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ABSTRACT
In this paper, we study the identity-independent head

pose estimation problem, in order to handle the appearance

variations, we consider the pose data lying on multiple man-

ifolds. We present a novel manifold clustering method to

construct multiple manifolds each of which characterizes the

underlying subspace of some subjects. We first construct a

set of n-simplexes of subjects by using the similarity of pose

images. Then, we present a supervised method to obtain a

low-dimensional manifold embedding for each n-simplex.

Finally, we propose the K-manifold clustering method, in-

tegrating manifold embedding and clustering, to make each

learned manifold with unique geometric structure. The exper-

imental results on a standard database demonstrate that our

method is robust to variations of identities and achieves high

pose estimation accuracy.

Index Terms— Head pose estimation, Feature extraction,

Pattern recognition

1. INTRODUCTION

Head pose estimation plays a significant role in human-

machine interaction applications such as view-independent

face detection and multi-view face recognition systems [1].

Head pose estimation aims to infer the orientation of a human

head from high-dimensional digital imagery or video [2]. It

needs to transform a pixel-based representation of a head into

a high-level concept of direction [2].

Recently, manifold learning methods have achieved

promising results in modeling pose data [3, 4, 5]. The meth-

ods seek to define a low-dimensional embedding of the pose

data points that preserves some local properties (or geodesic

distance) of the high-dimensional pose image set [6, 7]. Due

to appearance variations such as changes in identity, scale

and illumination, the pose data might lie in multiple different
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Fig. 1: Head pose images with pose angles +30◦, +35◦ and

+40◦ from the FacePix database [14]. (Note that large ap-

pearance variations by identity and small variations by pose).

(low-dimensional) manifolds [8]. Thus, many multi-manifold

methods have been proposed[9, 10, 11]. Multi-subspace

methods are also called Hybrid Linear Modeling (HLM: one

linear model for each homogeneous subset of data) [12, 13].

And manifold clustering methods are to classify and param-

eterize unlabeled data which lie on multiple, intersecting

low-dimensional manifolds [6]. Most of them need a mass of

data to build the manifold or have high computing complexity

for their iterative procedures. Thus, the focus of this paper is

to design a new effective multi-manifold method that define

multiple low-dimensional manifolds of pose variations and

thus to provide a robust identity-independent pose estimator.

The appearance variations of pose images due to iden-

tity changes are usually larger than these caused by differ-

ent poses as illustrated in Fig. 1. Thus it is difficult to obtain

an identity-independent manifold embedding which preserves

the pose differences. In this paper, we present a novel man-

ifold clustering method to construct multiple manifolds each

of which characterizes the underlying subspace of some sub-

jects. We cover a set of subjects with several clusters each

of which contains subjects originating from a separate, single

low-dimensional manifold. We use an affinity n-simplex as

basic unit to construct the manifold, and then present a super-

vised method to obtain a low-dimensional manifold embed-

ding for each n-simplex. Finally, we combine the manifold

embedding and clustering by the proposed K-manifold clus-

3277978-1-4244-7993-1/10/$26.00 ©2010 IEEE ICIP 2010

Proceedings of 2010 IEEE 17th International Conference on Image Processing September 26-29, 2010, Hong Kong



tering method to make each learned manifold with unique ge-

ometric structure. The K-manifold clustering algorithm iter-

atively computes two nearest n-simplex manifolds, and then

constructs a new manifold by the corresponding subjects of

the two n-simplexes.

2. MULTI-MANIFOLD FEATURE SPACE

Assume that the training data is X = {α1, α2, . . . , αS},

where αs is the sth subject, and S is the number of subjects.

The subject αs = [xs
1, x

s
2, · · · , xs

P ], where P is the number

of poses for the subject αs. xs
p is an M -dimensional row

vector whose elements are taken columnwise from the pth

pose image of the sth subject. Thus, there are N = S × P
head pose samples in total. The pose angle of the sample xs

p

is denoted as βp.

2.1. Motivations

The changes of pose images due to identity changes are

usually larger than that caused by different poses of same

subject. Thus, for head pose estimation, it is crucial to ob-

tain the identity-independent manifold embedding which

preserves the pose differences. Our method is motivated by

two observations: (1) The appearance variations caused by

identity lead to translation, rotation and warp changes of the

subject’s embeddings [8]. Two subjects with similar individ-

ual appearance almost lie on a same continuous manifold.

and the embeddings may not be close from two subjects with

dissimilar individual appearance. (2) It is difficult to make

sure that the pose data lie on a single continuous manifold

for the individual variations [8]. In this paper, we aim to

construct a discriminative multi-manifold feature space in

which each manifold is an m-dimensional embedding of the

original M -dimensional image space.

2.2. Affinity Simplex

We firstly construct a set of n-simplexes of subjects. For two

head images xs
p and xs′

p′ , we first compute the similarity be-

tween them as follows

sim(xs
p, x

s′
p′) = −‖xs

p − xs′
p′‖2. (1)

Then, we define the similarity of two subjects αs and αs′

by the sum of the similarities as follows

s(αs, αs′
) =

∑

p

sim(xs
p, x

s′
p ). (2)

Let k ∈ N and α ∈ X , based on the above definition

of the subject similarity, the k-neighborhood of subject α is

denoted by Nk(α). Next, we use the affinity-connectivity to

define the affinity n-simplex from the simplex [15].

Definition 1 (Affinity-Connectivity) Let k ∈ N , a subject
α ∈ X is affinity-connected to a subject α′ ∈ X w.r.t k, if
α is an element of Nk(α′) and α′ is an element of Nk(α),
formally:

AFFCON(α, α′) ⇔ α ∈ Nk(α′) ∩ α′ ∈ Nk(α). (3)

Definition 2 (Affinity n-Simplex) Let k ∈ N and n ∈ N , a
non-empty subset C ⊆ X is called an affinity n-simplex w.r.t
k and n, if all subjects in C are affinity-connected and the
number of set C is n, formally:

AFFSIM(C) ⇔
(1) Connectivity : ∀α, α′ ∈ C, AFFCON(α, α′)
(2) n−simplex : |C| = n.

(4)

2.3. Manifold Embedding

For each affinity n-simplex, we seek a low-dimensional em-

bedding to provide intra-class compactness and inter-class

separability in the low-dimensional pose subspace [8].

For the Intra-class compactness, we formulate it as the

distances between the embeddings of different subjects for

each pose. Namely, we should minimize

∑

p

∑

i,j

‖yi
p − yj

p‖2, (5)

where yi
p and yj

p are the embedding of the head image xi
p and

xj
p with the pose angle βp. At the same time, we present the

inter-class separability of different poses by maximizing the

distances between the embeddings of the different poses for

each subject. Namely, we maximize

∑

s

∑

i,j

‖ys
i − ys

j‖2Tij , (6)

where Tij is a penalty for poses i and j. We introduce a

heavy penalty to penalize the poses i and j when they are

close to each other, this is given as Tij = exp(−‖βi −
βj‖2)/

∑
i exp(−‖βi − βj‖2), where βi is the angle of xi

p.

2.4. K-Manifold Clustering

In the multi-manifold feature space, each manifold should

represent a similar m dimensional embeddings of some sub-

jects. It might be that many manifolds of n-simplexes are

similar. This redundancy should be eliminated. To this end,

we present a K-manifold clustering algorithm similar to the

usual K-means clustering algorithm. While the K-means al-

gorithm basically finds K cluster centers using point to point

distance metric, the task here is to find K manifolds using

manifold embedding to manifold embedding distance metric

in the low-dimensional space. The K-manifold clustering al-

gorithm iteratively computes two nearest n-simplex manifold

embeddings, and then construct a new manifold by the corre-

sponding subjects of the two n-simplexes. The new manifold
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(a) Two testing images.

(b) 3-D manifold embeddings.

Fig. 2: Illustration of multi-manifold space. (a) Two testing

images. (b) 3-D manifold embeddings for the clusters corre-

sponding to the two testing images. (Note that the brightness

of the points is corresponding to the pose angle.)

has intra-class compactness and inter-class separability as

stated in Section 2.3. The K-manifold clustering method ter-

minates until K clusters are remained Ct(t = 1, 2, · · · ,K),
yielding the final results as shown in Fig. 2.

3. EXPERIMENTAL RESULTS AND DISCUSSIONS

Tn this section, the proposed method is validated using the

public FacePix database [14], which contains 5,430 head pose

images spanning −90◦ to +90◦ in yaw at 1◦ intervals. We use

the whole data of FacePix database in our experiments. The

images are equalized and sub-sampled to 16x16 resolution,

and preprocessed by the Laplacian of Gaussian (LoG) filter to

capture the edge map that is directly related to pose variations

[3]. We use both the gray and LoG images as the pose features

in our experiments.

We evaluate the performance of our system using the

Mean Absolute Error (MAE) [2] which is computed by av-

eraging the difference between expected pose and estimated

pose for all images. We use the variance (the variance of

MAE for different subjects) to evaluate the robustness for

identity-independent pose estimation. In order to test the

generalization performance, we use the leave-one-out strat-

egy [5] (choose one subject in turn as the testing data and all

the remaining subjects for the embedding learning).

(a) The MAE in different dimensionality.

(b) The MAE under different poses.

Fig. 3: Comparison of our method with other methods.

3.1. Multi-Manifold Space

We use the proposed method on the data sets mentioned above

to show multi-manifold space. Fig. 2 (a) shows two arbi-

trary testing images, and Fig. 2 (b) the images in manifold

clusters (The left testing image is corresponding to the left

manifold embedding of the bottom plot). There are three and

six images in the clusters, respectively. The clusters are over-

lapped and images are weighted in the clusters. The images

in the clusters are similar to the testing images in a certain

aspect in the whole data set, correspondingly. We construct

two 3D manifold embeddings for the clusters corresponding

to the two testing images shown in Fig. 2 (b). There are 9

subjects with pose variations from [−55◦ + 55◦] at 3◦ inter-

vals. It shows that the result has intra-class compactness and

inter-class separability in each low-dimensional embedding.

And the embedding manifold curves have different geometri-

cal structures and different locations which indicates that the

multi-manifold representation is benefit for pose estimation.

3.2. Comparisons with Other Methods

We compare our method with other pose estimation meth-

ods: global-based PCA method, local-based manifold learn-

ing LPP method [2] and Smooth Multi-Manifold Embedding

(SMME) method [8]. The parameters of the methods are set

in our experiments as follows: LPP (k=181), SMME (k=6)

and our method (n=3 and K=1800). Fig. 3 (a) shows the pose
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Table 1: The MAE of all subjects and the variance of MAE

for different subjects.

Methods PCA LPP SMME [8] Our Method

MAE 5.32 4.96 3.64 3.16
Variance 4.66 3.21 1.13 0.98

estimation results of these algorithms versus different num-

bers of dimensionality. It shows that the proposed method

significantly improves the estimation performance compared

to other methods. Fig. 3 (b) shows the MAE with pose varia-

tions from [−90◦ +90◦] at 1◦ intervals. The result shows that

the accuracy of the proposed method is in general better than

other methods. We note that the MAE curve of the proposed

method is much more flat than other methods within a relative

wide range of the frontal view [−60◦ + 60◦], which implies

that our method is more robust in [−60◦ + 60◦].

3.3. Robustness against Identities

In order to test the robustness against different identities, we

use the samples of one subject in turn as the testing data

and use all the remaining subjects for embedding learning

to compute the MAE of each subject. The proposed method

achieves the average MAE of 3.16◦ and the variance of 0.98
as shown in Table 1, which shows that the proposed method

provides more robust and accurate identity-independent head

pose estimation than other methods. The reason is that the

multi-manifold feature space represents the underlying low-

dimensional pose space more efficiently and accurately.

4. CONCLUSIONS

In this paper, we proposed a novel multi-manifold algorithm

for identity-independent head pose estimation. The proposed

multi-manifold method combines the manifold embedding in

the K-manifold clustering phase, and has the following char-

acteristics: 1) The embeddings of each manifold are discrim-

inative for different poses; 2) The images in the clusters are

weighted. For identity-independent head pose estimation, the

proposed method achieved the MAE of 3.16◦ and the variance

of 0.98 on the standard databases. In addition, the proposed

method has been demonstrated more robust to individual vari-

ations for new identities than the traditional methods. In the

future, we plan to theoretically analysis and experimentally

evaluate the proposed method in terms of feasibility for more

complex real world scenarios.
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