the edge information by linear composite MMSE.

In general, the edge-directed image interpolation methods
can improve the subjective quality of the interpolated
images at the expense of higher computational complexity.
The HR images produced using them have the sharper
edges than using classical methods. However, they are often
apt to cause artefacts in complex edges such as textures.

In this paper, we aim at 2D images and propose a new and
simple edge-directed CC interpolation scheme. Our method
can preserve both sharp edges and texture details. The
experimental results demonstrate that our method not only
significantly outperforms CC interpolation but also does
several recently published interpolation methods in terms of
both subjective and objective measures.

The remainder of this paper is organised as follows. In
Section 2, Keys’ CC interpolation is briefly introduced. In
Section 3, the details of the proposed directional CC
interpolation method are described. Section 4 discusses the
problem of the parameter choice. Section 5 is the
experimental results of the methods under comparison.
Finally, conclusion is given in Section 6.

2 CC interpolation

Keys’ CC interpolation method [1] performs better than linear
interpolation and has become a standard in the interpolation
field [16]. If f is a sampled function, then g(xk) ¼ f (xk),
k ¼ 1, 2, . . . , K. For equally spaced data and 1D signal, the
convolution-based interpolation function g can be written in
the form (1). The coefficient ck is simply a sample point
f (xk) (denoted by fk) and uk(x) can be represented as
u(x 2 xk/h) in which h denotes the sampling increment and
the xk’s are the interpolation nodes, xk ¼ kh. Without loss of

Fig. 1 Pixel intensity surface of Lena image
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generality, we will use h ¼ 1 and (1) can be simplified as

g(x) =
∑

k

fku(x − k) (2)

The CC interpolation kernel is composed of piecewise cubic
polynomials defined on the subintervals (22, 21), (21, 0),
(0, 1) and (1, 2). Outside the interval (22, 2), the
interpolation kernel is zero. The interpolation kernel u(s) is
defined as

u(s) =
(a + 2)|s|3 − (a + 3)|s|2 + 1, 0 ≤ |s| , 1
a|s|3 − 5a|s|2 + 8a|s| − 4a, 1 ≤ |s| , 2
0, 2 ≤ |s|

⎧⎨
⎩ (3)

Keys derives the optimal constant a ¼ 21/2 by forcing the
Taylor series expansion of the sampled function f to agree in
as many terms as possible with the CC interpolation function
g. For this choice of a, CC interpolation yields a third-order
approximation of the original function. For all other choices
of a, it yields only a first-order approximation, just like NN
interpolation. Keys also derives the CC kernel with fourth-
order approximation at the cost of a larger spatial support.

Using the constant a ¼ 21/2, the CC interpolation kernel
is

u(s) =
3
2|s|

3 − 5
2|s|

2 + 1, 0 ≤ |s| , 1

−1
2|s|

3 + 5
2|s|

2 − 4|s| + 2, 1 ≤ |s| , 2
0, 2 ≤ |s|

⎧⎪⎨
⎪⎩

(4)

The CC method uses four sample points for each interpolation
point. For two times interpolation, s ¼ 1/2 at every
interpolation point, the CC interpolation filter is [21, 9, 9,
21]/16. The 2D CC interpolation function is a separable
extension of the 1D interpolation function. 2D interpolation
can be accomplished by 1D interpolation with respect to
each coordinate. Readers interested in more details about
the CC interpolation are referred to [1].

3 Proposed algorithm

CC interpolates indiscriminately the missing pixels in the
same direction (horizontal or vertical) and so non-horizontal
or non-vertical edges are smoothed. Edge-directed
interpolation methods try to first detect edge directions, and
then interpolate along the detected edge directions. The
common problem is that the detected edges are usually
inaccurate, especially in the regions with complex edges
such as textures. We propose an estimation method of
the strong edge for a missing pixel location, which guides
the interpolation for the missing pixel. In order to avoid the
difficulties detecting weak edges, we propose a novel
interpolation scheme. Interpolating a missing pixel on a
strong edge applies CC interpolation along the estimated
strong edge direction, while interpolating a missing pixel on
a weak edge by fusing the two orthogonal directional CC
interpolation results.

An LR image Il can be considered to be a directly
downsampled version of the HR image Ih corresponding to
Il as shown in Fig. 2, where the downsampling factor is 2
and the grey and white dots are missing pixels while the
black dots are the pixels in the known LR image Il. That is,
the HR image Ih is restored by copying the LR image Il’s
pixels into an enlarged grid and then filling with the
IET Image Process., 2012, Vol. 6, Iss. 6, pp. 627–634
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missing pixels. We can see from Fig. 2 that, for two times
zoom, three quarters of the pixels of the HR image Ih are
missed. The missing pixels are interpolated in two passes.
The pixels marked by white squares are interpolated in the
first pass. The other missing pixels are interpolated in
the second pass which includes two cases: interpolating the
pixels marked by grey circles and interpolating the pixels
marked by white circles.

3.1 Edge detection

To interpolate the missing pixels, the first step is to detect the
edge directions. The gradients of images are usually used to
predict edge directions because the gradient values across
the edges are greater than the ones along them. For an
analogue image, the edge direction at a point is arbitrary,
but for a digital image, there are only the four potential
edge directions at a pixel in a 3 × 3 neighbourhood:
horizontal, vertical, 458 diagonal and 1358 diagonal. Thus,
here we only consider the edges of the four directions.
Furthermore, we estimate the edge direction at a pixel in a
larger neighbourhood than 3 × 3, that is, 7 × 7 or 5 × 5
neighbourhood. In the following, we estimate the direction
of location (i, j) in an HR image by computing the two
orthogonal directional gradients using the known pixels in
the neighbourhood of (i, j), and assume that the pixel
intensity value at location (x, y) is represented as I(x, y).

1. Computing the gradients in the first pass: For every pixel
to be estimated in the first pass, there are the four
immediate diagonal pixels to be known as illustrated by
Fig. 2. Thus, we estimate the strength of the edges in 458
and 1358 diagonal directions in terms of the gradients in the
two directions, respectively. According to the known pixels
in the 7 × 7 neighbourhood referring to Fig. 3, the
gradients at the central location (i, j) are computed as

G1 =
∑

m=3,+1

∑
n=3,+1

|I(i + m, j − n) − I(i + m − 2, j − n + 2)|

(458 diagonal)

Fig. 2 Formation of an LR image Il from an HR image Ih by
downsampling

Black dots represent the LR image pixels and the grey and white dots
represent the missing HR pixels. Interpolation is performed in two passes.
The first pass interpolates the missing pixels marked by white squares and
the second pass interpolates the pixels marked by grey and white circles
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G2 =
∑

m=3,+1

∑
n=3,+1

|I(i + m, j + n) − I(i + m − 2, j + n − 2)|

(1358 diagonal)

(5)

2. Computing the gradients in the second pass: The
interpolated pixels in the first pass can be considered to be
known. Interpolation in the second pass includes two cases
as illustrated by Fig. 4. Here for every pixel to be
estimated, the four immediate pixels in the horizontal and
vertical directions are known. Fig. 4a represents that two
immediate pixels in the vertical direction are the estimated
values in the first pass and that two immediate pixels in the
horizontal direction are from the known LR image.
Similarly, Fig. 4b represents that two immediate pixels in
the horizontal direction are the estimated values in the first
pass and that two immediate pixels in the vertical direction
are from the known LR image. Thus, we estimate the
strength of the edges in the horizontal and vertical
directions in terms of the gradients in the two directions.
The computational procedure of the two cases in Figs. 4a
and b is exactly identical. We only require considering
either case. Now we consider the 5 × 5 neighbourhood
around the central pixel (i, j) in Fig. 4a. With the aid of the
estimated pixels in the first pass, the gradients at the central

Fig. 3 Interpolation in the first pass

For each pixel to be estimated (i.e. the central pixel in the figure), the
gradients in the 458 and 1358 diagonal directions are computed in the
7 × 7 neighbourhood. The black circles are the known LR image pixels,
whereas the other circles (grey and white) and squares are the missing HR
image pixels

Fig. 4 Interpolation in the second pass

For each pixel to be estimated (i.e. the central pixels in the figure), the
gradients in the horizontal and vertical directions are computed in the
5 × 5 neighbourhood. The black circles are the known LR image pixels,
the black squares are the estimated pixels in the first pass and the other
circles (grey and white) are the missing HR image pixels
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location (i, j) are computed as

G1 =
∑

m=+1

∑
n=0,2

|I(i + m, j − n) − I(i + m, j − n + 2)|

+
∑

m=0,+2

|I(i + m, j − 1) − I(i + m, j + 1)| (horizontal)

G2 =
∑

m=0,2

∑
n=+1

|I(i − m, j + n) − I(i − m + 2, j + n)|

+
∑

n=0,+2

|I(i − 1, j + n) − I (i + 1, j + n)| (vertical)

(6)

With the two orthogonal directional gradients G1 and G2 for a
pixel location (x, y), the edge direction at the pixel can be
estimated. Since the gradient is small when along an edge,
we thus estimate the edge direction using the ratio of the
two orthogonal directional gradients

if (1 + G1)/(1 + G2) . T
the pixel (x, y) is on a 135W or vertical strong edge;

else if (1 + G2)/(1 + G1) . T
the pixel (x, y) is on a 458 or horizontal strong edge;

else
the pixel (x, y) is in a weak or textured region;

end

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

where 1 is added to the gradients to avoid division by zero and
T is a threshold parameter, which is a key factor for the
decision whether a pixel is on a strong edge. The choice on
T will be discussed in Section 4.

3.2 Algorithm description

The estimated edge direction at a missing pixel position can
be used to estimate the pixel intensity value. For a missing
pixel on a strong edge, we estimate the pixel value by CC
interpolation along the strong edge. Since a local gradient is
greater across an edge than along it, the gradient can
indicate the strength of a local edge. Therefore for a
missing pixel in a weak edge or textured region, the pixel
value is estimated by combining the two orthogonal
directional CC interpolation results, whose contributions to
the missing pixel value should be in inverse proportion to
the gradients corresponding to their interpolation directions.
Assuming that the two orthogonal directional CC
interpolation values at location (x, y) are p1 (458 diagonal or
horizontal directional interpolation value) and p2 (1358
diagonal or vertical directional interpolation value), the
weights combining p1 and p2 are computed as

w1 = 1

1 + Gk
1

w2 = 1

1 + Gk
2

⎧⎪⎪⎨
⎪⎪⎩

(8)

where k is an exponent parameter adjusting the weighting
effect, whose choice will be discussed in Section 4. As in
(7), 1 is added to the denominators to avoid division by
zero. The interpolation value p of the missing pixel at
location (x, y) in a weak or textured region is estimated as

p = (w1p1 + w2p2)/(w1 + w2) (9)
630
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We will give a detailed description of the interpolation
process of the proposed method in the following. The
zooming factor applied here is two in both horizontal and
vertical directions. The interpolation for other factors which
are powers of two can be achieved by iteratively performing
the following algorithm.

1. Initialisation: this step expands the known n × n LR image
Il onto the grid of the (2n 2 1) × (2n 2 1) HR image Ih as
shown in Fig. 2. The mapping relation is Ih(2x 2 1,
2y 2 1) ¼ Il(x, y), x, y ¼ 1, 2, . . . , n where (x, y) is the
pixel location.
2. Interpolation in the first pass: the pixels represented by
white squares in Fig. 2 are interpolated. The filled pixels
are Ih(2x, 2y), x, y ¼ 1, 2, 3, . . ., n (including border
pixels). For every pixel to be interpolated, compute the 458
and 1358 diagonal directional CC interpolation values p1

and p2 and compute the two diagonal directional gradients
G1 and G2 using (5). Then the edge direction at the pixel is
estimated by (7) and the pixel value p is estimated as

if (1 + G1)/(1 + G2) . T
p = p2;

else if (1 + G2)/(1 + G1) . T
p = p1;

else
Compute weights using (8) and p using (9);

end

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

3. Interpolation of Case 1 of the second pass: the pixels
represented by grey circles in Fig. 2 are interpolated. The
filled pixels are Ih(2x 2 1, 2y), x, y ¼ 1, 2, 3, . . . , n
(including border pixels). For every grey pixel, compute the
horizontal and vertical CC interpolation values p1 and p2

and compute the horizontal and vertical gradients G1 and
G2 using (6). Then the missing pixel p is estimated using (10).
4. Interpolation of Case 2 of the second pass: this step is
exactly identical to step 3. The pixels represented by white
circles in Fig. 2 are interpolated. The filled pixels are Ih(2x,
2y 2 1), x, y ¼ 1, 2, 3, . . . , n (including border pixels).

4 Selection of threshold T and exponent k

The results of the proposed method depend on the choice of
the threshold T in (10) and the exponent k in (8).
Unfortunately, the two parameters cannot be easily
determined for a given LR image because they depend on
the varying scene structures of images. We derive T and k
through training. Twenty-four 512 × 768 Kodak colour
images [17] were used as training samples, which were first
converted into grey images and then downsampled the grey
images to obtain their LR counterparts. The HR images
were reconstructed from the LR ones using the proposed
method with the different T and k. k was separately set from
1 to 6 by step length 1, whereas T varied from 1 to 1.5 by
step length 0.05 for every k. The average peak signal-to-
noise ratio (PSNR) curves are shown for different cases in
Fig. 5. It can be seen that the higher PSNR values can be
achieved when the greater exponent k is used. However, the
curves for k ¼ 5 and k ¼ 6 are nearly the same, which
implies that the PSNR values cannot be further improved
when k . 5; so we set k ¼ 5 in all our experiments. On the
other hand, the PSNR values increase gradually when
T [ [1, 1.25], while decreasing slowly when T . 1.25.
T ¼ 1.25 seems to be optimal. Considering that a greater T
IET Image Process., 2012, Vol. 6, Iss. 6, pp. 627–634
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probably results in losing some strong edges, T ¼ 1.15 may
be appropriate although the average PSNR values are
slightly lower comparing with the results when T ¼ 1.25.
Throughout our experiments, the threshold T was set to 1.15.

The two parameters T and k have been obtained by training
24 samples. To test how the number and contents of training
samples affect the parameters, we repeat the above process
using the grey versions of two hundred sample images
selected from Caltech 101 datasets [18], which are widely
used in object recognition community. The average PSNR
curves are relatively similar to Fig. 5, which indicates that
the selection for the threshold T and exponent k is rather
robust in terms of average PSNR performance.

5 Experimental results

The proposed method was compared with the other four
representative interpolation methods, which are classical CC
[1], directional filtering and data fusion (DFDF) [8], error-
amended sharp edge (EASE) [9], ICBI [11]. CC
interpolation was implemented by Matlab’s ‘INTERP2’
function. The Matlab codes of DFDF and ICBI methods
were available from the original authors. We used default
settings for ICBI code. The EASE algorithm was based on
our own implementation. For thoroughness and fairness of
our comparison study, we selected the eight representative
testing images (Fig. 6), including a synthetic image ‘Rings’
(Fig. 6a) which was first used by Keys [1], a cartoon image
‘Flinstones’ (Fig. 6b) and six natural images (Figs. 6c– f ).
Those testing images represent different image types, which
are significantly different in contents. We downsampled the
original HR grey images by a factor of two in both row and
column dimensions to obtain the LR images, from which
the zoomed HR images were reconstructed by different
methods. Since the original HR images are known, we can
measure the PSNRs of the zoomed HR images. All errors
were calculated excluding the border of twelve pixels
around the images to reduce the boundary effects. The
exponent k in (8) was set to 5 and the threshold T in (10)
was set to 1.15. Table 1 tabulates the PSNR results of the
five different methods for two times zoom. The highest
PSNR value of each row is shown in bold. The proposed
method consistently outperforms the other methods for all

Fig. 5 Training results of the parameters T and k in (10) and (8)
using the grey versions of 24 Kodak colour images [17]

Threshold-PSNR curves represent the average PSNR values under different
threshold T and exponent k values
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testing images, and exceeds the average PSNR value of the
second best method by 1.36 dB. The greatest PSNR
improvement was 4.79 dB over the second best method for
the ‘Rings’ image. For the image ‘Parrot’ with rich textures,
the proposed method also has a PSNR improvement of
approximately 1 dB over the second best method.

Table 2 tabulates the structural similarity (SSIM) results of
the five different methods for two times zoom. SSIM is a
method that provides a quality measurement of images

Fig. 6 Set of testing images

a Rings
b Flinstones
c Bike
d Airplane
e Flower
f Parrot
g Lena
h Monarch
631
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based on structural content, which measures the similarity
between two images (the original and the reconstructed
images) [19]. It gives results between 0 and 1, where 1
means the best quality and 0 means the worst quality. The
Matlab source code of the SSIM indices is available online
at [20]. The proposed method still consistently outperforms
the other methods for all testing images. It can be observed
that SSIM measure has a good correlation with PSNR

Table 2 SSIM results of the reconstructed HR images by

different methods for 2 times zoom

Image CC [1] DFDF [8] EASE [9] ICBI [11] Proposed

Rings 0.9999 0.9998 0.9993 0.9995 0.9999

Flinstones 0.9633 0.9643 0.9627 0.9621 0.9682

bike 0.9492 0.9457 0.9474 0.9447 0.9537

airplane 0.9680 0.9686 0.9692 0.9654 0.9712

Flower 0.9773 0.9768 0.9769 0.9769 0.9801

Parrot 0.9809 0.9798 0.9808 0.9795 0.9831

Lena 0.9720 0.9708 0.9720 0.9701 0.9742

monarch 0.9857 0.9864 0.9859 0.9860 0.9885

average 0.9745 0.9740 0.9743 0.9730 0.9774

Highest SSIM of each row is shown in bold

Table 1 PSNR (dB) results of the reconstructed HR images by

different methods for 2 times zoom

Image CC [1] DFDF [8] EASE [9] ICBI [11] Proposed

Rings 49.32 46.54 41.65 41.69 54.11

Flinstones 26.95 27.05 26.53 27.03 27.79

bike 25.56 25.65 25.55 25.20 26.39

airplane 29.76 30.25 29.94 29.69 30.68

Flower 31.69 31.84 31.66 31.74 32.54

Parrot 33.30 33.13 33.06 33.12 34.26

Lena 33.80 33.77 33.59 33.88 34.39

monarch 30.14 30.75 30.09 30.78 31.30

average 32.57 32.37 31.51 31.64 33.93

Highest PSNR of each row is shown in bold

Fig. 7 4 times zoom of the synthetic image ‘Rings’

a Original
b CC
c DFDF
d EASE
e ICBI
f Proposed
632
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measure but there exist exceptions. EASE falls behind
DFDF and ICBI on average PSNR but outperforms ICBI
and DFDF in terms of average SSIM metric, although
DFDF has 0.86 dB improvement on average PSNR over
EASE.

It is well known that objective metric is not completely in
accordance with subjective tests, the evaluation of the visual
appearance of the interpolated images is required for different
methods. The first image to be inspected is the synthetic
image ‘Rings’. The original image was downsampled by a
factor of four. Then the downsampled image was magnified
four times. The interpolated results are shown in Fig. 7. In
this example, CC and DFDF introduce the prominent
aliasing artefacts near the 458 direction looking at the
lower-right corners of Figs. 7b and c. It is interesting that
EASE and ICBI do significantly better than CC and DFDF
near the 458 direction, but they introduce the obvious
aliasing artefacts near the horizontal and vertical directions
looking at the lower-left and upper-right corners of Figs. 7d
and e. The interpolated image produced using the proposed

Fig. 8 Part of the 4 times zoomed image ‘Flinstones’

a Original
b CC
c DFDF
d EASE
e ICBI
f Proposed
IET Image Process., 2012, Vol. 6, Iss. 6, pp. 627–634
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method is far superior to the others and has hardly any visual
artefacts looking at Fig. 7f.

Fig. 8 exhibits part of the four times zoomed results of the
cartoon image ‘Flinstones’. This image has exaggerated
contour borders and is a good example for testing the edge
recovery ability of the different methods. CC (Fig. 8b)
introduces the most severe blocking and blurring artefacts.
Since EASE is only to amend the bilinear interpolation
error, its capability to recover edges is inferior to the other
methods except CC, but its computational cost is very low
compared with the others except CC. ICBI (Fig. 8e) can
retain sharper edges than DFDF (Fig. 8c) and EASE
(Fig. 8d), but it also tends to result in strong discontinuities
on a long edge, that is, without natural and smooth
transitions, paying attention to the man’s hand and the rim
of the girl’s skirt. The proposed methods best recovers the
edge structures (Fig. 8f).

Figs. 9 and 10 are parts of two times zoomed natural image
Lena and Flower. The proposed method performs best and
eliminates many of the ringing, aliasing and other visual
artefacts of the other methods, which is exemplified by the

Fig. 9 Part of the 2 times zoomed image Lena

a Original
b CC
c DFDF
d EASE
e ICBI
f Proposed
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reconstructed rims of the hat and cheek in Lena (Fig. 9f)
and by the flower petals and left pedicel in Flower
(Fig. 10f). The visual quality of the reconstructed HR
images produced by CC (Figs. 9b and 10b) is the worst
although its average PSNR measure is the second highest. It
can also be seen again that DFDF (Figs. 9c and 10c) is
superior to EASE (Figs. 9d and 10d ), whereas ICBI
(Figs. 9e and 10e) is superior to DFDF and EASE for the
reconstruction of edge structures, next only to the proposed
method. It should also be noted that the proposed method
can reconstruct the fine texture details. Our method
reconstructs satisfactorily the flower petals and has the least
aliasing as shown in Fig. 10f, whereas the other methods
are, to some extent, blurring and noisy.

6 Conclusion

We propose a new edge-directed image-zooming method.
This method is an extension of the classical CC
interpolation proposed by Keys [1]. CC interpolates
indiscriminately the missing pixels in the same direction

Fig. 10 Part of the 2 times zoomed image Flower

a Original
b CC
c DFDF
d EASE
e ICBI
f Proposed
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(horizontal or vertical) and typically results in blurring,
blocking, ringing or other artefacts in zoomed images. Our
method first explicitly decides the local edge direction in
terms of the radio of the two orthogonal directional
gradients for a missing pixel position. If the pixel is on a
strong edge, it will be estimated using CC interpolation
value along the edge direction; if the pixel is in a weak
edge or textured region, it will be estimated by combining
the two orthogonal directional CC interpolation values in
terms of the gradients in the two directions. The experiment
results show that our method can effectively suppress the
common artefacts in zoomed images. Our method not only
outperforms significantly the CC interpolation but also does
several recently published interpolation methods in terms of
both subjective and objective measures. However, the
results of our method are dependent on the selection of T
and k. Although the two parameters have been obtained by
training, it is still needed for further research to find a better
solution to the two key parameters.
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