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Abstract—In this paper, we present a semi-supervised
method to learn a low rank Mahalanobis distance function.
Based on an approximation to the projection distance from a
manifold, we propose a novel parametric manifold regularizer.
In contrast to previous approaches that usually exploit side
information only, our proposed method can further take
advantages of the intrinsic manifold information from data. In
addition, we focus on learning a metric of low rank directly; this
is different from traditional approaches that often enforce the l1
norm on the metric. The resulting configuration is convex with
respect to the manifold structure and the distance function,
respectively. We solve it with an alternating optimization
algorithm, which proves effective to find a satisfactory solution.
For efficient implementation, we even present a fast algorithm,
in which the manifold structure and the distance function are
learned independently without alternating minimization. Ex-
perimental results over 12 standard UCI data sets demonstrate
the advantages of our method.

Keywords-Semi-supervised metric learning; manifold regu-
larization; low rank; linearly constrained nuclear norm mini-
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I. INTRODUCTION

Distance metric is an essential component in many ma-
chine learning algorithms, such as nearest neighbor classi-
fiers and K-means. In order to deliver satisfactory results,
selecting an appropriate distance metric often plays a critical
role. To this end, many excellent methods for distance metric
learning have been proposed [1]–[8]. From the perspective of
specific learning paradigms, these methods can be classified
into three categories: supervised metric learning, unsuper-
vised metric learning and semi-supervised metric learning.
Supervised metric learning methods are often utilized to
improve the performance of nearest neighbor classifiers,
such that data points from the same class are encouraged to
be close while those from different classes to be far apart [1],
[2], [5], [9], [10]. Unsupervised metric learning methods
are in general developed to exploit the underlying manifold
structure of data, so as to address unsupervised problems,
such as clustering [11] or visualization [12], [13]. Semi-
supervised metric learning combines the idea of supervised
metric learning and unsupervised metric learning, which
integrates both label information from labeled data and
geometric information from unlabeled data for classification,
clustering or retrieval problems [6], [14]. The merit of
semi-supervised metric learning stems from that it utilizes

as much as possible geometric information of the data
to alleviate the problem arose from the label information
deficiency.

Whilst existing methods for distance metric learning
have been shown to perform well across various learning
paradigms, most of them exploit merely side information
from data (e.g., similar or dissimilar constraints and gen-
uine labels) [2], [5], [10]. Recently, [6] and [14] proposed
approaches that can utilize the geometric information via
the Laplacian regularizer. However, these approaches either
formulated the problem as a semi-definite programming
(SDP) problem or learned the metric heuristically. SDP is
computationally difficult to optimize, while the heuristic
method may not guarantee the global solution. In addition,
previous methods usually learn a metric without enforcing
the low rank (or simply regularizing with the l1-norm),
which however proves effective to suppress noise and to
some extent reflect intrinsic structure of the data.

In this paper, we propose a novel semi-supervised algo-
rithm to learn a low rank Mahalanobis distance function di-
rectly. Based on an approximation to the projection distance
from a manifold, we propose a parametric manifold regu-
larizer to the metric learning model. In contrast to previous
approaches that usually exploit side information only, our
proposed method can further take advantages of the intrinsic
manifold information from data. This significantly improves
the performance of learned metric. Moreover, we adopt the
linearly constrained nuclear norm minimization which di-
rectly learns a low rank metric. This is distinctive with those
standard methods (either enforcing l1-norm regularization or
even no low rank constraints). The resulting formulation is
convex with respect to (w.r.t.) the manifold structure and
the distance function, respectively. It can be solved using an
alternating optimization algorithm, which proves effective
to find a satisfactory solution. More precisely, when the
manifold structure is fixed, the problem can be solved with a
fixed-point iterative algorithm that is guaranteed to converge
globally. When the distance metric is fixed, this problem is a
standard quadratic programming problem, and can be solved
with classic algorithms or online softwares.

In addition, we find a tight upper bound on the objective
function to learn the manifold structure, that directly leads
to a new nonparametric manifold regularizer to our model.



Substituting this nonparametric manifold regularizer for the
original parametric one, we can derive a fast algorithm for
our original model. In this fast algorithm, the manifold
structure is learned directly from data, while the distance
metric can be learned with a fixed-point iterative method
based on the learned manifold structure. Since this algorithm
avoids the alternating minimization procedures, it is fairly
fast compared to the original one.

The rest of this paper is organized as follows. In Section
II, we introduce notation and formulation of our model in
detail. The optimization algorithm is presented in Section
III, while a fast solver of our model is described in Section
IV. Section V shows the experimental settings and results.
Finally, we conclude this paper in Section VI.

II. PROBLEM FORMULATION

In this section, we introduce notation used in this paper
and the formulation of our model in detail.

A. Notation and Formulation
In metric learning problems, we are often given a set of

N points X = {x1,x2, . . . ,xN | xi ∈ <d}, and a group of
triplets, T = {(i, j, l)α | xi is similar to xj but dissimilar
to xl, α = 1, . . . , T}, known as side information. Based
on these data and the specified side information, we seek a
symmetric and positive semi-definite (p.s.d.) matrix A that
parameterizes the Mahalanobis distance function

dA(xi,xi) =
√

(xi − xj)TA(xi − xj). (1)

Note that it is not necessary for all the points in X to
be involved in T . We assume the factorization of A is
A = WWT , where W is a d × r matrix with rank r.
For simplicity, we use ‘xij’ to denote ‘xi − xj’ in all the
following parts. Overloading notation a bit, we use {i, j, l}
to index variables corresponding to the data points xi, xj
and xl, respectively.

To express the similarity between points in a compact
form, we construct a symmetric adjacency matrix with
entries

Kij = Kji =

{
1, (i, j, ·)α ∈ T ;
0, otherwise; (2)

where (i, j, ·)α denotes any triplet involved in T , indicating
xi and xj are a similar pair of points. In the case that the
number of triplets is much smaller than the squared number
of the data, K will be a quite sparse matrix. With K, we
can derive a loss function parameterized by A that

L1(A) =
1

2

N∑
i,j=1

(xij)
TA(xij)Kij

=

N∑
i,j=1

(xTi Axi − xTi Axj)Kij

= tr(XTAXDK)− tr(XTAXK)

= tr(XDKXTA)− tr(XKXTA)

= tr(X(DK −K)XTA)

= tr(XLKXTA), (3)

where DK is a diagonal matrix whose diagonal elements
are the sums of the row elements of K, and LK = DK−K
is the Laplacian matrix. As a result, we have encoded all the
side information w.r.t. similarity in the loss function L1(A).

To punish small distance between dissimilar points, we
introduce another loss function L2(A) = [1 + xTjiAxji −
xTliAxli]+ within each given triplet (i, j, l)α ∈ T , where
L2(A) is the so called hinge loss w.r.t. A and [z]+ =
max(0, 1− z). This hinge loss is incurred by the dissimilar
data whose distance does not exceed, by one unit of distance,
the distance between the similar data within the same triplet.
For each triplet, we relax the hinge loss by introducing a
nonnegative slack variable ξα, α = 1, . . . , T :

xTliAxli − xTjiAxji ≥ 1− ξα. (4)

Based on Equation (3) and Equation (4), our model targets
to learn a low rank distance function with manifold regu-
larization under similarity and dissimilarity constraints. The
model can be formulated as

argminA�0,ξ µrank(A) + λ
T
tr(XLKXTA) + ηRM(A)

+
∑T
t=1 ξα

s.t. xTliAxli − xTjiAxji ≥ 1− ξα,
ξα ≥ 0, (i, j, l)α ∈ T , (5)

where ξ = {ξ1, . . . , ξα} is the vector composed of slack
variables, µ, λ and η are positive trade-off weights, and
RM(A) is a manifold regularizer parameterized by A.
Introduction of RM(A) incorporates the knowledge from
unlabeled data into the metric A by assuming that each
transformed WTxi lies on or close to a low-dimensional
manifold. We will discuss this regularizer in more details
shortly in Section II-B.

Rank(A) is a non-convex function w.r.t. A and hard to
optimize due to the combinatorial nature. Following recent
work in matrix completion [15], [16], we replace rank(A)
with its convex envelop – the nuclear norm of A. This is
different from previous l1-norm sparse regularization in that
the element-wise l1-norm of a matrix does not necessarily
generate a low rank. The nuclear norm of A is defined as
the sum of its singular values, i.e., ‖ A ‖∗=

∑r
s=1 σs(A),

where σs’s are the singular values of A, and r is the rank
of A. Therefore, the resulting formulation of our model can
be written as

argminA�0,ξ µ ‖ A ‖∗ + λ
T
tr(XLKXTA) + ηRM(A)

+
∑T
t=1 ξα

s.t. xTliAxli − xTjiAxji ≥ 1− ξα,
ξα ≥ 0, (i, j, l)α ∈ T . (6)

B. Parametric Manifold Regularization

We assume all the transformed data WTxi’s lie on or
close to a low dimensional manifold and use the projection
distance from this manifold to regularize our learning model.
We approximately calculate the (squared) projection distance
of WTxi onto the manifold M as

PM(A,xi) = ‖WTxi −
∑
j∈Ni

mijW
Txj‖22, (7)
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where Ni is the set of k-nearest neighbors of WTxi,
mij’s are the locally linear reconstruction weights with∑
j∈Ni mij = 1, and mij ≥ 0. Following the works by

[17] and [18] we have
Theorem 1: In the limit, as the number of data points

increase, PM(A,xi) is an orthogonal projection distance of
WTxi onto the principal surface, M, of the transformed
data points.
Since the space limitation, we omit the proof of this theorem
here.

We define

PM(A) =
1

N

N∑
i=1

‖WTxi −
∑
j∈Ni

mijW
Txj‖22, (8)

and denote M = {mij}N×N as the reconstruction weights
matrix with mij as its elements at the i-th row and j-th
column. By simply calculation we have

‖WTxi −
∑
j∈Ni

mijW
Txj‖22

= ‖
∑
j∈Ni

mijW
Txij‖22

=
∑
j,l∈Ni

mijmilx
T
ijAxil

=
∑
j,l∈Ni

mijmilGjl (9)

where Gjl = xTijAxil = tr(xilx
T
ijA). Substituting PM(A)

for the manifold regularizer in Problem (6), we obtain

argminA�0,M,ξ µ ‖ A ‖∗ +
λ

T
tr(XLKXTA)

+
η

N

N∑
i=1

∑
j,l∈Ni

mijmilGjl +

T∑
t=1

ξα

s.t. xTliAxli − xTjiAxji ≥ 1− ξα,
ξα ≥ 0, (i, j, l)α ∈ T ,∑
j∈Ni

mij = 1,mij ≥ 0. (10)

One can see that the third term in the objective function
of Problem (10) is a manifold regularizer parameterized by
M. We will show below that Problem (10) is convex w.r.t.
A and M respectively, by proving that each term in the
objective function and each constraint is convex w.r.t. them
respectively.

Theorem 2: Problem (10) is convex w.r.t. A and M
respectively.

Proof: First, it is easy to verify that all the terms in
the objective function and constraints are convex w.r.t. A.
Second, since G is a p.s.d. matrix, the third term in the
objective function is convex w.r.t. M. Hence, we can get
the conclusion that Problem (10) is convex w.r.t. A and M
respectively. �

Since Problem (10) is convex w.r.t. A and M respectively,
we develop an alternating optimization algorithm to solve it,
which proves effective to find a satisfactory solution [19].

Algorithm 1 LRMLMR
1: Input:
2: X = {x1, . . . ,xN}; T = {(i, j, l)α}; µ, λ, η; A0;
3: Output:
4: A, M;
5: Steps:
6: Initial A using A0;
7: while t < Maxit and not converge do
8: 1) For fixed At, solve Mt from Problem (11);
9: 2) For fixed Mt, solve At+1 from Problem (10);

10: end while

III. OPTIMIZATION

The proposed optimization algorithm is shown in Al-
gorithm 1. We call it LRMLMR. LRMLMR begins with
initializing A using a d× d matrix, e.g., the identity matrix
or the inverse of the covariance matrix of the data. Then it
learns M and A alternatingly. More precisely, when A is
fixed, LRMLMR learns M by solving the problem as below:

argminM

N∑
i=1

‖WTxi −
∑
j∈Ni

mijW
Txj‖22

s.t.
∑
j∈Ni

mij = 1,mij ≥ 0. (11)

Furthermore, this problem can be decomposed into N
independent problems for each i ∈ {1, . . . , N},

argminMi∗
‖WTxi −

∑
j∈Ni

mijW
Txj‖22

s.t.
∑
j∈Ni

mij = 1,mij ≥ 0, (12)

where Mi∗ is the i-th row of M. Problem (12) is a standard
quadratic programming problem and can be solved with
classic algorithms and online softwares. Using the Lagrange
multiplier, Problem (12) can be rewritten as

argminMi∗
‖WTxi −

∑
j∈Ni

mijW
Txj‖22 + π(

∑
j∈Ni

mij − 1)

s.t. mij ≥ 0, (13)

where π is a positive trade-off constant. Since all the mij are
nonnegative, i.e., mij ≥ 0, the second term π(

∑
j∈Ni mij−

1) is equivalent to an l1-norm regularizer to Mi∗, which can
encourage the sparsity of Mi∗ [20], [21]. In other words, this
algorithm could adaptively choose the meaningful neighbors
to reconstruct each datum WTxi.

For a given M, LRMLMR learns A using a fixed-point
iterative method. In the t-th iteration, the fixed-point iterative
method involves two alternating steps:

1) (gradient step) Zt = At − τg(At),
2) (shrinkage step) At+1 = Sτµ(Zt).

In the gradient step, g(At) is the gradient of the objective
function in Problem (10) w.r.t. At (excluding the nuclear
norm term), and τ is the step size. Following [22], we can
express ξα as a function of A:

ξα(A) = [1 + xTjiAxji − xTliAxli]+, ∀(i, j, l)α ∈ T (14)



where [z]+ = max(0, 1−z) is the hinge loss. Note that the
hinge loss is not differentiable, but we can compute its sub-
gradient and use a standard descent algorithm to optimize
the problem. Thus we can calculate g(At) as

g(At) =
λ

T
XLKXT +

η

N

N∑
i=1

∑
j,l∈Ni

mijmilxilx
T
ij

+
∑

(i,j,l)α∈S

(xjix
T
ji − xlixli)

T (15)

where S ⊂ T is the set of triplets whose corresponding
slack variable exceeds zero, ξα(At) > 0.

In the shrinkage step, Sτµ(Zt) is a matrix shrinkage
operator on Zt. Since Zt is a symmetric and p.s.d. matrix,
we adapt the eigenvalue decomposition method to shrink the
rank of Z. Let Zt = UΛUT is the eigenvalue decomposition
of Zt. Then Sτµ(Zt) = Umax{Λ− τµ,0}UT , where max
is elementwise. That is, the shrinkage operator shifts the
eigenvalues down, and truncates any eigenvalue less than
τµ to zero. This step reduces the nuclear norm as well.

For the convergence properties of this fixed-point iterative
algorithm, we present a theorem as below.

Theorem 3: For a fixed M, the sequence {At} generated
by the fixed-point iterations with τ ∈ (0, 2/λmax(gM(A)))
converges to some A∗ ∈ A∗, where gM(A) is the gradient
of the objective function in Problem (10) w.r.t. A for a fixed
M (excluding the nuclear norm term), λmax(gM(A)) is the
maximum eigenvalue of gM(A) and A∗ is the set of optimal
solutions of Problem (10).
The proof of this theorem is similar to that of theorem 4 in
[23]. Due to the space limitation, we omit it here.

IV. A FAST SOLVER

The optimization problem (10) is not jointly convex w.r.t.
A and M. Even though we can employ an alternating
optimization algorithm to solve it, the speed of implemen-
tation still hampers its application to real data. In this case,
a typical workaround is to minimize a surrogate convex
loss function which upper bounds the original non-convex
one [24], [25]. Here, motivated by the works of [24] and
[25], we derive a tight upper bound on the objective function
in Problem (11), which can result in a convex nonparametric
manifold regularizer to the original optimization problem
(10). Especially, based on this new manifold regularizer,
we can find a fast solver to Problem (10) directly. Before
introducing the detailed convex relaxation procedure, we
first present a lemma as below:

Lemma 1: There exists a number ϑ ≥ 0, to guarantee
‖WTxi−

∑
j∈Ni mijW

Txj‖22 ≤ ϑ‖xi−
∑
j∈Ni mijxj‖22,

where
∑
j∈Ni mij = 1,mij ≥ 0, and WWT = A.

Proof: Suppose the eigenvalue decomposition of A is
A = VΛAVT , and λ1A is the maximum eigenvalue of A.

Then we have

‖WTxi −
∑
j∈Ni

mijW
Txj‖22

=
∑
j,l∈Ni

mijmilx
T
ijAxil

≤ λ1
A‖xi −

∑
j∈Ni

mijxj‖22. (16)

Let ϑ = λ1A and substitute it in Equation (16). We can get
the result presented in the above theorem. �

Based on this lemma, we have
Theorem 4: we can find a tight upper bound on the ob-

jective function in Problem (11), such that
∑N
i=1 ‖WTxi−∑

j∈Ni mijW
Txj‖22 ≤ ϑ̃

∑N
i=1 ‖xi −

∑
j∈Ni mijxj‖22,

where ϑ̃ is a positive constant,
∑
j∈Ni mij = 1,mij ≥

0, and WWT = A.
Therefore, we can integrate

∑N
i=1 ‖xi −

∑
j∈Ni mijxj‖22

into the original learning model as a nonparametric manifold
regularizer, instead of the parametric one in Problem (10).
As a result, this updated model can be solved rather faster
than the original one: we directly learn M from the given
data, and then learn A based upon M using a fixed-
point iterative algorithm. Since this updated problem is
still convex w.r.t. A, we can obtain a global optimum for
this new model, and meantime guarantee that it is also an
approximated optimal solution for the original problem, with
high confidence.

V. EXPERIMENTS

To evaluate our proposed method, LRMLMR, we conduct
experiments over 12 standard UCI data sets. The properties
of each data set are shown in the 2nd-4th columns of Table I.
For all the data sets, we scale the features to [−1,+1]. No
other preprocessing is used. We compare LRMLMR to the
naive Euclidean distance (Euclidean) method, Mahalanobis
distance method with the inverse of the covariance matrix
(InvCov), and three state-of-the-art metric learning methods,
i.e., large margin nearest neighbor (LMNN) [2], information
theoretic metric learning (ITML) [5] and sparse metric
learning (SML) [26].

Following previous work, e.g., [26], we generate triplets
using the label information. More specifically, given a ran-
domly chosen triplet {i, j, l} sampled from the training data,
if the first two data samples share the same label and the
third one has a different label, we incorporate this triplet in
the triplet set T . Namely, for a triplet of data {xi,xj ,xl},
xi and xj are similar, while xi and xl are dissimilar. For
LMNN, the nearest neighbor points for each training sample
need to be provided before training. In order to provide equal
side information, for each training sample, we regard their
similar samples appearing in the similar pairs as their nearest
neighbors. For ITML, two sets need to be used for evaluating
the algorithm: a similar set T1 containing the similar pairs
and a dissimilar set T2 containing the dissimilar pairs. In



Table I
DATA SETS (T: TRAINING DATA; A: ATTRIBUTES; C: CLASSES) AND TEST ACCURACY.

Data sets ] of T ] of A ] of C Euclidean InvCov LMNN ITML SML LRMLMR
Balance 625 4 3 0.7166 0.7017 0.7991 0.8594 0.7944 0.8609

Dermatology 366 34 6 0.9524 0.6420 0.9786 0.9751 0.9732 0.9778
Ecoli 336 8 8 0.9109 0.8625 0.8946 0.9119 0.9226 0.9218
Glass 214 9 7 0.7154 0.6974 0.7088 0.7547 0.7481 0.7571
Iris 150 4 3 0.9389 0.7781 0.9532 0.9736 0.9683 0.9735

Optdigits 5620 64 10 0.8835 0.6536 0.9210 0.9395 0.9269 0.9445
Pima 768 8 2 0.6002 0.5916 0.5966 0.6263 0.6422 0.6483

Protein 116 20 6 0.7737 0.7294 0.8273 0.8274 0.8567 0.8562
Segmentation 2310 19 7 0.8808 0.7666 0.8870 0.8865 0.9494 0.9510

Soybean 47 35 4 0.9778 0.7932 0.9890 0.9983 0.9824 0.9976
Thyroid 215 5 3 0.9057 0.8327 0.9440 0.9329 0.9352 0.9439

Wine 178 13 3 0.9069 0.6884 0.9697 0.9592 0.9677 0.9720

a similar manner to [26], we generate these two sets from
the triplet set T by placing (i, j) into the similar set T1 and
(i, l) into the dissimilar set T2, provided (i, j, l) is a triplet
in T . As discussed in [26], such a strategy provides a fair
level of supervision for the comparison methods, in the sense
that roughly the same information is presented to different
methods.

We use the same ratio, i.e., 0.85:0.15 as used by [26],
to split the data sets into a training set and a test set.
From the same data set, 1500 triplets are generated from
the training set based on the strategy mentioned above,
while 1000 triplets are sampled from the test set. During
testing, if the distance between two similar data in the
triplet is not greater than the distance between the dissimilar
pair (calculated based on the learned metric), this triplet
is regarded as classified correctly. We count the ratio of
correctly classified triplets to give the final accuracy score.
This procedure was used for all five methods. The final
results are given as an average over 20 random splits of
the data. We use codes of LMNN and ITML by the authors
from their personal websites. The trade-off parameter γ used
in ITML and SML, λ and η used in LRMLMR are tuned
in the range {0.001, 0.01, 0.1, 1, 10} by cross validation.
The trade-off weights used in LMNN is tuned in the range
{0.1, 0.3, 0.5, 0.7, 0.9} by cross validation. The parameters
µ and τ used in LRMLMR are fixed as 1 and 0.001,
respectively. The number of nearest neighbors, k, for locally
linear reconstruction in LRMLMR is set to 12, empirically.
The maximum number of iterations for LMNN, ITML and
the fixed-point iterative method used in LRMLMR is fixed
to 10000. Since LRMLMR and its fast version basically
achieve similar results, we only report the results obtained
by the fast version in the following experiments.

We show the classification accuracy in the 5th-10th
columns of Table I, where the best one for each data set
is highlighted in bold. From Tabel I, we can get some
interesting observations. Firstly, since we have scaled the
data features to [−1,+1], Euclidean distance can perform
much better than the InvCov Mahalanobis distance. Sec-
ondly, in most cases, metric learning methods can out-
perform both Euclidean distance and InvCov Mahalanobis
distance. Initialized with the identity matrix, both ITML

and LRMLMR greatly improves the performance of the
Euclidean distance over all the data sets. However, LMNN
performs slightly worse than the Euclidean distance over
some data sets. Finally, since LRMLMR utilizes both label
information from labeled data and geometric information
from unlabeled data, it achieves the overall best performance
among other state-of-the-art metric learning approaches.
This also demonstrates the advantages of our method to learn
a low rank distance metric with manifold regularization.

Ranks of the learned distance matrices via each metric
learning method are shown in Figure 1. One can see that
the ranks of the distance matrices learned by LRMLMR
are almost consistently lower than that learned by other
methods over all the data sets. The phenomenon is more
evident, especially when compared to Euclidean distance
method, InvCov Mahalanobis distance method, ITML and
SML. SML can learn a sparse distance metric. However,
we can see that the ranks of the distance metric learned
by SML is of full rank but not of a low rank. Although
LMNN can impose partial sparsity, its formulation does not
target sparsity directly. As can be seen, LMNN learns a
low rank distance metric over some data sets. However, for
most of the data sets, the ranks of the distance matrices
learned by LMNN are much higher than that learned by
LRMLMR, e.g., on the Pima, Protein, Segmentation and
Soybean data sets. Moreover, as discussed above, LRMLMR
achieves much better performance than LMNN almost over
all the data sets.

VI. CONCLUSION

In this paper, we presented a semi-supervised method to
learn a low rank Mahalanobis distance function from data.
By approximating the projection distance from a manifold,
we introduced a novel parametric manifold regularizer for
the metric learning. This takes advantages of the important
geometric information from data and proves beneficial for
boosting the performance of learned metric. In addition, our
method focused on learning a low-rank metric directly. This
distinguishes our method from many previous approaches.
The resulting configuration is convex with respect to the
manifold structure and the distance function, respectively.
We solved it with an alternating optimization algorithm,
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Figure 1. Ranks of distance matrices.

which is guaranteed to find a local optimal solution. For
efficient implementation, we further presented a fast al-
gorithm for the original problem, in which the manifold
structure and the distance function are learned independently
without alternating minimization. Experimental results over
12 standard UCI data sets demonstrate that our method can
usually outperform other metric learning approaches.
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