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A Survey on Visual Content-Based Video
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Abstract—Video indexing and retrieval have a wide spectrum
of promising applications, motivating the interest of researchers
worldwide. This paper offers a tutorial and an overview of the
landscape of general strategies in visual content-based video index-
ing and retrieval, focusing on methods for video structure analysis,
including shot boundary detection, key frame extraction and scene
segmentation, extraction of features including static key frame fea-
tures, object features and motion features, video data mining, video
annotation, video retrieval including query interfaces, similarity
measure and relevance feedback, and video browsing. Finally, we
analyze future research directions.

Index Terms—Feature extraction, video annotation, video
browsing, video retrieval, video structure analysis.

I. INTRODUCTION

MULTIMEDIA information indexing and retrieval [44]
are required to describe, store, and organize multimedia

information and to assist people in finding multimedia resources
conveniently and quickly. Dynamic video is an important form
of multimedia information. Videos have the following charac-
teristics: 1) much richer content than individual images; 2) huge
amount of raw data; and 3) very little prior structure. These char-
acteristics make the indexing and retrieval of videos quite diffi-
cult. In the past, video databases have been relatively small, and
indexing and retrieval have been based on keywords annotated
manually. More recently, these databases have become much
larger and content-based indexing and retrieval are required,
based on the automatic analysis of videos with the minimum of
human participation.

Content-based video indexing and retrieval have a wide range
of applications such as quick browsing of video folders, analy-
sis of visual electronic commerce (such as analysis of interest
trends of users’ selections and orderings, analysis of correlations
between advertisements and their effects), remote instruction,
digital museums, news event analysis [96], intelligent manage-
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ment of web videos (useful video search and harmful video
tracing), and video surveillance.

It is the broad range of applications that motivates the in-
terests of researchers worldwide. The following two examples
of research activity are particularly noteworthy. 1) Since 2001,
the National Institute of Standards and Technology has been
sponsoring the annual Text Retrieval Conference (TREC) Video
Retrieval Evaluation (TRECVid) to promote progress in video
analysis and retrieval. Since 2003, TRECVid has been indepen-
dent of TREC. TRECVid provides a large-scale test collection
of videos, and dozens of participants apply their content-based
video retrieval algorithms to the collection [260], [263], [266]. 2)
The goal of video standards is to ensure compatibility between
description interfaces for video contents in order to facilitate
the development of fast and accurate video retrieval algorithms.
The main standards for videos are the moving picture experts
group (MPEG) and the TV-Anytime Standard [254]. There exist
many investigations that adopt the MPEG-7 to extract features
to classify video contents or to describe video objects in the
compressed domain [78].

A video may have an auditory channel as well as a visual
channel. The available information from videos includes the
following [66], [67]: 1) video metadata, which are tagged texts
embedded in videos, usually including title, summary, date, ac-
tors, producer, broadcast duration, file size, video format, copy-
right, etc.; 2) audio information from the auditory channel; 3)
transcripts: Speech transcripts can be obtained by speech recog-
nition and caption texts can be read using optical character
recognition techniques; 4) visual information contained in the
images themselves from the visual channel. If the video is in-
cluded in a web page, there are usually web page texts associated
with the video. In this paper, we focus on the visual contents of
videos and give a survey on visual content-based video indexing
and retrieval.

The importance and popularity of video indexing and retrieval
have led to several survey papers, which are listed in Table I,
together with the publication years and topics. In general, each
paper covers only a subset of the topics in video indexing and
retrieval. For example, Smeaton et al. [263] give a good re-
view of video shot boundary detection during seven years of the
TRECVid activity. Snoek and Worring [262] present a detailed
review of concept-based video retrieval. They emphasize seman-
tic concept detection, video search using semantic concepts, and
the evaluation of algorithms using the TRECVid databases. Ren
et al. [278] review the state of the art of spatiotemporal semantic
information-based video retrieval. Schoeffmann et al. [261] give
a good review of interfaces and applications of video browsing
systems.

1094-6977/$26.00 © 2011 IEEE
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TABLE I
SURVEYS ON VIDEO INDEXING AND RETRIEVAL

Fig. 1. Generic framework for visual content-based video indexing and
retrieval.

Unlike previous reviews, we give a more general overview
on the overall process of a video indexing and retrieval frame-
work which is outlined in Fig. 1. The framework includes the
following: 1) structure analysis: to detect shot boundaries, ex-
tract key frames, and segment scenes; 2) feature extraction from
segmented video units (shots or scenes): These features include
static features in key frames, object features, motion features,
etc.; 3) video data mining using the extracted features; 4) video
annotation: using extracted features and mined knowledge to
build a semantic video index. The semantic index together with
the high-dimensional index of video feature vectors constitutes
the total index for video sequences that are stored in the database;
5) query: the video database is searched for the desired videos
using the index and the video similarity measures; 6) video
browsing and feedback: The videos found in response to a query
are returned to the user to browse in the form of a video sum-
mary, and subsequent search results are optimized through rel-
evance feedback. In this paper, we review recent developments
and analyze future open directions in visual content-based video
indexing and retrieval. The main contributions of this survey are
as follows.

1) Video indexing and retrieval components are discussed
in a clearly organized hierarchical manner, and interlinks
between these components are shown.

2) To examine the state of the art, each task involved in visual
content-based video indexing and retrieval is divided into
subprocesses and various categories of approaches to the
subprocesses are discussed. The merits and limitations of
the different approaches are summarized. For the tasks for
which there exist surveys, we focus on reviewing recent
papers as a supplement to the previous surveys. For the
tasks that have not yet been specially surveyed, detailed
reviews are given.

3) We discuss in detail future directions in visual content-
based video indexing and retrieval.

The aforesaid contributions clearly distinguish our survey
from the existing surveys on video indexing and retrieval. To
our knowledge, our survey is the broadest.

The remainder of this paper is organized as follows: Section II
briefly reviews the work related to video structure analysis. Sec-
tion III addresses feature extraction. Section IV discusses video
data mining, classification, and annotation. Section V describes
the approaches for video query and retrieval. Section VI presents
video summarization for browsing. Section VII analyzes possi-
ble directions for future research. Section VIII summarizes this
paper.

II. VIDEO STRUCTURE ANALYSIS

Generally, videos are structured according to a descending hi-
erarchy of video clips, scenes, shots, and frames. Video structure
analysis aims at segmenting a video into a number of structural
elements that have semantic contents, including shot boundary
detection, key frame extraction, and scene segmentation.

A. Shot Boundary Detection

A shot is a consecutive sequence of frames captured by a
camera action that takes place between start and stop opera-
tions, which mark the shot boundaries [10]. There are strong
content correlations between frames in a shot. Therefore, shots
are considered to be the fundamental units to organize the con-
tents of video sequences and the primitives for higher level
semantic annotation and retrieval tasks. Generally, shot bound-
aries are classified as cut in which the transition between suc-
cessive shots is abrupt and gradual transitions which include
dissolve, fade in, fade out, wipe, etc., stretching over a num-
ber of frames. Cut detection is easier than gradual transition
detection.

The research on shot boundary detection has a long history,
and there exist specific surveys on video shot boundary detection
[16], [263]. For completeness, we only briefly introduce the
basic categories of methods for shot boundary detection and
their merits and limitations, and review some recent papers as a
supplement to [16] and [263].

Methods for shot boundary detection usually first extract vi-
sual features from each frame, then measure similarities between
frames using the extracted features, and, finally, detect shot
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boundaries between frames that are dissimilar. In the follow-
ing, we discuss the main three steps in shot boundary detection:
feature extraction, similarity measurement [113], and detection.

The features used for shot boundary detection include color
histogram [87] or block color histogram, edge change ratio, mo-
tion vectors [85], [163], together with more novel features such
as scale invariant feature transform [83], corner points [82], in-
formation saliency map [77], etc. Color histograms are robust
to small camera motion, but they are not able to differentiate
the shots within the same scene, and they are sensitive to large
camera motions. Edge features are more invariant to illumi-
nation changes and motion than color histograms, and motion
features can effectively handle the influence of object and cam-
era motion. However, edge features and motion features as well
as more complicated features cannot in general outperform the
simple color histograms [16].

To measure similarity between frames using the extracted
features is the second step required for shot boundary de-
tection. Current similarity metrics for extracted feature vec-
tors include the 1-norm cosine dissimilarity, the Euclidean dis-
tance, the histogram intersection, and the chi-squared similar-
ity [11], [12], [191], as well as some novel similarity measures
such as the earth mover’s distance [87] and mutual informa-
tion [68], [72], [207]. The similarity measures include pair-wise
similarity measures that measure the similarities between con-
secutive frames and window similarity measures that measure
similarities between frames within a window [191]. Window-
based similarity measures incorporate contextual information
to reduce the influence of local noises or disturbances, but they
need more computation than the pair-wise similarity measures.

Using the measured similarities between frames, shot bound-
aries can be detected. Current shot boundary detection ap-
proaches can be classified into threshold-based and statistical
learning-based.

1) Threshold-Based Approach: The threshold-based ap-
proach detects shot boundaries by comparing the measured
pair-wise similarities between frames with a predefined thresh-
old [47], [180]: When a similarity is less than the threshold, a
boundary is detected. The threshold can be global, adaptive, or
global and adaptive combined. 1) The global threshold-based
algorithms use the same threshold, which is generally set em-
pirically, over the whole video, as in [180]. The major lim-
itation of the global threshold-based algorithms is that local
content variations are not effectively incorporated into the esti-
mation of the global threshold, therefore influencing the bound-
ary detection accuracy. 2) The adaptive threshold-based algo-
rithms [77], [87], [207] compute the threshold locally within a
sliding window. Detection performance is often improved when
an adaptive threshold is used instead of a global threshold [65].
However, estimation of the adaptive threshold is more difficult
than estimation of the global threshold and users are required
to be more familiar with characteristics of videos in order to
choose parameters such as the size of the sliding window. 3)
Global and adaptive combined algorithms adjust local thresh-
olds, taking into account the values of the global thresholds.
Quenot et al. [264] define the thresholds for cut transition de-
tection, dissolve transition detection, and flash detection as the

functions of two global thresholds that are obtained from a trade-
off between recall and precision. Although this algorithm only
needs to tune two global thresholds, the values of the functions
are changed locally. The limitation of this algorithm is that the
functional relations between the two global thresholds and the
locally adaptive thresholds are not easy to determine.

2) Statistical Learning-Based Approach: The statistical
learning-based approach regards shot boundary detection as a
classification task in which frames are classified as shot change
or no shot change depending on the features that they contain.
Supervised learning and unsupervised learning are both used.

a) Supervised learning-based classifiers: The most com-
monly used supervised classifiers for shot boundary detection
are the support vector machine (SVM) and Adaboost.

1) SVM [11], [21]: Chavez et al. [84] use the SVM as a
two-class classifier to separate cuts from noncuts. A ker-
nel function is used to map the features into a high-
dimensional space in order to overcome the influence of
changes in illumination and fast movement of objects.
Zhao et al. [61] exploit two SVM classifiers, in a sliding
window, to detect cuts and gradual transitions, respec-
tively. Ling et al. [58] first extract several features from
each frame, and then use the SVM to classify the frames
using these features into three categories: cut, gradual tran-
sition, and others. Yuan et al. [16] and Liu et al. [72] com-
bine the threshold-based method with an SVM-based clas-
sifier. First, the candidate boundaries are selected using
the threshold-based method, and then the SVM classifier
is used to verify the boundaries. The SVM-based algo-
rithms are widely used for shot boundary detection [265]
because of their following merits.

a) They can fully utilize the training information and
maintain good generalization.

b) They can deal efficiently with a large number of
features by the use of kernel functions.

c) Many good SVM codes are readily available.
2) Adaboost: Herout et al. [63] make cut detection a pattern

recognition task to which the Adaboost algorithm is ap-
plied. Zhao and Cai [85] apply the Adaboost algorithm to
shot boundary detection in the compressed domain. The
color and motion features are roughly classified first us-
ing a fuzzy classifier, and then each frame is classified
as a cut, gradual, or no change frame using the Adaboost
classifier. The main merit of the Adaboost boundary clas-
sifiers is that a large number of features can be handled:
These classifiers select a part of features for boundary
classification.

3) Others: Other supervised learning algorithms have been
employed for shot boundary detection. For instance,
Cooper et al. [191] use the binary k nearest-neighbor
(kNN) classifier, where the similarities between frames
within the particular temporal interval are used as its in-
put. Boreczky and Wilcox [121] apply hidden Markov
(HMM) models with separate states to model shot cuts,
fades, dissolves, pans, and zooms.

The merits of the aforementioned supervised-learning ap-
proaches are that there is no need to set the thresholds used
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in the threshold-based approaches, and different types of fea-
tures can be combined to improve the detection accuracy. The
limitation is their heavy reliance on a well-chosen training set
containing both positive and negative examples.

b) Unsupervised learning-based algorithms: The unsu-
pervised learning-based shot boundary detection algorithms are
classified into frame similarity-based and frame-based. The
frame similarity-based algorithms cluster the measurements of
similarity between pairs of frames into two clusters: the clus-
ter with lower values of the similarities corresponds to shot
boundaries and the cluster with higher values of the similarities
corresponds to nonboundaries. Clustering algorithms such as
K-means and fuzzy K-means [64] have been used. The frame-
based algorithms treat each shot as a cluster of frames that have
similar visual content. Chang et al. [83] use clustering ensem-
bles to group different frames into their corresponding shots. Lu
et al. [12] use K-means clustering, and Damnjanovic et al. [57]
use spectral clustering to cluster frames to detect the differ-
ent shots. The merit of clustering-based approaches is that the
training dataset is not needed. Their limitations are that tem-
poral sequence progression information is not preserved, and
they are inefficient in recognizing the different types of gradual
transition.

Shot boundary detection approaches can be classified into un-
compressed domain-based and compressed domain-based. To
avoid time-consuming video decompression, the features avail-
able in the compressed domain such as discrete cosine transform
coefficients, DC image and MB types, and motion vectors can be
directly employed for shot boundary detection [40], [60], [85].
However, the compressed domain-based approach is highly de-
pendent on the compression standards, and it is less accurate
than the uncompressed domain-based approach.

Recently, the detection of gradual transitions has received
more attention. Ngo [41] detects dissolves based on multires-
olution analysis. Yoo et al. [131] detect gradual transitions ac-
cording to the variance distribution curve of edge information
in frame sequences.

B. Key Frame Extraction

There are great redundancies among the frames in the same
shot; therefore, certain frames that best reflect the shot contents
are selected as key frames [15], [39], [170], [193] to succinctly
represent the shot. The extracted key frames should contain as
much salient content of the shot as possible and avoid as much
redundancy as possible. The features used for key frame ex-
traction include colors (particularly the color histogram), edges,
shapes, optical flow, MPEG-7 motion descriptors such as tem-
poral motion intensity and spatial distribution of motion activ-
ity [206], MPEG discrete cosine coefficient and motion vec-
tors [202], camera activity, and features derived from image
variations caused by camera motion [161], [208].

Referring to [39], current approaches to extract key frames
are classified into six categories: sequential comparison-based,
global comparison-based, reference frame-based, clustering-
based, curve simplification-based, and object/event-based.

1) Sequential Comparison Between Frames: In these algo-
rithms, frames subsequent to a previously extracted key frame
are sequentially compared with the key frame until a frame
which is very different from the key frame is obtained. This
frame is selected as the next key frame. For instance, Zhang et
al. [209] used the color histogram difference between the cur-
rent frame and the previous key frame to extract key frames.
Zhang et al. [210] use the accumulated energy function com-
puted from image-block displacements across two successive
frames to measure the distance between frames to extract key
frames. The merits of the sequential comparison-based algo-
rithms include their simplicity, intuitiveness, low computational
complexity, and adaptation of the number of key frames to the
length of the shot. The limitations of these algorithms include
the following. 1) The key frames represent local properties of
the shot rather than the global properties. b) The irregular dis-
tribution and uncontrolled number of key frames make these
algorithms unsuitable for applications that need an even dis-
tribution or a fixed number of key frames. c) Redundancy can
occur when there are contents appearing repeatedly in the same
shot.

2) Global Comparison Between Frames: The algorithms
based on global differences between frames in a shot distribute
key frames by minimizing a predefined objective function that
depends on the application. In general, the objective function
has one of the following four forms [39].

1) Even temporal variance: These algorithms select key
frames in a shot such that the shot segments, each of
which is represented by a key frame, have equal tempo-
ral variance. The objective function can be chosen as the
sum of differences between temporal variances of all the
segments. The temporal variance in a segment can be ap-
proximated by the cumulative change of contents across
consecutive frames in the segment [208] or by the dif-
ference between the first and last frames in the segment.
For instance, Divakaran et al. [211] obtain key frames by
dividing the shot into segments with equal cumulative mo-
tion activity using the MPEG-7 motion activity descriptor,
and then, the frame located at the halfway point of each
segment is selected as a key frame.

2) Maximum coverage: These algorithms extract key frames
by maximizing their representation coverage, which is the
number of frames that the key frames can represent [39].
If the number of key frames is not fixed, then these al-
gorithms minimize the number of key frames subject to a
predefined fidelity criterion; alternatively, if the number of
key frames is fixed, the algorithms maximize the number
of frames that the key frames can represent [212], [213].
For instance, Chang et al. [214] specify the coverage of
a key frame as the number of the frames that are visu-
ally similar to the key frame. A greedy algorithm is used
iteratively to find key frames.

3) Minimum correlation: These algorithms extract key
frames to minimize the sum of correlations between key
frames (especially successive key frames), making key
frames as uncorrelated with each other as possible. For
instance, Porter et al. [215] represent frames in a shot and
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their correlations using a directed weighted graph. The
shortest path in the graph is found and the vertices in the
shortest path which corresponds to minimum correlation
between frames designate the key frames.

4) Minimum reconstruction error: These algorithms extract
key frames to minimize the sum of the differences between
each frame and its corresponding predicted frame recon-
structed from the set of key frames using interpolation.
These algorithms are useful for certain applications, such
as animation. Lee and Kim [216] use an iterative proce-
dure to select a predetermined number of key frames, in
order to reduce the shot reconstruction error as much as
possible. Liu et al. [217] propose a key frame selection
algorithm based on the extent to which key frames record
the motion during the shot. In the algorithm, an inertia-
based frame interpolation algorithm is used to interpolate
frames.

The merits of the aforesaid global comparison-based algo-
rithms include the following. 1) The key frames reflect the global
characteristics of the shot. 2) The number of key frames is con-
trollable. 3) The set of key frames is more concise and less re-
dundant than that produced by the sequential comparison-based
algorithms. The limitation of the global comparison-based al-
gorithms is that they are more computationally expensive than
the sequential comparison-based algorithms.

3) Reference Frame: These algorithms generate a reference
frame and then extract key frames by comparing the frames in
the shot with the reference frame. For instance, Ferman and
Tekalp [204] construct an alpha-trimmed average histogram de-
scribing the color distribution of the frames in a shot. Then, the
distance between the histogram of each frame in the shot and
the alpha-trimmed average histogram is calculated. Key frames
are located using the distribution of the distance curve. Sun et
al. [205] construct a maximum occurrence frame for a shot.
Then, a weighted distance is calculated between each frame in
the shot and the constructed frame. Key frames are extracted
at the peaks of the distance curve. The merit of the reference
frame-based algorithms is that they are easy to understand and
implement. The limitation of these algorithms is that they de-
pend on the reference frame: If the reference frame does not
adequately represent the shot, some salient contents in the shot
may be missing from the key frames.

4) Clustering: These algorithms cluster frames and then
choose frames closest to the cluster centers as the key frames.
Girgensohn and Boreczky [199] select key frames using the
complete link method of hierarchical agglomerative clustering
in the color feature space. Yu et al. [200] extract key frames us-
ing the fuzzy K-means clustering in the color feature subspace.
Gibson et al. [201] use Gaussian mixture models (GMM) in the
eigenspace of the image, in which the number of GMM com-
ponents is the required number of clusters. The merits of the
clustering-based algorithms are that they can use generic clus-
tering algorithms, and the global characteristics of a video can
be reflected in the extracted key frames. The limitations of these
algorithms are as follows: First, they are dependent on the clus-
tering results, but successful acquisition of semantic meaningful
clusters is very difficult, especially for large data, and second,

the sequential nature of the video cannot be naturally utilized:
Usually, clumsy tricks are used to ensure that adjacent frames
are likely to be assigned to the same cluster.

5) Curve Simplification: These algorithms represent each
frame in a shot as a point in the feature space. The points
are linked in the sequential order to form a trajectory curve
and then searched to find a set of points which best represent
the shape of the curve. Calic and Izquierdo [218] generate the
frame difference metrics by analyzing statistics of the mac-
roblock features extracted from the MPEG compressed stream.
The key frame extraction method is implemented using differ-
ence metrics curve simplification by the discrete contour evo-
lution algorithm. The merit of the curve simplification-based
algorithms is that the sequential information is kept during the
key frame extraction. Their limitation is that optimization of
the best representation of the curve has a high computational
complexity.

6) Objects/Events: These algorithms [192] jointly consider
key frame extraction and object/event detection in order to en-
sure that the extracted key frames contain information about
objects or events. Calic and Thomas [196] use the positions of
regions obtained using frame segmentation to extract key frames
where objects merge. Kim and Hwang [197] use shape features
to extract key frames that can represent changes of human ges-
tures. Liu and Fan [194] select initial key frames based on the
color histogram and use the selected key frames to estimate a
GMM for object segmentation. The segmentation results and the
trained GMM are further used to refine the initial key frames.
Song and Fan [195] propose a joint key frame extraction and
object segmentation method by constructing a unified feature
space for both processes, where key frame extraction is formu-
lated as a feature selection process for object segmentation in
the context of GMM-based video modeling. Liu et al. [203]
propose a triangle model of perceived motion energy for mo-
tion patterns in videos. The frames at the turning points of the
motion acceleration and motion deceleration are selected as key
frames. Han and Kweon [220] extract key frames by the max-
imum curvature of camera motion at each temporal scale. The
key frames provide temporal interest points for classification
of video events. The merit of the object/event-based algorithms
is that the extracted key frames are semantically important, re-
flecting objects or the motion patterns of objects. The limitation
of these algorithms is that object/event detection strongly relies
on heuristic rules specified according to the application. As a
result, these algorithms are efficient only when the experimental
settings are carefully chosen.

Because of the subjectivity of the key frame definition, there
is no uniform evaluation method for key frame extraction. In
general, the error rate and the video compression ratio are used
as measures to evaluate the result of key frame extraction. Key
frames giving low error rates and high compression rates are
preferred. In general, a low error rate is associated with a low
compression rate. The error rate depends on the parameters in
the key frame extraction algorithms. Examples of these param-
eters are the thresholds in sequential comparison-based, global
comparison-based, reference frame-based, and clustering-based
algorithms, as well as the parameters to fit the curve in the curve
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simplification-based algorithms. Users choose the parameters
according to the error rate that can be tolerated.

C. Scene Segmentation

Scene segmentation is also known as story unit segmentation.
In general, a scene is a group of contiguous shots that are co-
herent with a certain subject or theme. Scenes have higher level
semantics than shots. Scenes are identified or segmented out by
grouping successive shots with similar content into a meaning-
ful semantic unit. The grouping may be based on information
from texts, images, or the audio track in the video.

According to shot representation, scene segmentation ap-
proaches can be classified into three categories: key frame-
based, audio and visual information integration-based, and
background-based.

1) Key Frame-Based Approach: This approach [145] repre-
sents each video shot by a set of key frames from which fea-
tures are extracted. Temporally close shots with similar features
are grouped into a scene. For instance, Hanjalic et al. [140]
compute similarities between shots using block matching of
the key frames. Similar shots are linked, and scenes are seg-
mented by connecting the overlapping links. Ngo et al. [144]
extract and analyze the motion trajectories encoded in the tem-
poral slices of image volumes. A motion-based key frame se-
lection strategy is, thus, used to compactly represent shot con-
tents. Scene changes are detected by measuring the similarity
of the key frames in the neighboring shots. The limitation of
the key frame-based approach is that key frames cannot effec-
tively represent the dynamic contents of shots, as shots within
a scene are generally correlated by dynamic contents within
the scene rather than by key frame-based similarities between
shots.

2) Audio and Vision Integration-Based Approach: This ap-
proach selects a shot boundary where the visual and audio con-
tents change simultaneously as a scene boundary. For instance,
Sundaram and Chang [147] detect audio scenes and video scenes
separately. A time-constrained nearest neighbor algorithm is
used to determine the correspondences between these two sets
of scenes. The limitation of the audio and visual integration-
based approach is that it is difficult to determine the relation
between audio segments and visual shots.

3) Background-Based Approach: This approach segments
scenes under the assumption that shots belonging to the same
scene often have similar backgrounds. For instance, Chen et
al. [139] use a mosaic technique to reconstruct the background
of each video frame. Then, the color and texture distributions of
all the background images in a shot are estimated to determine
the shot similarity and the rules of filmmaking are used to guide
the shot grouping process. The limitation of the background-
based approach is the assumption that shots in the same scene
have similar backgrounds: sometimes the backgrounds in shots
in a scene are different.

According to the processing method, current scene segmen-
tation approaches can be divided into four categories: merging-
based, splitting-based, statistical model-based, and shot bound-
ary classification-based.

a) Merging-based approach: This approach gradually
merges similar shots to form a scene in a bottom-up style.
Rasheed and Shah [133] propose a two-pass scene segmen-
tation algorithm. In the first pass, oversegmentation of scenes is
carried out using backward shot coherence. In the second pass,
the oversegmented scenes are identified using motion analysis
and then merged. Zhao et al. [134] propose a best first model-
merging algorithm for scene segmentation. The algorithm takes
each shot as a hidden state and loops upon the boundaries be-
tween consecutive shots by a left-right HMM.

b) Splitting-based approach: This approach splits the
whole video into separate coherent scenes using a top-down
style. For instance, Rasheed and Shah [136] construct a shot
similarity graph for a video and partition the graph using nor-
malized cuts. The subgraphs represent individual scenes in the
video. Tavanapong and Zhou [138] introduce a scene definition
for narrative films and present a technique to cluster relevant
shots into a scene using this definition.

c) Statistical model-based approach: This approach con-
structs statistical models of shots to segment scenes. Zhai and
Shah [132] use the stochastic Monte Carlo sampling to simu-
late the generation of scenes. The scene boundaries are updated
by diffusing, merging, and splitting the scene boundaries esti-
mated in the previous step. Tan and Lu [137] use the GMM to
cluster video shots into scenes according to the features of in-
dividual shots. Each scene is modeled with a Gaussian density.
Gu et al. [149] define a unified energy minimization frame-
work in which the global content constraint between individual
shots and the local temporal constraint between adjacent shots
are both represented. A boundary voting procedure decides the
optimal scene boundaries.

d) Shot boundary classification-based approach: In this
approach, features of shot boundaries are extracted and then
used to classify shot boundaries into scene boundaries and non-
scene boundaries. Goela et al. [148] present a genre-independent
method to detect scene boundaries in broadcast videos. In their
method, scene segmentation is based on a classification with
the two classes of “scene change” and “nonscene change.” An
SVM is used to classify the shot boundaries. Hand-labeled video
scene boundaries from a variety of broadcast genres are used to
generate positive and negative training samples for the SVM.

The common point in the merging-based, splitting-based, and
statistical model-based approaches is that the similarities be-
tween different shots are used to combine similar shots into
scenes. This is simple and intuitive. However, in these ap-
proaches, shots are usually represented by a set of selected
key frames, which often fail to represent the dynamic contents
of the shots. As a result, two shots are regarded as similar,
if their key frames are in the same environment rather than
if they are visually similar. The shot boundary classification-
based approach takes advantage of the local information about
shot boundaries. This ensures that algorithms with low compu-
tational complexities are easy to obtain. However, lack of global
information about shots inevitably reduces the accuracy of scene
segmentation.

It is noted that most current approaches for scene segmenta-
tion exploit the characteristics of specific video domains such
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as movies, TVs, and news broadcasts [150], [152], [153], for
example, using the production rules by which movies or TV
shows are composed. The accuracy of scene segmentation is
improved, but it is necessary to construct a priori model for
each application.

III. FEATURE EXTRACTION

To extract features according to video structural analysis re-
sults is the base of video indexing and retrieval. We focus on the
visual features suitable for video indexing and retrieval. These
mainly include features of key frames, objects, and motions.
Auditory features and text features are not covered.

A. Static Features of Key Frames

The key frames of a video reflect the characteristics of the
video to some extent. Traditional image retrieval techniques can
be applied to key frames to achieve video retrieval. The static key
frame features useful for video indexing and retrieval are mainly
classified as color-based, texture-based, and shape-based.

1) Color-Based Features: Color-based features include
color histograms, color moments, color correlograms, a mix-
ture of Gaussian models, etc. The exaction of color-based fea-
tures depends on color spaces such as RGB, HSV, YCbCr and
normalized r-g, YUV, and HVC. The choice of color space de-
pends on the applications. Color features can be extracted from
the entire image or from image blocks into which the entire
image is partitioned. Color-based features are the most effective
image features for video indexing and retrieval. In particular,
color histogram and color moments are simple but efficient de-
scriptors. Amir et al. [222] compute color histogram and color
moments for video retrieval and concept detection. Yan and
Hauptmann [229] first split the image into 5×5 blocks to cap-
ture local color information. Then in each block, color histogram
and color moments are extracted for video retrieval. Adcock et
al. [226] use color correlograms to implement a video search
engine. The merits of color-based features are that they reflect
human visual perception, they are easy to extract, and their ex-
traction has low computational complexity. The limitation of
color-based features is that they do not directly describe tex-
ture, shape, etc., and are, thus, ineffective for the applications in
which texture or shape is important.

2) Texture-Based Features: Texture-based features are ob-
ject surface-owned intrinsic visual features that are indepen-
dent of color or intensity and reflect homogenous phenomena
in images. They contain crucial information about the orga-
nization of object surfaces, as well as their correlations with
the surrounding environment. Texture features in common use
include Tamura features, simultaneous autoregressive models,
orientation features, wavelet transformation-based texture fea-
tures, co-occurrence matrices, etc. Amir et al. [222] use co-
occurrence texture and Tamura features including coarseness,
contrast and directionality for the TRECVid-2003 video re-
trieval task. Hauptmann et al. [223] use Gabor wavelet filters
to capture texture information for a video search engine. They
design 12 oriented energy filters. The mean and variance of the
filtered outputs are concatenated into a texture feature vector.

Hauptmann et al. [228] divide the image into 5×5 blocks and
compute texture features using Gabor-wavelet filters in each
block. The merit of texture-based features is that they can be
effectively applied to applications in which texture information
is salient in videos. However, these features are unavailable in
nontexture video images.

3) Shape-Based Features: Shape-based features that de-
scribe object shapes in the image can be extracted from object
contours or regions. A common approach is to detect edges in
images and then describe the distribution of the edges using a
histogram. Hauptmann et al. [223] use the edge histogram de-
scriptor (EHD) to capture the spatial distribution of edges for
the video search task in TRECVid-2005. The EHD is computed
by counting the number of pixels that contribute to the edge
according to their quantized directions. To capture local shape
features, Foley et al. [224] and Cooke et al. [225] first divide
the image into 4×4 blocks and then extract a edge histogram for
each block. Shape-based features are effective for applications
in which shape information is salient in videos. However, they
are much more difficult to extract than color- or texture-based
features.

B. Object Features

Object features include the dominant color, texture,, size,
etc., of the image regions corresponding to the objects. These
features can be used to retrieve videos likely to contain similar
objects [17]. Faces are useful objects in many video retrieval sys-
tems. For example, Sivic et al. [18] construct a person retrieval
system that is able to retrieve a ranked list of shots containing
a particular person, given a query face in a shot. Le et al. [19]
propose a method to retrieve faces in broadcast news videos
by integrating temporal information into facial intensity infor-
mation. Texts in a video are extracted as one type of object to
help understand video contents. Li and Doermann [20] imple-
ment text-based video indexing and retrieval by expanding the
semantics of a query and using the Glimpse matching method
to perform approximate matching instead of exact matching.
The limitation of object-based features is that identification of
objects in videos is difficult and time-consuming. Current al-
gorithms focus on identifying specific types of objects, such as
faces, rather than various objects in various scenes.

C. Motion Features

Motion is the essential characteristic distinguishing dynamic
videos from still images. Motion information represents the
visual content with temporal variation. Motion features are
closer to semantic concepts than static key frame features
and object features. Video motion includes background mo-
tion caused by camera motion and foreground motion caused
by moving objects. Thus, motion-based features for video re-
trieval can be divided into two categories: camera-based and
object-based. For camera-based features, different camera mo-
tions, such as “zooming in or out,” “panning left or right,”
and “tilting up or down,” are estimated and used for video in-
dexing. Video retrieval using only camera-based features has
the limitation that they cannot describe motions of key objects.
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Object-based motion features have attracted much more interest
in recent work. Object-based motion features can be further clas-
sified into statistics-based, trajectory-based, and objects’ spatial
relationships-based.

1) Statistics-Based: Statistical features of the motions of
points in frames in a video are extracted to model the distri-
bution of global or local motions in the video. For instance,
Fablet et al. [233] use causal Gibbs models to represent the
spatiotemporal distribution of appropriate local motion-related
measurements computed after compensating for the estimated
dominant image motions in the original sequence. Then, a gen-
eral statistical framework is developed for video indexing and
retrieval. Ma and Zhang [234] transform the motion vector field
to a number of directional slices according to the energy of the
motion. These slices yield a set of moments that form a mul-
tidimensional vector called motion texture. The motion texture
is used for motion-based shot retrieval. The merit of statistics-
based features is that their extraction has low computational
complexity. The limitation of these features is they cannot rep-
resent object actions accurately and cannot characterize the re-
lations between objects.

2) Trajectory-Based: Trajectory-based features [22] are ex-
tracted by modeling the motion trajectories of objects in videos.
Chang et al. [236] propose an online video retrieval system
supporting automatic object-based indexing and spatiotemporal
queries. The system includes algorithms for automated video
object segmentation and tracking. Bashir et al. [237] present a
motion trajectory-based compact indexing and efficient retrieval
mechanism for video sequences. Trajectories are represented by
temporal orderings of subtrajectories. The subtrajectories are
then represented by their principal component analysis coef-
ficients. Chen and Chang [238] use wavelet decomposition to
segment each trajectory and produce an index based on velocity
features. Jung et al. [25] base their motion model on polynomial
curve fitting. The motion model is used as an indexing key to
access individual objects. Su et al. [26] construct motion flows
from motion vectors embedded in MPEG bitstreams to generate
continual motion information in the form of a trajectory. Given a
trajectory, the system retrieves a set of trajectories that are sim-
ilar to it. Hsieh et al. [27] divide trajectories into several small
segments, and each segment is described by a semantic symbol.
A distance measure combining an edit distance and a visual
distance is exploited to match trajectories for video retrieval.
The merit of trajectory-based features is that they can describe
object actions. The limitation of these features is that their ex-
traction depends on correct object segmentation and tracking
and automatic recording of trajectories, all of which are still
very challenging tasks.

3) Objects’ Relationship-Based: These features describe
spatial relationships between objects. Bimbo et al. [235] de-
scribe relationships between objects using a symbolic repre-
sentation scheme which is applied to video retrieval. Yajima
et al. [24] query the movements of multiple moving objects and
specify the spatiotemporal relationships between objects by ex-
pressing each object’s trace on a timeline. The merit of objects’
relationship-based features is that they can intuitively represent
relationships between multiple objects in the temporal domain.

The limitation of these features is that it is difficult to label each
object and its position.

IV. VIDEO DATA MINING, CLASSIFICATION, AND ANNOTATION

Video data mining, classification, and annotation rely heav-
ily on video structure analysis and the extracted video features.
There are no boundaries between video data mining, video clas-
sification, and video annotation. In particular, the concepts of
video classification and annotation are very similar. In this sec-
tion, we review the basic concepts and approaches for video
data mining, classification, and annotation. The annotation is
the basis for the detection of video’s semantic concepts and the
construction of semantic indices for videos.

A. Video Data Mining

The task of video data mining is, using the extracted features,
to find structural patterns of video contents, behavior patterns
of moving objects, content characteristics of a scene, event pat-
terns [230], [232] and their associations, and other video se-
mantic knowledge [45], in order to achieve video intelligent
applications, such as video retrieval [118]. The choice of a strat-
egy for video data mining depends on the application. Current
strategies include the following.

1) Object Mining: Object mining is the grouping of different
instances of the same object that appears in different parts in
a video. It is very hard because the appearance of an object
can change a great deal from one instance to another. Sivic
and Zisserman [86] use a spatial neighborhood technique to
cluster the features in the spatial domain of the frames. These
clusters are used to mine frequently appearing objects in key
frames. Anjulan and Canagarajah [81] extract stable tracks from
shots. These stable tracks are combined into meaningful object
clusters, which are used to mine similar objects. Quack et al. [28]
present a method for mining frequently occurring objects and
scenes from videos. Object candidates are detected by finding
recurring spatial arrangements of affine covariant regions.

2) Special Pattern Detection: Special pattern detection ap-
plies to actions or events for which there are a priori models,
such as human actions, sporting events [127], traffic events, or
crime patterns. Laptev et al. [124] propose an appearance-based
method that recognizes eight human actions in movies, e.g.,
answer phone, get out of a car, handshake, hug person, kiss.
They extract local space-time features in space-time pyramids,
build a spatial-temporal bag-of-features, and employ multichan-
nel nonlinear SVMs for recognition. Ke et al. [125] propose
a template-based method that recognizes human actions, such
as picking up a dropped object or waving in a crowd. They
oversegment the video to obtain spatial-temporal patches, and
combine shape and optical flow cues to match testing patches
and templates. Liu et al. [126] detect events in a football match,
including penalty kicks, free kicks near the penalty box, and
corner kicks in football games. Li and Porikli [128] detect six
traffic patterns using a Gaussian mixture HMM framework, and
Xie et al. [129] extract traffic jam events by analyzing the road
background features. Nath [130] detects crime patterns using a
clustering algorithm.
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3) Pattern Discovery: Pattern discovery is the automatic dis-
covery of unknown patterns in videos using unsupervised or
semisupervised learning. The discovery of unknown patterns is
useful to explore new data in a video set or to initialize models for
further applications. Unknown patterns are typically found by
clustering various feature vectors in the videos. The discovered
patterns have the following applications: 1) detecting unusual
events [230] that are often defined by their dissimilarity to dis-
covered patterns; 2) associating clusters or patterns with words
for video retrieval, etc; 3) building supervised classifiers based
on the mined clusters for video classification or annotation, etc.
Burl [105] describes an algorithm for mining motion trajecto-
ries to detect trigger events, determine typical or anomalous
patterns of activities, classify activities into named categories,
cluster activities, determine interactions between entities, etc.
Hamid et al. [2] use n-grams and suffix trees to mine motion
patterns by analyzing event subsequences over multiple tempo-
ral scales. The mined motion patterns are used to detect unusual
events. Turaga et al. [1] use a generative model to capture and
represent a diverse class of activities, and build affine and view
invariance of the activity into the distance metric for clustering.
The clusters correspond to semantically meaningful activities.
Cutler and Davis [14] compute an object’s self-similarity as it
evolves in time, and apply time–frequency analysis to detect and
characterize the periodic motion. The periodicity is analyzed us-
ing the 2-D lattice structures inherent in similarity matrices.

4) Video Association Mining: Video association mining is
mainly used to discover inherent relations between different
events or the most frequent association patterns for different
objects, such as the simultaneous occurrence of two objects,
frequency of shot switches, and association between video
types [118]. Video association mining also includes the de-
duction of interassociations between semantic concepts in the
same shot from existing annotations or the inference of a se-
mantic concept for the current shot from detection results of
neighboring shots, etc. Pan and Faloutsos [102] propose an al-
gorithm to find correlations between different events in news
programs, such as those between “earthquake” and “volcano”
or “tourism” and “wine.” Zhu et al. [100] propose explicit defini-
tions and evaluation measures for video associations by integrat-
ing distinct feature of the video data. Their algorithm introduces
multilevel sequential association mining to explore associations
between audio and visual cues, classifies the associations by
assigning each of them a class label, and uses their appearances
in the video to construct video indices. Yan et al. [13] describe
various multiconcept relational learning algorithms based on
a unified probabilistic graphical model representation and use
graphical models to mine the relationship between video con-
cepts. Liu et al. [231] use association-mining techniques to
discover interconcept associations in the detected concepts, and
mine intershot temporal dependence, in order to improve the
accuracy of semantic concept detection.

5) Tendency Mining: Tendency mining is the detection and
analysis of trends of certain events by tracking current events
[118]. Xie et al. [103] propose a news video mining method,
which involves two visualization graphs: the time-tendency
graph and the time-space distribution graph. The time-tendency

graph records the tendencies of events, while the time-space dis-
tribution graph records the spatial-temporal relations between
various events. Oh and Bandi [104] mine the tendency of a traffic
jam by analyzing the spatial-temporal relations between objects
in videos.

6) Preference Mining: For news videos, movies, etc., the
user’s preferences can be mined [118]. For instance, Kules et al.
[101] propose a personalized multimedia news portal to provide
a personalized news service by mining the user’s preferences.

B. Video Classification

The task of video classification [106], [245] is to find rules or
knowledge from videos using extracted features or mined results
and then assign the videos into predefined categories. Video
classification is an important way of increasing the efficiency of
video retrieval. The semantic gap between extracted formative
information, such as shape, color, and texture, and an observer’s
interpretation of this information, makes content-based video
classification very difficult.

Video content includes semantic content and editing effects.
Referring to [23], semantic content classification can be per-
formed on three levels: video genres, video events, and objects
in the video, where genres have rougher and wider detection
range; and events and objects have thinner and limited detec-
tion range. In the following, we discuss edit effect classification,
genre classification, event classification, and object classifica-
tion, respectively.

1) Edit Effect Classification: Editing effects depend on the
ways for editing videos, such as camera motion and the composi-
tion of scenes and shots. Editing effects themselves are not a part
of video content, but they influence the understanding of video
content; therefore, they may be used in video semantic classi-
fication. For instance, Ekin et al. [165] classify shots of soccer
videos into long, in-field medium, close-up, and out-of-field
views using cinematic features and further detect events such as
play, break, and replay. Xu et al. [246] use the domain-specific
feature of grass-area-ratio to classify frames of soccer videos
into global, zoom-in, and close-up views and obtain play/break
statuses of games from the sequences of labeled frames. Tan
et al. [247] estimate camera motion using data from the MPEG
stream, and further classify basketball shots into wide-angle and
close-up views and detect events such as fast breaks, shots at
the basket, etc.

2) Video Genre Classification: Video genre classification is
the classification of videos into different genres such as “movie,”
“news,” “sports,” and “cartoon.” Approaches to classify video
genres can be classified into statistic-based, rule- or knowledge-
based, and machine learning-based [23].

a) Statistic-based approach: This approach classifies
videos by statistically modeling various video genres. Fisher
et al. [89] classify videos as news, car race, tennis, animated
cartoon, and commercials. First, video syntactic properties such
as color statistics, cuts, camera motion, and object motion are
analyzed. Second, these properties are used to derive more ab-
stract film style attributes such as camera panning and zoom-
ing, speech, and music. Finally, these detected style attributes
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are mapped into film genres. Based on characteristics of films,
Rasheed et al. [123] only use four visual features, namely av-
erage shot length, color variance, motion content, and lighting
key, to classify films into comedies, actions, dramas, or horror
films. The classification is achieved using mean shift clustering.

Some methods only utilize dynamic features to classify video
genres. Roach et al. [122] propose a cartoon video classification
method that uses motion features of foreground objects to dis-
tinguish between cartoons and noncartoons. Roach et al. [108]
classify videos based on the dynamic content of short video
sequences, where foreground object motion and background
camera motion are extracted from videos. The classified videos
include sports, cartoons, and news.

b) Rule- or knowledge-based approach: This approach
applies heuristic rules from domain knowledge to low-level
features to classify videos. Chen and Wong [109] develop a
knowledge-based video classification method, in which the rel-
evant knowledge is coded in the form of generative rules with
confidences to form a rule-base. The Clip language is used to
compile a video content classification system using the rule-
base. Zhou et al. [110] propose a supervised rule-based video
classification system, in which higher semantics are derived
from a joint use of low-level features along with classification
rules that are derived through a supervised learning process.
Snoek et al. [93] propose a video classification and indexing
method, combining video creation knowledge to extract seman-
tic concepts from videos by exploring different paths through
three consecutive analysis steps: the multimodel video content
analysis step, the video style analysis step, and the context anal-
ysis step. Zhou et al. [107] propose a rule-based video clas-
sification system that applies video content analysis, feature
extraction and clustering techniques to the semantic clustering
of videos. Experiments on basketball videos are reported.

c) Machine learning-based approach: This approach
uses labeled samples with low-level features to train a clas-
sifier or a set of classifiers for videos. Mittal and Cheong [112]
use the Bayesian network to classify videos. The association
between a continuous and nonparametric descriptor space and
the classes is learned and the minimum Bayes error classifier is
deduced. Qi et al. [97] propose a video classification framework
using SVMs-based active learning. The results of clustering all
the videos in the dataset are used as the input to the framework.
The accuracy of the classifiers is improved gradually during
the active-learning process. Fan et al. [98] use multiple levels
of concepts of video contents to achieve hierarchical semantic
classification of videos to enable highly efficient access to video
contents. Truong et al. [90] classify videos into the genres of car-
toons, commercials, music, news, and sports. The features used
include the average shot length, the percentage of each type of
transition, etc. The C4.5 decision tree is used to build the clas-
sifier for genre labeling. Yuan et al. [240] present an automatic
video genre classification method based on a hierarchical on-
tology of video genres. A series of SVM classifiers united in a
binary-tree form assign each video to its genre. Wu et al. [154]
propose an online video semantic classification framework, in
which local and global sets of optimized classification mod-
els are online trained by sufficiently exploiting both local and

global statistic characteristics of videos. Yuan et al. [155] learn
concepts from a large-scale imbalanced dataset using support
cluster machines.

From the aforesaid video genres classification approaches, the
following conclusions can be drawn [23]. 1) These approaches
either use static features only, dynamic features only, or com-
bine them both. 2) All the approaches preferably employ global
statistical low-level features. This is because such features are
robust to video diversity, making them appropriate for video
genre classification. Many algorithms attempt to add some se-
mantic features on the basis of these low-level features. 3) Prior
domain knowledge is widely used in video genres classification.
To use knowledge or rules can improve the classification effi-
ciency for special domains, but the corresponding algorithms
cannot be generalized to videos from other domains.

3) Event Classification: An event can be defined as any
human-visible occurrence that has significance to represent
video contents. Each video can consist of a number of events,
and each event can consist of a number of subevents. To deter-
mine the classes of events in a video is an important component
of content-based video classification [3], and it is connected
with event detection in video data mining. There is a great deal
of published work on event classification. Yu et al. [115] detect
and track balls in broadcast soccer videos and extract ball tra-
jectories, which are used to detect events such as hand ball and
ball possession by a team. Chang et al. [111] detect and clas-
sify highlights in baseball game videos using HMM models that
are learned from special shots identified as highlights. Duan
et al. [116] propose a visual feature representation model for
sports videos. This model is combined with supervised learn-
ing to perform a top-down semantic shot classification. These
semantic shot classes are further used as a midlevel representa-
tion for high-level semantic analysis. Xu et al. [94] present an
HMM-based framework for video semantic analysis. Semantics
in different granularities are mapped to a hierarchical model in
which a complex analysis problem is decomposed into subprob-
lems. The framework is applied to basketball event detection.
Osadchy and Keren [119] offer a natural extension of the “an-
tiface” method to event detection, in both the gray-level and
feature domains. Xie et al. [151] employ HMM and dynamic
programming to detect the sports video concepts of “play,” “no
play,” etc. Pan et al. [114] extract visual features and then use
an HMM to detect slow-motion replays in sports videos.

From the aforesaid event classification algorithms, the fol-
lowing conclusions can be drawn [23]. 1) In contrast with genre
classification, event classification needs more complex feature
extraction. 2) Complicated motion measures are often attached
to event classifiers. Some event classification methods employ
only dynamic features, involving the accurate tracking of mov-
ing objects or rough region-based motion measures, and then
classify the object motions in order to recognize motion events.

4) Object Classification: Video object classification which
is connected with object detection in video data mining is con-
ceptually the lowest grade of video classification. The most
common detected and classified object is the face [120]. Ob-
ject detection often requires the extraction of structural features
of objects and classification of these features. Prior knowledge
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such as an object appearance model is often incorporated into
the process of object feature extraction and classification. Hong
et al. [92] propose an object-based algorithm to classify video
shots. The objects in shots are represented using features of
color, texture, and trajectory. A neural network is used to cluster
correlative shots, and each cluster is mapped to one of 12 cate-
gories. A shot is classified by finding the best matching cluster.
Dimitrova et al. [91] propose a method to classify four types
of TV programs. Faces and texts are detected and tracked, and
the number of faces and texts is used to label each frame of
a video segment. An HMM is trained for each type using the
frame labels as the observation symbols. The limitation of object
classification for video indexing is that it is not generic; video
object classification only works in specific environments.

C. Video Annotation

Video annotation [4], [117], [241] is the allocation of video
shots or video segments to different predefined semantic con-
cepts, such as person, car, sky, people walking. Video annota-
tion is similar to video classification, except for two differences
[239]: 1) Video classification has a different category/concept
ontology compared with video annotation, although some of
the concepts could be applied to both; and 2) video classifica-
tion applies to complete videos, while video annotation applies
to video shots or video segments. Video annotation and video
classification share similar methodologies: First, low-level fea-
tures are extracted, and then certain classifiers are trained and
employed to map the features to the concept/category labels.

Corresponding to the fact that a video may be annotated with
multiple concepts, the approaches for video annotation can be
classified as isolated concept-based annotation, context-based
annotation, and integrated-based annotation [244].

1) Isolated Concept-Based Annotation: This annotation
method trains a statistical detector for each of the concepts in
a visual lexicon, and the isolated binary classifiers are used
individually and independently to detect multiple semantic
concepts—correlations between the concepts are not consid-
ered. Feng et al. [8] use the multiple-Bernoulli distribution
to model image and video annotation. The multiple-Bernoulli
model explicitly focuses on the presence or absence of words
in the annotation, based on the assumption that each word
in an annotation is independent of the other words. Naphade
and Smith [69] investigate the efficiencies of a large variety
of classifiers, including GMM, HMM, kNN, and Adaboost,
for each concept. Song et al. [9] introduce active learning
together with semisupervised learning to perform semantic
video annotation. In this method, a number of two-class clas-
sifiers are used to carry out the classification with multiple
classes. Duan et al. [116] employ supervised learning algorithms
based on the construction of effective midlevel representations
to perform video semantic shot classification for sports videos.
Shen et al. [73] propose a cross-training strategy to stack concept
detectors into a single discriminative classifier and to handle the
classification errors that occur when the classes overlap in the
feature space. The limitation of isolated concept-based annota-
tion is that the associations between the different concepts are
not modeled.

2) Context-Based Annotation: To use contexts for different
concepts [71] can improve concept detection performance. The
task of context-based annotation is to refine the detection re-
sults of the individual binary classifiers or infer higher level
concepts from detected lower level concepts using a context-
based concept fusion strategy. For instance, Wu et al. [248] use
an ontology-based learning method to detect video concepts. An
ontology hierarchy is used to improve the detection accuracy of
the individual binary classifiers. Smith and Naphade [249] con-
struct model vectors based on the detection scores of individual
classifiers to mine the unknown or indirect correlations between
specific concepts and then train an SVM to refine the individual
detection results. Jiang et al. [250] propose an active-learning
method to annotate videos. In the method, users annotate a few
concepts for a number of videos, and the manual annotations
are then used to infer and improve detections of other concepts.
Bertini et al. [251] propose an algorithm that uses pictorially
enriched ontologies that are created by an unsupervised clus-
tering method to perform automatic soccer video annotation.
Occurrences of events or entities are automatically associated
with higher level concepts, by checking their proximity to visual
concepts that are hierarchically linked to higher level semantics.
Fan et al. [32], [253] propose a hierarchical boosting scheme,
which incorporates concept ontology and multitask learning, to
train a hierarchical video classifier that exploits the strong corre-
lations between video concepts. The limitation of context-based
annotation is that the improvement of contextual correlations to
individual detections is not always stable because the detection
errors of the individual classifiers can propagate to the fusion
step, and partitioning of the training samples into two parts
for individual detections and conceptual fusion, respectively,
causes that there are no sufficient samples for the conceptual
fusion because of usual complexity of the correlations between
the concepts.

3) Integration-Based Annotation: This annotation method
simultaneously models both the individual concepts and their
correlations: The learning and optimization are done simultane-
ously. The entire set of samples is used simultaneously to model
the individual concepts and their correlations. Qi et al. [244]
propose a correlative multilabel algorithm, which constructs
a new feature vector that captures both the characteristics of
concepts and the correlations between concepts. The limitation
of the integration-based annotation is its high computational
complexity.

The learning of a robust and effective detector for each con-
cept requires a sufficiently large number of accurately labeled
training samples, and the number required increases exponen-
tially with the feature dimension. Recently, some approaches
have been proposed to incorporate unlabeled data into the su-
pervised learning process in order to reduce the labeling burden.
Such approaches can be classified into semisupervised-based
and active-learning-based.

a) Semisupervised learning: This approach uses unla-
beled samples to augment the information in the available la-
beled examples. Yan and Naphade [74], [146] present semisu-
pervised cross feature learning for cotraining-based video con-
cept detection and investigate different labeling strategies in
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cotraining involving unlabeled data and a small number of la-
beled videos. Yuan et al. [143] propose a feature selection-based
manifold-ranking algorithm to learn concepts using a small
number of samples. The algorithm consists of three major com-
ponents: feature pool construction, prefiltering, and manifold
ranking. Wang et al. [141] propose a video annotation algorithm,
based on semisupervised learning by the kernel density estima-
tion. Wang et al. [135], [279] propose an optimized multigraph-
based semisupervised learning algorithm to deal with the in-
sufficiency of training data in video annotation. Ewerth and
Freisleben [167] propose a semisupervised learning method to
adaptively learn the appearances of certain objects or events
for a particular video. Adaboost and SVM are incorporated for
feature selection and ensemble classification.

b) Active learning: Active learning is also an effective
way to handle the lack of labeled samples. Song et al. [6] pro-
pose an active-learning algorithm for video annotation based
on multiple complementary predictors and incremental model
adaptation. Furthermore, Song et al. [7] propose a video an-
notation framework based on an active learning and semisuper-
vised ensemble method, which is specially designed for personal
video databases.

V. QUERY AND RETRIEVAL

Once video indices are obtained, content-based video re-
trieval [5] can be performed. On receiving a query, a similarity
measure method is used, based on the indices, to search for the
candidate videos in accordance with the query. The retrieval
results are optimized by relevance feedback, etc. In the follow-
ing, we review query types, similarity matching, and relevance
feedback.

A. Query Types

Nonsemantic-based video query types include query by ex-
ample, query by sketch, and query by objects. Semantic-based
video query types include query by keywords and query by
natural language.

1) Query by Example: This query extracts low-level features
from given example videos or images and similar videos are
found by measuring feature similarity. The static features of key
frames are suitable for query by example, as the key frames
extracted from the example videos or exemplar images can be
matched with the stored key frames.

2) Query by Sketch: This query allows users to draw
sketches to represent the videos they are looking for. Features
extracted from the sketches are matched to the features of the
stored videos. Hu et al. [36] propose a method of query by
sketch, where trajectories drawn by users are matched to trajec-
tories extracted from videos.

3) Query by Objects: This query allows users to provide an
image of object. Then, the system finds and returns all occur-
rences of the object in the video database [267]. In contrast with
query by example and query by sketch, the search results of
query by objects are the locations of the query object in the
videos.

4) Query by Keywords: This query represents the user’s
query by a set of keywords. It is the simplest and most di-
rect query type, and it captures the semantics of videos to some
extent. Keywords can refer to video metadata, visual concepts,
transcripts, etc. In this paper, we mainly consider visual con-
cepts.

5) Query by Natural Language: This is the most natural
and convenient way of making a query. Aytar et al. [255] use
semantic word similarity to retrieve the most relevant videos and
rank them, given a search query specified in the natural language
(English). The most difficult part of a natural language interface
is the parsing of natural language and the acquisition of accurate
semantics.

6) Combination-Based Query: This query combines dif-
ferent types of queries such as text-based queries and video
example-based queries. The combination-based query is adapt-
able to multimodel search. Kennedy et al. [259] develop a frame-
work to automatically discovere useful query classes by clus-
tering queries in a training set according to the performance
of various unimodal search methods. Yan et al. [258] propose
an adaptive method to fuse different search tools to implement
query-class-dependent video retrieval, where the query-class as-
sociation weights of the different search tools are automatically
determined. Yuan et al. [219] classify the query space into per-
son and nonperson queries in their multimedia retrieval system.
Yan and Hauptmann [198] consider the classification of queries
and the determination of combination weights in a probabilistic
framework by treating query classes as latent variables.

The following query interfaces are among the most famous
so far.

1) The Informedia interface [31], [70]: This interface sup-
ports filtering based on visual semantic concepts. The
visual concept filters are applied after a keyword-based
search is carried out.

2) The MediaMill query interface [30], [99]: This interface
combines query-by-visual concept, query by example, and
query by textual keyword.

B. Similarity Measure

Video similarity measures play an important role in content-
based video retrieval. Methods to measure video similarities can
be classified into feature matching, text matching, ontology-
based matching, and combination-based matching. The choice
of method depends on the query type.

1) Feature Matching: The most direct measure of similarity
between two videos is the average distance between the features
of the corresponding frames [34]. Query by example usually
uses low-level feature matching to find relevant videos. How-
ever, video similarity can be considered in different levels of
resolution or granularity [35].

According to different user’ demands, static features of key
frames [59], object features [81], and motion features [36] all
can be used to measure video similarity. For example, Sivic
et al. [18] extract face features from an example shot contain-
ing the queried face and match the extracted features with the
stored face features. Then, shots containing the queried face are
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retrieved. Lie and Hsiao [37] extract trajectory features of ma-
jor objects in a given set of videos and match the extracted
trajectory features with stored trajectory features to retrieve
videos.

The merit of feature matching is that the video similarity can
be conveniently measured in the feature space. Its limitation is
that semantic similarity cannot be represented because of the
gap between sets of feature vectors and the semantic categories
familiar to people.

2) Text Matching: Matching the name of each concept with
query terms is the simplest way of finding the videos that satisfy
the query. Snoek et al. [242] normalize both the descriptions
of concepts and the query text and then compute the similarity
between the query text and the text descriptions of concepts
by using a vector space model. Finally, the concepts with the
highest similarity are selected. The merits of the text-matching
approach are its intuitiveness and simplicity of implementation.
The limitation of this approach is that all related concepts must
be explicitly included in the query text in order to obtain satis-
factory search results.

3) Ontology-Based Matching: This approach achieves sim-
ilarity matching using the ontology between semantic concepts
or semantic relations between keywords. Query descriptions
are enriched from knowledge sources, such as ontology of con-
cepts or keywords. Snoek et al. [242] perform the syntactic
disambiguation of the words in the text query and then translate
the nouns and noun chunks extracted from the text to onto-
logical concepts by looking up each noun in Wordnet. As the
concepts are also linked to Wordnet, the ontology is used to
determine which concepts are mostly related to the original
query text. Based on the fact that the semantic word similar-
ity is a good approximation for visual co-occurrence. Aytar et
al. [255] utilize semantic word similarity measures to measure
the similarity between text annotated videos and users’ queries.
Videos are retrieved based on their relevance to a user-defined
text query. The merit of the ontology-based matching approach
is that extra concepts from knowledge sources are used to im-
prove retrieval results [221], [227]. The limitation of this ap-
proach is that irrelevant concepts are also likely to be brought
in, perhaps leading to unexpected deterioration of search
results.

4) Combination-Based Matching: This approach “leverages
semantic concepts by learning the combination strategies from
a training collection, e.g., learning query-independent combi-
nation models [222] and query-class-dependent combination
models [258]” [229]. It is useful for combination-based queries
that are adaptable to multimodal searches. The merits of the
combination-based matching approach are that concept weights
can be automatically determined and hidden semantic concepts
can be handled to some extent. The limitation of this approach
is that it is difficult to learn query combination models.

C. Relevance Feedback

In relevance feedback, the videos obtained in reply to a search
query are ranked either by the user or automatically. This rank-
ing is used to refine further searches. The refinement methods

include query point optimization, feature weight adjustment,
and information embedding. Relevance feedback bridges the
gap between semantic notions of search relevance and the low-
level representation of video content. Relevance feedback also
reflects user’s preferences by taking into account user feedback
on the previously searched results. Like relevance feedback for
image retrieval, relevance feedback for video retrieval can be
divided into three categories: explicit, implicit, and pseudofeed-
back.

1) Explicit Relevance Feedback: This feedback asks the user
to actively select relevant videos from the previously retrieved
videos. Thi et al. [49] propose an interface for image and video
retrieval. Users are required to choose positive samples and re-
trieval results are improved by modifying the query point toward
the positive examples. Chen et al. [51] adjust the weights em-
bedded in the similarity measure to reflect the user’s feedback.
The user can label sample videos as “highly relevant,” “rel-
evant,” “no-opinion,” “nonrelevant,” or “highly nonrelevant,”
Sudha et al. [42] employ a simultaneous perturbation stochastic
approximation-based algorithm to compute the optimal feature
weights according to user’s feedback. Aksoy and Cavus [55] de-
scribe a relevance feedback response technique that can adjust
the weights of different features and different spatial locations
in key frames according to the user’s feedback. Browne and
Smeaton [52] describe ostensive relevance feedback that takes
into account the changes in the user’s requirements that occur
while users search for information. A decay function is used
to weight the contribution of a previously viewed and relevant
object to reflect the evolvement of the user’s interest. Sav et
al. [54], [56] present an interactive object-based video retrieval
system that uses relevance feedback to refine an underlying
model of the search object. The user can directly select the fea-
tures important for the user and the image sections that the user
wants to search for. The merit of explicit feedback is that it can
obtain better results than implicit feedback or the pseudofeed-
back discussed later as it uses the user feedback directly. Its
limitation is that it needs more user interaction, which requires
more user patience and cooperation.

2) Implicit Relevance Feedback: This feedback refines re-
trieval results by utilizing click-through data obtained by the
search engine as the user clicks on the videos in the presented
ranking [43]. Ghosh et al. [53] present a method to personal-
ize video retrieval results based on click-through data analysis.
The parameters of a Bayesian network that establishes uncer-
tainties between concepts and video features are learned using
the implicit user feedback. Hopfgartner et al. [62] propose a
simple model to adapt retrieval results based on simulated im-
plicit relevance feedback. The merit of implicit feedback is that
it does not require the conscious cooperation of the user, mak-
ing it more acceptable, available, and practicable than explicit
feedback. The limitation of implicit feedback is that the infor-
mation gathered from the user is less accurate than in explicit
feedback.

3) Pseudorelevance Feedback: This feedback selects posi-
tive and negative samples from the previous retrieval results
without the participation of the user. The positive samples are
the ones near to the query sample in the feature space, and the
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negative samples are far from the query sample. This way, the
user’s feedback is simulated. These samples are returned to the
system for the second search. Muneesawang and Guan [50]
present a self-training neural network-based relevance feedback
that can obtain good retrieval performance with no user input.
Forward and backward signal propagation is used to simulate the
user’s feedback. Yan et al. [33] propose an automatic retrieval
method that learns an adaptive similarity space by automat-
ically feeding back the bottom-ranked examples for negative
feedback. Hauptmann et al. [252] develop a robust pseudorele-
vance feedback method called probabilistic local feedback based
on a discriminative probabilistic retrieval framework. The pro-
posed method is effective to improve retrieval accuracy without
assuming that most of the top-ranked documents are relevant.
The merit of pseudorelevance feedback is the substantial reduc-
tion in user interaction. It is limited in applications because of
the semantic gap between low-level and high-level features: the
similarities of low-level features obtained from different videos
do not always coincide with the similarities between the videos
defined by the user.

Active learning has been applied to relevance feedback for
video retrieval. For example, Luan et al. [269] iteratively select
videos that are the most relevant to the query until the number of
videos labeled as relevant by users in an iteration step becomes
very small. Then, the videos closest to the classifier boundary
are returned to users for identification and the system is updated
using the identified videos. Nguyen et al. [270] also use active
learning in the interaction process to choose videos close to the
classifier boundary. In contrast with the aforementioned algo-
rithm that selects videos in the feature space, they choose videos
in the dissimilarity space represented by a number of prototypes.
Bruno et al. [271] design multimodal dissimilarity spaces for fast
and efficient video retrieval. Different prototypes are learned for
each modality. Videos are selected in the multimodal dissimilar-
ity spaces based on the multimodal characteristics. In contrast
with the traditional relevance feedback algorithms which select
the most relevant videos which are ranked for further search,
active-learning-based relevance feedback algorithms [268] usu-
ally return the videos closest to the classifier boundary to users
for identification. Then, these most informative videos are used
to improve the precision of the retrieval system. It has been ver-
ified that active-learning-based relevance feedback algorithms
have a better performance than traditional relevance feedback
algorithms [268].

VI. VIDEO SUMMARIZATION AND BROWSING

Video summarization [39], [156], [157], [181] removes the
redundant data in videos and makes an abstract representation
or summary of the contents, which is exhibited to users in a
readable fashion to facilitate browsing. Video summarization
complements video retrieval [183], by making browsing of re-
trieved videos faster, especially when the total size of the re-
trieved videos is large: The user can browse through the abstract
representations to locate the desired videos. A detailed review
on video browsing interfaces and applications can be found
in [261].

There are two basic strategies for video summarization.
1) Static video abstracts: each of which consists of a collec-

tion of key frames extracted from the source video.
2) Dynamic video skims: each of which consists of a col-

lection of video segments (and corresponding audio seg-
ments) that are extracted from the original video and then
concatenated to form a video clip which is much shorter
than the original video.

These two strategies can be combined to form hierarchical
video summarizations. In the following, the different methods
for video summarization are briefly reviewed. As video summa-
rization is a research topic which is as large as video retrieval,
we focus on reviewing papers published in the last four years,
as a supplement to previous surveys [39], [181] on video sum-
marization.

A. Key Frame-Based Static Abstracts

In recent years, many approaches [182], [189] have been
proposed to organize extracted key frames into static video ab-
stracts. These approaches include video table of contents [142],
storyboard, and pictorial video summary. For instance, Xie
and Wu [169] propose an algorithm to automatically gener-
ate the video summary for broadcast news videos. An affinity
propagation-based clustering algorithm is used to group the ex-
tracted key frames into clusters, aiming to keep the pertinent
key frames that distinguish one scene from the others and re-
move redundant key frames. Li et al. [164] propose a MinMax
rate distortion optimization algorithm to find key frames for an
optimal video summary. Optimal algorithms are developed to
solve both the rate minimization and the distortion minimiza-
tion formulations with different summarization rates. Calic et
al. [175] propose a video key frame summarization and brows-
ing algorithm that produces a comic-like representation of a
video. The algorithm creates visual summaries in a user cen-
tered way. Guironnet et al. [161] propose a method for video
summarization using camera motion analysis, based on rules to
avoid temporal redundancy between the selected frames. Aner et
al. [186] compose mosaics of scene backgrounds in sitcom pro-
grams. The mosaic images provide a compact static visual sum-
mary of the physical settings of scenes. Choudary and Liu [190]
summarize the visual content in instructional videos, using ex-
tracted texts and figures. They match and mosaick the extracted
key frames to reduce content redundancy and to build compact
visual summaries. Christel et al. [276] have constructed a base-
line rushes summarization system at TRECVid 2008 [272]. This
baseline method simply presents the entire video at 50×normal
speed.

The merits of key frame-based static abstracts include the
following. 1) The video content is displayed in a rapid and
compact way, with no timing or synchronization issues, for
browsing and navigation purposes. 2) Nonlinear browsing of
video content is possible. 3) The total video content can be cov-
ered. The limitations of key frame-based static abstracts include
the following. 1) Audio content in the original video is missing.
2) The dynamic visual content of videos cannot be described.
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3) The abstracts are unnatural and hard to understand when the
video is complex.

B. Dynamic Video Skimming

Dynamic video skimming [166], [168], [172], [173] con-
denses the original video into a much shorter version that con-
sists of important segments selected from the original video.
This shorter version can be used to browse or to guide the edit-
ing of the original video.

The merits of dynamic video skimming include the following.
1) It preserves the time-evolving nature of the original video. 2)
Audio can be included in skims. 3) It is often more entertaining
and interesting to watch a skim rather than a slide show of key
frames. The limitations of dynamic video skimming include the
following. 1) The sequential display of video skims is time-
consuming. 2) The content integrity is sacrificed, while video
highlights are emphasized.

There are three main approaches to video skimming: re-
dundancy removal, object or event detection, and multimodal
integration.

1) Redundancy Removal: This approach removes uninfor-
mative or redundant video segments from the original video and
retains the most informative video segments that are concate-
nated to form a skim. For example, Xiao et al. [158] extract
repeating patterns from a video. A video shot importance eval-
uation model is used to select the most informative video shots
to construct the video summary. Ngo et al. [160] represent a
video as a complete undirected graph and use the normalized
cut algorithm to optimally partition the graph into video clus-
ters. At most one shot is retained from each cluster of visu-
ally similar shots in order to eliminate redundant shots. Gao et
al. [174] propose a video summarization algorithm suitable for
personal video recorders. In the algorithm, according to the de-
fined impact factors of scenes and key frames, parts of shots are
selected to generate an initial video summary. Then, repetitive
frame segment detection is applied to remove redundant infor-
mation from the initial video summary. Wang and Ngo [176]
have proposed an algorithm for rushes summarization task in
TRECVid-2007 [177]–[179]. In the algorithm, undesirable shots
are filtered out and the intershot redundancy is minimized by
detecting and then removing repetitive shots. The most repre-
sentative video segments are selected for summarization using
techniques such as object detection, camera motion estimation,
key-point matching, and tracking. Liu et al. [274] have devised
an algorithm for the rushes summarization task in TRECVid-
2008 [272]. They first segment a video into shots and then use
a clustering algorithm to find and remove similar shots. Then,
saliency detection is applied to detect the most informative shots
to be included in the summary. Chasanis et al. [275] measure
similarities between shots based on the similarities between key
frames and employ them to remove repeated shots.

2) Object or Event Detection: Semantic primitives in
videos, such as relevant objects, actions, and events, can be
used in highlight-preserving video skims. In the object or event
detection-based approach, video segments are selected accord-
ing to the results of video segment classification and object or

event detection. Detected objects and events are ranked to cre-
ate the video skim. For example, in skimming sports videos,
goals, fouls, touchdowns, etc. are detected as important events.
Ekin et al. [165] propose a framework to skim soccer videos
through dominant color region detection, robust shot boundary
detection, shot classification, goal detection, referee detection,
and penalty-box detection. As an example of object-based skim-
ming, Peker et al. [188] propose a video skimming algorithm
using face detection on broadcast video programs. In the al-
gorithm, faces are the primary targets, as they constitute the
focus of most consumer video programs. Naci et al. [277] ex-
tract features using face detection, camera motion, and MPEG-7
color layout descriptors of each frame. A clustering algorithm
is employed to find and then remove repeated shots. Bailer
and Thallinger [273] compare two content selection methods
for skimming rush videos. One approach is rule-based, and the
other is HMM-based. A face detection module is employed to
help select important segments to be included in the summary.

3) Multimodal Integration: For videos whose content is
largely contained in the audio, such as news programs and doc-
umentaries, the spoken texts can assist video summarization.
Once caption texts or speech transcripts in a video are available,
a text summary can be integrated with the visual summary into
the video skim, or the video sections corresponding to the se-
lected texts can be concatenated to generate the video skim. For
instance, Taskiran et al. [184] divide a video into segments by
pause detection, and derive a score for each segment according
to the frequencies of the words in the audio track for the seg-
ment. A summary is produced by selecting the segments with
the highest scores while maximizing the coverage of the sum-
mary over the full video. Gong [159] summarizes the audio and
visual content of a source video separately and then integrates
the two summaries using a bipartite graph. The audio content
summarization is achieved by selecting representative spoken
sentences from the audio track, while the visual content sum-
marization is achieved by preserving visually distinct contents
from the image track.

C. Hierarchical Summarization

Hierarchical video summaries can be obtained from key
frames or from static video abstracts combined with video skim-
ming. For instance, Taskiran et al. [185] cluster key frames ex-
tracted from shots using color, edge, and texture features and
present them in a hierarchical fashion using a similarity pyra-
mid. Geng et al. [187] propose a hierarchical video summa-
rization algorithm based on video structure and highlights. In
the algorithm, video structure units (frame, shot, and scene) are
ranked using visual and audio attention models. According to
the measured ranks, the skim ratio and the key frame ratio of
the different video structure units are calculated and used to
construct summaries at different levels in a hierarchical video
summary. Ciocca and Schettini [171] remove meaningless key
frames using supervised classification on the basis of pictorial
features derived directly from the frames, together with other
features derived from the processing of the frames by a visual
attention model. Then, the key frames are grouped into clusters
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to allow multilevel summary using both low-level and high-level
features.

VII. FUTURE DEVELOPMENTS

Although a large amount of work has been done in visual
content-based video indexing and retrieval, many issues are still
open and deserve further research, especially in the following
areas.

1) Motion Feature Analysis. The effective use of motion in-
formation is essential for content-based video retrieval. To dis-
tinguish between background motion and foreground motion,
detect moving objects and events, combine static features and
motion features, and construct motion-based indices are all im-
portant research areas.

2) Hierarchical Analysis of Video Contents. One video may
contain different meanings at different semantic levels. Hierar-
chical organization of video concepts is required for semantic-
based video indexing and retrieval. Hierarchical analysis re-
quires the decomposition of high-level semantic concepts into a
series of low-level basic semantic concepts and their constraints.
Low-level basic semantic concepts can be directly associated
with low-level features, and high-level semantic concepts can
be deduced from low-level basic semantic concepts by statis-
tical analysis. In addition, building hierarchical semantic rela-
tions between scenes, shots, and key frames, on the basis of
video structural analysis; establishing links between classifica-
tions with the three different levels: genres, event and object;
and hierarchically organizing and visualizing retrieval results
are all interesting research issues.

3) Hierarchical Video Indices. Corresponding to hierarchi-
cal video analysis, hierarchical video indices can be utilized in
video indexing. The lowest layer in the hierarchy is the index
store model corresponding to the high-dimensional feature index
structure. The highest layer is the semantic index model describ-
ing the semantic concepts and their correlations in the videos to
be retrieved. The middle layer is the index context model that
links the semantic concept model and the store model. Dynamic,
online, and adaptive updating of the hierarchical index model,
handling of temporal sequence features of videos during index
construction and updating, dynamic measure of video similarity
based on statistic feature selection, and fast video search using
hierarchical indices are all interesting research questions.

4) Fusion of Multimodels. The semantic content of a video
is usually an integrated expression of multiple models. Fusion
of information from multiple models can be useful in content-
based video retrieval [38], [95]. Description of temporal re-
lations between different kinds of information from multiple
models, dynamic weighting of features of different models, fu-
sion of information from multiple models that express the same
theme, and fusion of multiple model information in multiple
levels are all difficult issues in the fusion analysis of integrated
models.

5) Semantic-Based Video Indexing and Retrieval. Current ap-
proaches for semantic-based video indexing and retrieval usu-
ally utilize a set of texts to describe the visual contents of videos.
Although many automatic semantic concept detectors have been

developed, there are many unanswered questions: How to select
the features that are the most representative of semantic con-
cepts? How should large-scale concept ontology for videos [76]
be constructed? How to choose useful generic concept detec-
tors with high retrieval utility? How many useful concepts are
needed [243]? How can high-level concepts be automatically
incorporated into video retrieval? How can ontology [79], [80]
be constructed for translating the query into terms that a concept
detector set can handle? How can inconsistent annotations re-
sulting from different people’s interpretations of the same visual
data be reconciled? How can elaborate ontology be established
between the detector lexica? How can multimodality fusion be
used to detect concepts more accurately? How can different
machine learning approaches be fused to obtain more accurate
concepts?

6) Extensible Video Indexing. Most current video indexing
approaches depend heavily on prior domain knowledge. This
limits their extensibility to new domains. The elimination of the
dependence on domain knowledge is a future research problem.
Feature extraction with less domain knowledge and dynamic
construction of classification rules using rule-mining techniques
may eliminate this dependence.

7) Multimodel Human–Computer Interface. A multimodel
human–computer interface can convey the query intentions
more accurately and improve the accuracy of the retrieval re-
sults. Furthermore, the video output with multimodel repre-
sentation is more visual and vivid. The layout of multimodel
information in the human–computer interface, the effectiveness
of the interface to quickly capture the results in which users are
interested, the suitability of the interface for users’ evaluation
and feedback, and interface’s efficiency in adapting to the users’
query habits and expressions of their personality are all topics
for further investigation.

8) Combination of Perception with Video Retrieval. It is in-
teresting to simulate human perception to exploit new video
retrieval approaches. The research in visual perception shows
that the human vision system quickly identifies the salient image
regions [46]. This ability extends from salient objects (i.e., faces)
in video scenes to significant behaviors in video sequences. New
video retrieval schemes could be based on the detection and ex-
traction of image regions or video behaviors that attract users’
attention [46], [162].

9) Affective Computing-Based Video Retrieval. Video af-
fective semantics describe human psychological feelings such
as romance, pleasure, violence, sadness, and anger. Affective
computing-based video retrieval is the retrieval of videos that
produce these feelings in the viewer. To combine affective
semantics from the spoken language in the audio track with
visual affective semantics [75], to utilize cognitive models,
cultural backgrounds, aesthetic criteria, cold and warm tones,
psychology, or photography [88], and to understand affective
semantics in videos are very interesting research issues.

10) Distributed Network Video Retrieval. Network video re-
trieval should adopt distributed frameworks [48] rather than
conventional centralized frameworks. Distributed network re-
trieval is composed of two stages: video gathering and
video content analysis. In video gathering, the bandwidth of
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transportation and storage is kept low by using only real-time
online methods to analyze the videos. In video content analysis,
more elaborate methods are used to search for specific objects
and to categorize the videos. The video content analysis uses
key data extracted during video gathering. Video indexing and
retrieval in the cloud computing environment, where the indi-
vidual videos to be searched and the dataset of videos are both
changing dynamically, will form a new and flourishing research
direction in video retrieval in the very near future.

11) Social Network-Based Video Retrieval. Besides optimiz-
ing the performance of each local video indexing and retrieval
system, local systems can be integrated into a network charac-
terized by distributed and collaborative intelligence to achieve
more accurate retrieval. It is very interesting to implement such
integration in the context of a social network in which users la-
bel video contents which they recommend to each other through
collaborative filtering or in the context of a video content infer-
ence network in which video content inference systems learn
from each other and complement each other [29]. Such inte-
gration by a social network can even take the social or cultural
context into consideration during video retrieval.

VIII. CONCLUSION

We have presented a review on recent developments in vi-
sual content-based video indexing and retrieval. The state of
the art of existing approaches in each major issue has been de-
scribed with the focus on the following tasks: video structure
analysis including shot boundary detection, key frame extrac-
tion and scene segmentation, extraction of features of static key
frames, objects and motions, video data mining, video classifica-
tion and annotation, video search including interface, similarity
measure and relevance feedback, and video summarization and
browsing. At the end of this survey, we have discussed future
directions such as affective computing-based video retrieval and
distributed network video retrieval.
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