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a b s t r a c t

This paper provides a sparse learning algorithm for Support Vector Classification (SVC), called Sparse Sup-
port Vector Classification (SSVC), which leads to sparse solutions by automatically setting the irrelevant
parameters exactly to zero. SSVC adopts the L0-norm regularization term and is trained by an iteratively
reweighted learning algorithm. We show that the proposed novel approach contains a hierarchical-Bayes
interpretation. Moreover, this model can build up close connections with some other sparse models.
More specifically, one variation of the proposed method is equivalent to the zero-norm classifier pro-
posed in (Weston et al., 2003); it is also an extended and more flexible framework in parallel with the
Sparse Probit Classifier proposed by Figueiredo (2003). Theoretical justifications and experimental eval-
uations on two synthetic datasets and seven benchmark datasets show that SSVC offers competitive per-
formance to SVC but needs significantly fewer Support Vectors.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Support Vector Machines (SVM) (Vapnik, 1995) are well-known
learning algorithms covering many interesting topics, such as clas-
sification (Burges, 1998), regression (Smola and Schölkopf, 2004),
novelty detection (Schölkopf et al., 2000), and density estimation
(Vapnik and Mukherjee, 1999). A number of extensions, e.g.
(Lanckriet et al., 2002; Huang et al., 2008a,b), have been developed
for SVMs in various directions. This paper will only focus on Sup-
port Vector Classification (SVC). Many researchers have pointed
out that the number of Support Vectors (SV) of SVC is usually large
and this results in a substantially slower classification speed than
many other approaches. How to reduce the number of SVs but
without loss of generalization performance becomes a significant
problem both theoretically and practically.

Burges (1996) proposed a reduced set method, which computes
an approximation to the SVC decision rule in terms of a reduced set
of vectors. A more comprehensive introduction to the reduced set
framework, e.g., the reduced set selection and the reduced set con-
struction, can be found in (Schölkopf et al., 1999). The reduced set
method is computationally expensive and the local extremum prob-
lem exists, although an improvement to its reduction process was
given in (Nguyen and Ho, 2005). Downs et al. (2002) proposed a
method to recognize and delete some unnecessary SVs that are lin-
early dependent on other SVs in the feature space, but the reduction
is not obvious in order to avoid any possible decline in accuracy. Li
ll rights reserved.
and Zhang (2006) presented a method to repeat training SVC on a
gradually reduced training set until the decline in the training accu-
racy is not acceptable or the number of SVs stops decreasing.

The previous methods obtain a sparse decision function by find-
ing an approximation to the solution of SVC or training SVC on the
nested subsets of the training set. Unlike them, this paper proposes
a new algorithm called Sparse Support Vector Classification (SSVC),
which imports an L0-norm regularization term of parameters into
the primal optimization problem and iteratively trains it on the
training set until it converges to a highly sparse solution. The L0-
norm regularization term has a hierarchical-Bayes interpretation
and it automatically sets the irrelevant parameters exactly to zero.

The proposed novel model is important in the sense that it has
various connections with other existing models. More specifically,
one variation of the proposed method is equivalent to the zero-
norm classifier proposed in (Weston et al., 2003). It is also an
extended and more flexible framework in parallel with the Sparse
Probit Classifier (SPC) proposed by Figueiredo (2002, 2003); the
proposed framework is a general method that is not only applicable
for classification, but also can be easily used for feature selection,
regression, and kernel density estimation. In the literature, the Rel-
evance Vector Machine (RVM) (Tipping, 2000, 2001) has also been
proposed as an extremely sparse model for both regression and
classification. As we show in the experiments, the proposed novel
model achieves comparable with or even better sparseness than
RVM, but with a considerably faster training speed.1 On the other
1 A sequential adding and deleting technique is proposed to speed up RVM (Tipping
nd Faul, 2003) However, only synthetic data are used to validate the performance.
a
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hand, Fung et al. (2002) designed a novel loss function, ‘‘pound” func-
tion, which is a combination of the L1-norm and the step function
measuring both the magnitude and the presence of any error. The
authors then approximated it by a smooth exponential function.
The loss function can reduce kernel data dependence and lead to a
minimal kernel classifier. However, The model minimizes an approx-
imating function rather than the true L0-norm term. In this sense, it
may not be the true minimal kernel classifier.

The rest of this paper is organized as follows. Section 2 briefly
reviews the SVC algorithm. The proposed Sparse Support Vector
Classification is described in Section 3. The framework, the imple-
mentations, the practical optimization issues, and the theoretical
connections with other models will be discussed in turn in this sec-
tion. Experimental results on some synthetic and real datasets are
reported in Section 4. Finally, the conclusion is given in Section 5.
The source codes for the proposed algorithm and the comparison
approaches are implemented and publicly available at <http://
www.enm.bris.ac.uk/staff/xkh/>.

2. Support vector classification

Let us briefly outline the SVC algorithm first. Suppose we are gi-
ven empirical data fðxi; yiÞg

l
i¼1 with input pattern xi 2 X and output

label yi 2 {±1}. SVC finds a linear hyperplane f ðxÞ ¼ wTUðxÞþ
bðw 2 F ; b 2 R) to separate the positive from the negative exam-
ples with the largest soft-margin, where Uð�Þ : X ! F denotes a
nonlinear mapping from the input space X into a higher dimen-
sional feature space F . To construct this optimal hyperplane, one
solves the following primal problem:

min
w;b;n

1
2

wT wþ C1T
n

s:t: yi wTUðxiÞ þ b
� �

þ ni P 1; ni P 0; 8i; 1 6 i 6 l;
ð1Þ

where ni are slack variables, 1 is a column vector with all the ele-
ments equal to 1, n = (n1,n2, . . .,nl)T, and C is a trade-off constant be-
tween the margin and the empirical error. This further leads to the
dual problem:

min
a

1
2
aT Ha� 1Ta

s:t: yTa ¼ 0; 0 6 ai 6 C; 8i; 1 6 i 6 l;
ð2Þ

where H denotes a symmetric matrix with elements hij = yiyjk(xi,xj),
k(xi,xj) = U(xi)TU(xj) describes a kernel function, a represents a vec-
tor with elements ai, and y is a vector defined as (y1,y2 , . . .,yl)T. The
decision surface then takes the form

f ðxÞ ¼
Xl

i¼1

yiaikðx; xiÞ þ b: ð3Þ

Because the coefficients ai are Lagrange multipliers, many of them
will be equal to zero in the final solution. Those patterns xi associ-
ated with non-zero coefficients ai are called Support Vectors. The
time taken for (3) to predict a class label of a new pattern is propor-
tional to the number of SVs. From the optimization, it can be veri-
fied that the training patterns lying in the margin zone f(x) ± 1,
and those patterns outside the margin zone but wrongly classified
are all SVs. Hence the SVs of SVC are often redundant, especially
Fig. 1. The distribution assumptions p(ai)
for a large non-separable training set. To speed up the classification
process, it is necessary to reduce the number of SVs.

3. Sparse support vector classification

In this section, we describe the framework of the novel Sparse
Support Vector Classification. We first introduce the background
on how to achieve the sparse representation. We then provide
the framework of achieving sparseness. The model definition of
SSVC, the associated implementations, and the optimization tech-
niques will be presented in turn. Finally, we show the connections
of our model with other methods.

3.1. Sparse representation

From the dual representation theory, the weight vector can be
expressed as w ¼

Pl
i¼1aiUðxiÞ, where ai 2 R. Note that we do not

require the coefficients ai to be Lagrange multipliers anymore.
Then the decision surface (3) can be rewritten as

f ðxÞ ¼
Xl

i¼1

aikðx; xiÞ þ a0 ¼ aT kðx; �Þ; ð4Þ

where a = (a0,a1, . . .,al)T and k(x,�) = (1,k(x,x1), . . .,k(x,xl))T.
To obtain a sparse expansion of kernel terms, i.e., to make most

of the coefficients ai exactly equal to zero, one possible way is to
exploit an Lp-norm (p = 2, 1, or 0) regularization term.

As we know, the L2-norm kak2
2 ¼

P
ia2

i assumes a zero-mean

Gaussian prior pðaiÞ ¼ 1ffiffiffiffi
2p
p exp � a2

i
2

� �
over each coefficient ai as

shown in Fig. 1(a), which leads to many coefficients approaching
to zero but not exactly equal to zero. Hence it yields a non-sparse

model. The L1-norm kak1
1 ¼

P
ijaij assumes a zero-mean Laplacian

prior pðaiÞ ¼ 1
2 expð�jaijÞ over each coefficient ai as shown in

Fig. 1(b), which leads that many coefficients are exactly equal to
zero. However, the models achieved via L1-norm are usually not
sparse enough and there still exist some redundant coefficients. La-
ter experimental results also validate this point. In the extreme

case, the L0-norm, defined as kak0
0 ¼

P
iIfai–0gðaiÞ, delivers an idea

approach for achieving the sparsity. Here I is an indicator function,
i.e., if ai 2 {ai – 0}, then I = 1, otherwise I = 0. The L0-norm assumes
a zero-mean Pulse prior pðaiÞ / expð�Ifai–0gðaiÞÞ over each coeffi-
cient ai, which is shown in Fig. 1(c). It is straightforward that L0-
norm should lead to a highly sparse model. But L0-norm also intro-
duces a great difficulty in optimizing a noncontinuous problem.

3.2. Framework of achieving sparseness

In this section, we describe the framework on how to imple-
ment the L0-norm in order to achieve the sparseness. In the follow-
ing, an iteratively reweighted learning algorithm is proposed to
implement L0-norm in an asymptotical way. At the tth iteration,
one optimizes the following problem

aðtþ1Þ ¼ arg min
a

QðajaðtÞÞ ¼ lðaÞ þ Ca
1
2
aT diagðkðtÞÞa; ð5Þ

where Q(a) is a predefined objective function, l(a) is a loss function,
e.g., a hinge loss function used in the standard SVC or an �-insensitive
for each coefficient ai in the Lp-norm.

http://www.enm.bris.ac.uk/staff/xkh/
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loss function used in the Support Vector Regression, Ca represents a

trade-off constant, and diag(k(t)) is defined as diag 1
a2

1;ðtÞ
; . . . ; 1

a2
l;ðtÞ

� �
.

The above learning can be interpreted as an Expectation–Max-
imization algorithm from a two-level hierarchical-Bayes model in
(Figueiredo, 2002, 2003). That is, in level-1, each parameter ai

has a Gaussian prior pðaijsiÞ ¼ 1ffiffiffiffiffiffiffi
2psi

p exp � a2
i

2si

� �
; in level-2, each

variance si has a Jeffrey’s noninformative hyper-prior pðsiÞ / 1
si

,

for si > 0. This interpretation guarantees that the sequence
converges to a stationary one a*. As t ? +1, aT

ðtþ1ÞdiagðkÞðtÞaðtþ1Þ

converges to the L0-norm
P

iI a�
i
–0f g a�i
� �

regularization term

asymptotically (Zheng et al., 2006). If jai, (t)j is small enough, the
penalty or weighted term 1

ki;ðtÞ
a2

i in (5) always sets ai, (t+1) to zero.

It is noted that, although our model is related to Figueiredo
(2002, 2003), there are major differences between them. In a word,
Figueiredo (2002, 2003) derived their classifier only within the
Bayesian framework, while our model presents a more general
framework that can be exploited to achieve sparseness in many
kernel methods. By defining a suitable objective function Q, the
proposed sparse framework (5) is able to attain feature selection,
sparse regression, and sparse kernel density estimation. We will
detail this discussion shortly in Section 3.5.2.

Before we summarize the above L0-norm algorithm, we first
present the following optimization problem:

min
a

Xl

i¼1

kia2
i þ lðaÞ

s:t: gkðaÞ 6 0; k ¼ 1; . . . ;Nc;

ð6Þ

where the kernel expansion f(x) = aTk(x,�), l(a) is a loss function, gk(a)
is a set of constraints, Nc is the constraint number. We summarize
the above L0-norm algorithm called Implementation A as follows:
Implementation A of L0-norm
1. Set k = (1, . . .,1)T.
2. Solve the optimization problem (6) and get the solution �a

3. Update k by ki ¼
1
�a2

i
if j�aij > �;

1
�2 otherwise:

(

4. Go back to 2 until convergence.
.

We briefly explain the above implementation in the following.
At step 1, all variables ki are initialized to 1 so that it provides a fair
opportunity for each training sample to become a SV. At step 2, the
initial feasible solution of the current iteration can be set to the
solution of the previous iteration, which is already a sub-optimal
solution for the optimization problem. Hence, the training algo-
rithm converges upon the optimal solution after only a small num-
ber of iterations, and the training time is mainly spent at the
several beginning iterations. At step 3, if j�aij 6 � (� is a very small
positive value), the penalty term 1

�2 a2
i in the optimization problem

will set ai to a smaller value approaching to zero at step 2. When
the algorithm converges to a stationary point a*, the regularization
term will turn into the L0-norm,

Pl
i¼0kija�i j ¼

P
a�

i
¼0

1
�2 0þP

a�
i
–0

1

a�
ij j

2 a�i
		 		2 ¼Pa�

i
–01.

It is interesting that we can modify the above Implementation A
to another implementation (called Implementation B) if we change
the adaptive term aTdiag(k)(t)a from the L2-norm to L1-norm. More
specifically, we first define the following optimization problem.

min
a

Xl

i¼1

kijaij þ lðaÞ

s:t: gkðaÞ 6 0; k ¼ 1; . . . ;Nc;

ð7Þ
where the kernel expansion f(x) = aTk(x,�), l(a) is a loss function,
gk(a) is a set of constraints, Nc is the constraint number.
Implementation B of L0-norm
1. Set k = (1,. . .,1)T.
2. Solve the optimization problem (7) and get the solution �a

3. Update k by ki ¼
1
�a2

i
if j�aij > �;

1
�2 otherwise:

(

4. Go back to 2 until convergence.
.

Similar to Implementation A, when t ? +1,
Pl

i¼0ki a�i
		 		 ¼Pa�

i
¼0

1
� 0þ

P
a�

i
–0

1
a�

ij j
a�i
		 		 ¼Pa�

i
–r01. Hence it can also achieve sparseness

when the algorithm converges.

3.3. Model definition of SSVC

In this section, we describe how to exploit the above novel
sparse framework for achieving sparseness in SVC.

The L0-norm regularization term makes the coefficients ai

shrink to zero aggressively, and therefore only a very few coeffi-
cients are non-zero. A consequent algorithm of Sparse Support
Vector Classification will be proposed via utilizing the L0-norm reg-
ularization term. We first show how to achieve the SSVC by
exploiting Implementation A:

aðtþ1Þ ¼ arg min
a

1T
nþ C

1
2
aT diagðkÞa

s:t: yiðwTUðxiÞ þ bÞ � 1þ ni P 0; ni P 0; 8i; 1 6 i 6 l;
ð8Þ

where C is a trade-off constant tuned by the user, and the elements
of diag(k) are updated at step 3 of Implementation A.

When compared with the original SVC, the above model re-
places the regularization term 1

2 kwk
2
2 ¼ 1

2 aT Ka (K denotes a sym-
metric kernel matrix with elements kij = k(xi, xj)) with the zero-
norm given by the iterative term 1

2 aT diagðkÞa. The two-norm term,
1
2 aT Ka, implying the margin maximization, is used to control the
structure complexity. Similarly, the zero-norm, defined as the min-
imum number of non-zero elements, also aims to reduce the struc-
ture complexity.

If one substitutes w with
Pl

iaiUðxiÞ, one can remove w and ob-
tain the following model definition:

3.3.1. Sparse Support Vector Classification A (SSVCA)
The Sparse Support Vector Classification using Implementation

A can be achieved by solving the following optimization problem
iteratively:

aðtþ1Þ ¼ arg min
a

1
2
aT diagðkÞaþ C1T

n

s:t: yia
T kðxi; �Þ þ ni P 1; ni P 0; 8i; 1 6 i 6 l;

ð9Þ

where C is a positive trade-off constant tuned by the user, and the
elements of diag(k) are updated at step 3 of Implementation A.

The above optimization problem is a convex programming
problem, or a typical Quadratic Programming (QP) problem at each
iteration. Hence, it can be practically optimized via a sequence of
QP steps.

Similarly, we can also exploit Implementation B to achieve the
SSVC:

3.3.2. Sparse Support Vector Classification B (SSVCB)
The Sparse Support Vector Classification using Implementation

B can be achieved by solving the following optimization problem
iteratively:
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aðtþ1Þ ¼ arg min
a

kT jaj þ C1T
n

s:t: yia
T kðxi; �Þ þ ni P 1; ni P 0; 8i; 1 6 i 6 l;

ð10Þ

where C is a positive trade-off constant tuned by the user, and the
elements of k are similarly updated at step 3 of Implementation B.

Clearly, this optimization problem is a Linear Programming
problem and can also be solved practically. We will discuss how
to solve the above two problems more efficiently in the next
subsection.

Remarks. It is noted that we can even use a combination form of
the two-norm and the zero-norm as the regularization. For exam-
ple, the objective function of Implementation A can be changed to
1
2 aT Kaþ C1aT diagðkÞaþ C1T

n ðC1 2 Rþ is another trade-off param-
eter), while all the remaining constraints are maintained un-
changed. The resulting optimization problem is still a QP
problem and can be efficiently solved by the SMO algorithm. The
flexibility of choosing different objective functions shows how
the proposed sparse framework can be easily integrated into many
other kernel methods. Later we will also demonstrate how the pro-
posed zero-norm term can attain a sparse kernel density estima-
tion model. The flexibility is one significant merit of our
proposed framework.

3.4. Practical optimization for SSVC

We introduce how to efficiently solve the optimization problem
involved in SSVC for Implementation A and Implementation B in
the following.

3.4.1. Optimization of SSVCA

From the Lagrangian of (9), we can obtain its dual problem:

min
b

1
2

bT Hb� 1T
b

s:t: 0 6 bi 6 C; 8i; 1 6 i 6 l;
ð11Þ

where the Hessian matrix is H ¼ KT ½diagðkÞ��1K and K ¼ ½y1

kðx1; �Þ; . . . ; ylkðxl; �Þ�. This quadratic programming problem lacking
a linear equation constraint is slightly different from the formula-
tion (2) of SVC. And it can be optimized by an algorithm similar
to Platt’s sequential minimal optimization (SMO) (Platt, 1998) or
its improvements (Keerthi et al., 2001).

We now show how a modified SMO can be used to solve (11). In
the modified SMO algorithm, it chooses one Lagrange multiplier bi

to optimize while fixing the other variables at each iteration. The
objective function is QðbÞ ¼ 1

2 bT Hb� 1T
b and its gradient vector

is rQ = Hb � 1. If assuming bi bi + D, then we get

Qðbi þ DÞ ¼ 1
2

hiiD
2 þrQiDþ QðbiÞ; ð12Þ

where hii is a positive diagonal element of H. When D ¼ �rQi
hii

, a

maximal reduction is achieved in the objective function, Qðbiþ
DÞ ¼ QðbiÞ � ðrQ iÞ2

2hii
. To make a fast convergence, the chosen Lagrange

multiplier bi should maximize the term ðrQiÞ2
hii

.
If rQi > 0, then D < 0 and require bi > 0; if rQi < 0, then D > 0

and require bi < C. So the optimal i* is chosen as follows:

i� ¼ arg max
i

ðrQ iÞ2

hii

					rQi > s; bi > 0 or rQi < �s; bi < C

( )
;

ð13Þ

where s is a small tolerance, e.g., s = 0.001. Then the chosen variable

bi� is optimized analytically, bnew
i�  min max 0;bi� � rQ i

hii

� �
;C

� �
. And

the gradient is updated byrQ  rQ þ hi� ðbnew
i� � bi� Þ, where hi� de-

notes the i*th column of H.
Until it fails to find i* or the maximum number of iterations is
reached, the optimization algorithm terminates.

After we obtain the optimal solution b of (11), the coefficient
vector a is updated by a ¼ ½diagðkÞ��1Kb. Let �a be the solution of
the previous iteration. The reciprocals of small ki can be avoided
by ½diagðkÞ��1 ¼ diagð�a2

0; . . . ; �a2
l Þ without �.

Note that as the iteration t is increased, more and more coeffi-
cients ai shrink to zero and then stay at zero. After each iteration,
the coefficients approaching to zero can be pruned so as to de-
crease the number of the inequality constraints of (9) or reduce
the computational time for the Hessian matrix in (11).

3.4.2. Optimization of SSVCB

We now consider how to optimize the SSVC by utilizing Imple-
mentation B.

We can reformulate (10) into a Linear Programming problem as
follows:

min
a;a� ;n

kTðaþ a�Þ þ C1T
n

s:t: yiða� a�ÞT kðxi; �Þ þ ni P 1; ai;a�i ; ni P 0; 8i; 1 6 i 6 l;

ð14Þ
where each ai is substituted by two positive variables ai and a�i . Be-
cause ai � a�i 2 R and aia�i ¼ 0 holds for the optimal solution, we get
ai � a�i
		 		 ¼ ai þ a�i .

From the Lagrangian of (14), we can obtain its dual problem

min
b

�1T
b

s:t: � 1 6 Ab 6 1; 0 6 bi 6 C; 8i; 1 6 i 6 l;
ð15Þ

where A ¼ ½diagðkÞ��1K and K ¼ ½y1kðx1; �Þ; . . . ; ylkðxl; �Þ� 2 Rðlþ1Þ�l.
Assuming that �a be the solution of the previous iteration again,
the reciprocals of small ki can be avoided by ½diagðkÞ��1 ¼
diagðj�a0j; . . . ; j�aljÞ without �. The previous Linear Programming
problem has 3l + 2 variables, but this one has only l variables.

From the solution b of (15), the non-zero elements of a and the
bias term b can be obtained by solving a linear equation system
KT

I1 ;I2
aI1 ¼ 1. Here I1 and I2 are two index subsets, which are defined

as I1 = {ik(Ab)ik = 1} and I2 = {ij0 < bi < C}. The sub-matrix K I1 ;I2 in-
cludes the elements at the I1th rows and I2th columns of K . The
sub-vector aI1 takes the I1th elements of a, because the other ele-
ments of a are zero.

3.5. Connections with other models

In this section, we show that our proposed approach has close
connections with some existing models. More specifically, one var-
iation of our proposed framework, i.e., Implementation B, is equiv-
alent to the zero-norm classifier proposed in (Weston et al., 2003).
Moreover, our proposed sparse framework presents a more general
and flexible extension of the Sparse Probit Classifier (Figueiredo,
2002, 2003).

3.5.1. Equivalence between (Weston et al., 2003) and implementation B
Weston et al. (2003) proposed an approximation mina

P
i lnð�þ

jaijÞ to the minimization of L0-norm minakak0
0, where 0 < �� 1 and

gave its implementation algorithm for a general kernel-based
learning problem as follows:
Implementation in (Weston et al., 2003)
1. Set z = (1,. . .,1)T.
2. Solve the optimization problem (16) and get the solution �a
3. Set z  z � �a.
4. Go back to 2 until convergence.
.
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min
Xl

jaij þ lðaÞ;

a

i¼1

s:t: gkðaÞ 6 0; k ¼ 1; . . . ;Nc;

ð16Þ

where the kernel expansion f(x) = aTk(x,�), l(a) is a loss function,
gk(a) is a set of constraints, Nc is the constraint number.

Here the operator * denotes the component-wise product be-
tween two vectors, i.e., z*a = (z0a0, . . .,zlal)T. Step 3 is called a mul-
tiplicative update for z and step 2 uses it to re-scale the kernel
vectors of training data. After it converges, the final solution
f(x) = zTk(x,�) is obtained.

The above implementation uses a novel kernel expansion
f ðxÞ ¼ aTðkðx; �Þ � zÞ ¼ zT

newkðx; �Þ where znew = z*a. In comparison,
the implementation B uses a normal kernel expansion
f(x) = aTk(x,�). However, in the dual problem (15) of SSVCB, there
is also a re-scaling of the kernel matrix, i.e., A ¼ diagðj�a0j; . . . ;

j�aljÞ�K . If all j�aij are replaced by �ai in this formula, the two imple-
mentations are exactly equivalent. Our experimental results also
validate this equivalence.

3.5.2. Connection withSparse Probit Classifier (Figueiredo, 2002, 2003)
By defining a two-level prior probability model over a, Figuei-

redo (2002, 2003) proposed a Sparse Probit Classifier model that
can adaptively generate a highly sparse solution via an EM process.
At each iteration, SPC tries to maximize the following objective
function:

aðtþ1Þ ¼ arg max
a
flog pðajzÞg

¼ arg max
a
flog pðzjaÞ þ log pðaÞg

¼ arg max
a
f�kHa� zk2 � aTKag; ð17Þ

where H denotes a symmetric matrix with elements hij = yiyjk(xi, xj)
again, and z defines the data corrupted by a Gaussian distribution.
The matrix K, defined as diag(1/s1, . . .,1/sl), is updated by diag(ja1,

(t)j�2, . . ., jal, (t)j�2) in the Expectation step. The first term of (17) cor-
responds to the errors between the output of the learned classifier
f(x) = aTk(x,�) and the actual output z; the second term represents
the prior imposed by the assumption over a, which is exactly the
zero-norm term defined in Implementation A of our proposed
framework.

There are several major differences between the above SPC
method and our proposed novel framework. First and foremost,
Figueiredo (2002, 2003) derived the sparse solution only for classi-
fication within the Bayesian framework. In contrast, our proposed
L0-norm is more flexible, and can find its applications in many do-
mains. The term aT diag(k)a of (9) can be flexibly plugged in most
kernel methods. Similar to the optimization presented in Section
3.3, we can just append the sparse term aTdiag(k)a to the associ-
ated optimization objective function in order to achieve sparseness
for certain models. This is not only applicable for classification, it
can be also used in feature selection, regression, and kernel density
estimation. Hence our proposed method represents a more general
framework. For a simple illustration, we show in (18)–(20) how the
term can be used to achieve sparseness in kernel density estima-
tion in an iterative way.

3.5.2.1. Sparse Kernel Density Estimation. The Sparse Kernel Density
Estimation can be achieved by the following iterative process:

aðtþ1Þ ¼ arg min
a

�
Xl

i¼1

log pðxiÞ þ aT diagðkÞa
( )

; ð18Þ

s:t:
Xl

i¼1

ai ¼ 1; ð19Þ
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pðxÞ ¼
Xl

i¼1

aikðx; xiÞ; and kðx; xiÞ ¼
1ffiffiffiffiffiffiffi

2p
p

r
exp

kx� xik2

2r2

 !
: ð20Þ

At the tth step, each element of k is similarly updated by ki ¼
jaðtÞ ij

�2. The final kernel density is given by pðxÞ ¼
Pl

i¼1a�i kðx; xiÞ,
where a* represents the optimal a when the algorithm converges.

Second, our proposed zero-norm framework also motivates
many other related models. For example, the variation of Imple-
mentation B can also achieve the sparseness, which is equivalent
to the model proposed by Weston et al. (2003). On the other hand,
arbitrary-norm regularized kernel machines can also be inspired
from the proposed framework. In more details, the following iter-
ative process can obtain an arbitrary p-norm regularized kernel
machine:

aðtþ1Þ ¼ arg min
a

QðajaðtÞÞ ¼ � � � þ Ca
1
2
aT diagðkðtÞÞa; ð21Þ

where diag(k(t)) is defined as diag(ja1, (t)j�(2�p), . . ., jal, (t)j�(2�p)), and
other symbols are similarly defined as before. Furthermore, we
can even achieve an infinity-norm regularized kernel machine by
replacing the updating of diag(k(t)) with diagð0; . . . ;0;1=jaimax ;ðtÞj;
0; . . . ;0Þ. In comparison, it is not easy to extend SPC to other
norm-based regularized models, since this Bayesian method re-
quires the prior probability over a be defined; these prior probabil-
ities might be difficult to be specified.

Remarks. It is interesting to notice that RVM and SPC are actu-
ally quite similar in the sense that they assume similar priors over
the weight a. This can be seen in (22). The only difference is that,
SPC uses si as the parameter, while RVM adopts 1/si as the hy-
per-parameter. This consequently results in different distributional
assumption in the second level. In this sense, RVM can also be re-
garded as one implementation of the L0-norm.

SPC : Level 1 : pðaiÞ ¼ N ðaij0; siÞ
Level 2 : pðsiÞ / 1=s;

RVM : Level 1 : pðaiÞ ¼ N ðaij0;1=siÞ
Level 2 : si : a flat hyper-prior:

ð22Þ
4. Experiments

In this section, we evaluate our proposed sparse models, SSVCA

and SSVCB against many other competitive models such as the SVC,
the Relevance Vector Machine (Tipping, 2000, 2001), the Sparse
Probit Classifier (Figueiredo, 2002, 2003), the sparse classifier pro-
posed in (Weston et al., 2003) (for brevity, we call this model as
SSVCW), the Linear Programming SVC (LP-SVC) (Kecman and
Hadzic, 2000), and the Sparsity-Controlled SVC (SC-SVC) (Drezet
and Harrison, 2001). We first present some examples in order to
demonstrate the advantages of our proposed framework clearly.
We then conduct evaluations on seven benchmark datasets ob-
tained from the UCI machine learning repository (Blake and Merz,
1998).

4.1. Some examples

Some 2D classification examples are given to gain insight into
how SSVC works on the separable and non-separable data sets.

The first example is carried out on a separable synthetic set
with 40 patterns. The decision boundaries of SVC, SSVCA, and SSVCB

are shown in Fig. 2. Training patterns of the two classes are marked
by the hexagram and star points respectively, SVs are marked by
the circle points, and the separating hyperplane f(x) = 0 and the
two support hyperplanes f(x) = ±1 are plotted by curves. Two
observations deserve our attentions. First, the proposed sparse



Fig. 2. SVC and SSVCs with Gaussian kernel r = 2 and C = 10 trained on two separable classes.

Fig. 4. Number of support vectors decreases rapidly with increasing number of
iterations.

K. Huang et al. / Pattern Recognition Letters 31 (2010) 1944–1951 1949
SVC can indeed reduce the number of SVs while maintaining the
classification accuracy. Concretely, SSVCA generates 2 and 3 SVs,
respectively, while the standard SVC outputs 7 SVs. Second, as ob-
served, the SVs are unnecessarily located on the margins. Instead,
they represent some ‘‘prototype” points from data. This is because
we do not require that the coefficient a should be the Lagrange
multipliers. This is a distinct difference between our model and
the standard SVC.

The second example is carried out on the Ripley data consisting
of 250 patterns. The three training results of SVC, SSVCA, and SSVCB

are shown in Fig. 3. SVC needs 102 Support Vectors, while both
SSVCA and SSVCB need only 4 SVs. SVC associates SVs with non-
zero Lagrange multipliers, so all patterns inside the margin zone
and those outside the margin zone but wrongly classified are
SVs. SSVCs have no such restriction on SVs and they can yield
two quite sparse classifiers.

The third example trains SSVCs with Gaussian kernel on the
Ripley data again, but with 1000 patterns, in order to illuminate
the convergence speeds of the two training algorithms. From
Fig. 4, one can observe that SSVCA converges after three iterations
and SSVCB converges after nine iterations. For both cases, the num-
ber of SVs decreases from the initial 1000 to the final 4 rapidly.

4.2. Evaluations on real data

We compare our SSVCA with the standard SVC, RVM (Tipping,
2001; Tipping and Faul, 2003), the Sparse Probit Classifier (Figuei-
redo, 2002, 2003), the sparse classifier (Weston et al., 2003)
(SSVCW), the Linear Programming SVC (LP-SVC) (Kecman and Had-
zic, 2000), and the Sparsity-Controlled SVC (SC-SVC) (Drezet and
Harrison, 2001) in terms of training time, number of Support Vec-
tors or kernel terms, and classification error on seven benchmark
datasets. We do not compare SSVCB with these models, because
it is equivalent to (SSVCW) as shown in Section 3.5.2. The data
descriptions are summarized in Table 1, where the numbers of
Fig. 3. SVC and SSVCs with Gaussian kernel r = 0.5
samples are constrained to a maximum 1000 due to the time-con-
suming optimization of the Linear Programming involved in LP-
SVC and SSVCW. The maximal numbers of iterations for the training
procedures of SSVCs are all set to 50, and the maximal number of
iterations for the modified SMO algorithm is set to 9999. If the
two-norm distance of a between the two successive iterations is
less than 10�4, then the training procedures terminate.

The kernel function used in the experiments is the popular
Gaussian kernel. The final experimental results are obtained via
10-fold cross validation. SVC, SSVCA, LP-SVC, and SSVCW have two
parameters C and r, RVM and SPC have only one parameter r,
while SC-SVC has three parameters. Their parameters are chosen
via a 10-fold cross validation process on the training set. The
experimental results including the averages and deviations of
training times (seconds), number of SVs or kernel terms, and test
errors (%) are reported in Table 2.

From Table 2, all the sparse models achieve competitive error
rates with the standard SVC in all the datasets. RVM performs
slightly worse in Diabetes, B. Cancer and Waveform, and SPC yields
marginally worse performance in B. Cancer and German. SVC and
SSVCs have two parameters r and C (a trade-off constant between
sparsity and training errors), while RVM and SPC have one param-
eter r. Hence, SSVCs are more flexible than RVM and SPC in the
sense they can trade off the sparsity with the error rate. Both the
and C = 1 trained on two non-separable classes.



Table 1
Data descriptions: dataset name, dimension, and number of samples.

Data set 1 2 3 4 5 6 7

Banana Thyroid Diabetes B. Cancer German Ringnorm Waveform

Dim 2 5 8 9 20 20 21

Num 1000 215 768 277 1000 1000 1000

Table 2
Experimental results: training times (s), numbers of kernels and test errors (%) obtained by 10-fold cross validation.

Banana Thyroid Diabetes B. Cancer German Ringnorm Waveform

SVC 0.43 ± 0.10 s 0.01 ± 0.00 s 0.13 ± 0.00 s 0.02 ± 0.00 s 0.70 ± 0.03 s 0.28 ± 0.02 s 0.20 ± 0.01 s
227.5 ± 5.6 31.0 ± 1.8 418.4 ± 8.0 140.3 ± 4.3 496.6 ± 8.1 122.6 ± 6.0 292.2 ± 5.5

10.0 ± 3.9% 4.3 ± 4.2% 22.1 ± 8.6% 24.1 ± 8.6% 23.7 ± 3.2% 2.0 ± 1.7% 9.7 ± 2.3%

SSVCA 9.92 ± 1.39 s 0.10 ± 0.02 s 2.60 ± 0.35 s 0.98 ± 0.22 s 20.48 ± 4.49 s 3.53 ± 0.53 s 5.82 ± 0.80 s
10.9 ± 0.7 2.6 ± 0.7 5.8 ± 0.6 4.5 ± 1.6 13.7 ± 1.8 6.2 ± 1.1 6.5 ± 0.7
10.0 ± 3.6% 4.3 ± 4.7% 22.1 ± 4.9% 24.8 ± 6.8% 23.8 ± 5.2% 2.0 ± 1.3% 9.4 ± 2.2%

SSVCW 75.86 ± 12.63 s 6.34 ± 0.56 s 27.04 ± 6.23 s 7.13 ± 1.80 s 505.58 ± 308.77 s 124.23 ± 17.33 s 62.52 ± 4.91 s
10.6 ± 1.0 4.1 ± 0.3 5.9 ± 0.7 11.1 ± 0.7 21.2 ± 4.3 11.1 ± 1.3 5.8 ± 0.8

9.7 ± 4.0% 3.8 ± 3.0% 22.6 ± 5.1% 24.4 ± 8.6% 23.5 ± 4.7% 1.8 ± 1.1% 9.0 ± 2.1%

RVM 38.72 ± 2.34 s 0.92 ± 0.17 s 19.91 ± 0.82 s 1.59 ± 0.17 s 54.11 ± 3.23 s 38.98 ± 1.53 s 45.62 ± 1.18 s
11.6 ± 1.0 5.1 ± 0.6 10.5 ± 2.1 5.1 ± 2.4 25.4 ± 2.1 7.6 ± 1.1 11.9 ± 1.7

9.9 ± 3.5% 4.3 ± 3.5% 24.2 ± 5.0% 25.2 ± 7.2% 23.2 ± 3.3% 1.8 ± 1.9% 10.5 ± 2.7%

SPC 6.80 ± 0.12 s 0.14 ± 0.01 s 3.04 ± 0.06 s 0.27 ± 0.02 s 8.67 ± 0.11 s 7.72 ± 0.14 s 6.81 ± 0.12 s
12.3 ± 1.5 4.4 ± 1.5 10.2 ± 1.1 5.8 ± 1.2 24.6 ± 5.3 4.9 ± 1.3 14.9 ± 1.9

9.9 ± 4.5% 4.8 ± 3.2% 22.8 ± 5.7% 25.2 ± 6.9% 24.8 ± 5.3% 2.1 ± 1.4% 9.9 ± 3.0%

LP-SVC 125.79 ± 13.24 s 2.72 ± 0.39 s 41.09 ± 3.67 s 4.44 ± 0.65 s 99.02 ± 10.15 s 161.48 ± 16.58 s 79.96 ± 15.05 s
114.5 ± 63.8 7.1 ± 1.1 21.4 ± 5.1 79.2 ± 43.2 33.8 ± 12.8 30.4 ± 17.6 19.9 ± 3.6

9.4 ± 3.8% 5.7 ± 4.4% 22.5 ± 4.8% 25.2 ± 8.3% 23.5 ± 4.9% 1.7 ± 1.3% 9.5 ± 2.6%

SC-SVC 43.55 ± 4.99 s 1.08 ± 0.12 s 10.01 ± 0.23 s 2.31 ± 0.16 s 28.32 ± 1.14 s 29.82 ± 0.82 s 26.45 ± 0.91 s
141.2 ± 10.9 25.5 ± 5.9 16.9 ± 1.8 66.3 ± 3.4 53.9 ± 6.0 78.9 ± 7.9 66.8 ± 6.4

9.6 ± 3.9% 4.8 ± 5.0% 22.9 ± 4.4% 24.1 ± 8.4% 23.5 ± 5.0% 1.8 ± 2.0% 9.8 ± 2.7%
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accuracy performance and the sparsity of these sparse methods are
sensitive to the parameter r. Sparsity may fail when a smaller va-
lue of r is used (Weston et al., 2003), while the performance may
decrease when a larger value of r is used.

SVC needs a lot of kernel terms or SVs to construct a separating
hyperplane, while the other sparse methods require dramatically
fewer ones. This phenomenon can be clearly observed from Table
2. This is the major advantage of the sparse models over the stan-
dard SVC. In order to compare the sparsity performance for the var-
ious sparse models, we further plot in Fig. 5(a) the number of SVs
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required for these methods in all the datasets. Although all the
sparse models can achieve sparsity, it is obvious that the proposed
SSVCA demonstrates the overall best performance against other
sparse models in terms of the sparsity: SSVCA yields the fewest
SVs in Thyroid, Diabetes, B.Cancer, German, while it outputs just
slightly more SVs than SSVCW, but still fewer than RVM, SPC,
LP-SVC, and SC-SVC in Banana and Waveform. The advantage of
SSVCA can be clearly inspected in the German dataset: SSVCA gen-
erates only 13.7 SVs, while the remaining sparse models outputs
over 20 SVs. Furthermore, a t-test shows that SSVCA generates
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he training time. The proposed SSVCA demonstrates the best performance in both
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significantly fewer SVs than SPC in all the datasets except Rin-
gnorm at p = 0.05. In addition, a t-test shows that the SV number
of SSVCA is just slightly fewer than that of RVM in Banana and B.
Cancer, but significantly fewer than that of RVM in the remaining
datasets at p = 0.05. Another interesting point is that all the L0-
norm based sparse models, including SSVCA, SSVCW, RVM and
SPC demonstrate better sparsity than the L1-norm based sparse
models, LP-SVC and SC-SVC. This further justifies the theory men-
tioned in Section 3.

We examine the training efficiency of all the methods in the fol-
lowing. Clearly, the standard SVC trained by an improved SMO
algorithm (Keerthi et al., 2001) costs the least training time among
all classifiers. The other sparse models usually exploit iterative ap-
proaches to achieve the sparsity, hence they spend more training
time than SVC. In order to visually demonstrate the training effi-
ciency of all the sparse methods, we plot the training time required
in Fig. 5(b). When inspecting the computational time within these
sparse models, one can find that SSVCA and SPC outperform the
remaining methods. More specifically, SSVCA demonstrates the fast
training speed in Thyroid, Diabetes, Ringnorm, and Waveform,
while SPC costs the least training time in Banana, B. Cancer, and
German. SSVCA and SPC are faster because SSVCA can be trained
by using the efficient modified SMO algorithm and SPC only needs
solving a linear equation system without any constraints at each
iteration. In comparison, RVM needs to make a Cholesky decompo-
sition for the Hessian matrix and conduct a matrix inversion whose
complexity is of O(l3). SSVCW needs to solve a Linear Programming
problem with l inequality constraints at each step, which proves to
converge relatively slowly. On the other hand, LP-SVC needs to
solve a linear programming problem with many constraints, while
SC-SVC has to solve a Quadratic Programming problem and proves
difficult to use SMO directly. Both the algorithms show relatively
slow performance than the proposed sparse learning model. Final-
ly, a t-test show that SSVCA and SPC are significantly faster than the
other sparse models at the confidence level p = 0.05.

5. Conclusion

This paper has proposed a sparse learning framework called
Sparse Support Vector Classification that can reduce the number
of Support Vectors significantly for the standard Support Vector
Classification. The proposed novel model exploits the L0-norm reg-
ularization term in order to automatically set the irrelevant param-
eters exactly to zero. This model is important in that it has close
connections with some other existing models. More specifically,
one variation of the proposed method is equivalent to the zero-
norm classifier proposed in (Weston et al., 2003); it is also an ex-
tended and more flexible framework in parallel with the Sparse
Probit classifier proposed by Figueiredo (2003). The detailed
framework, the implementations of SSVC, and the practical optimi-
zation methods have been presented in the paper. Experimental
evaluations on both synthetic and benchmark datasets have dem-
onstrated that the proposed sparse framework yields significantly
fewer Support Vectors than SVC. When compared with the other
sparse models, SSVC has also shown its advantages in terms of both
the training speed and the number of Support Vectors. Future work
includes further evaluations on more data sets. In particular, we
would like to evaluate the proposed algorithm on the data col-
lected by Raetsch.2 Moreover, it is also interesting to compare
more competitive sparse algorithms (e.g., the Fast RVM (Tipping
and Faul, 2003)) with the proposed novel algorithm.
2 http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm.
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