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Abstract—Images of a human iris contain rich texture information useful for identity authentication. A key and still open issue in iris

recognition is how best to represent such textural information using a compact set of features (iris features). In this paper, we propose

using ordinal measures for iris feature representation with the objective of characterizing qualitative relationships between iris regions

rather than precise measurements of iris image structures. Such a representation may lose some image-specific information, but it

achieves a good trade-off between distinctiveness and robustness. We show that ordinal measures are intrinsic features of iris patterns

and largely invariant to illumination changes. Moreover, compactness and low computational complexity of ordinal measures enable

highly efficient iris recognition. Ordinal measures are a general concept useful for image analysis and many variants can be derived for

ordinal feature extraction. In this paper, we develop multilobe differential filters to compute ordinal measures with flexible intralobe and

interlobe parameters such as location, scale, orientation, and distance. Experimental results on three public iris image databases

demonstrate the effectiveness of the proposed ordinal feature models.

Index Terms—Biometrics, feature representation, iris recognition, multilobe differential filter, ordinal measures.

Ç

1 INTRODUCTION

IRIS recognition, as an extremely reliable method for
identity authentication, is playing a more and more

important role in many mission-critical applications, such
as assess control, national ID card, border crossing, welfare
distribution, missing children identification, etc. The
uniqueness of iris pattern comes from the richness of
texture details in iris images, such as freckles, coronas,
crypts, furrows, etc. It is commonly believed that it is
impossible to find two persons with identical iris patterns,
even they are twins. The randomly distributed and
irregularly shaped microstructures of iris patterns make
the human iris one of the most informative biometric traits.
On the other hand, the complex iris image structure results
in the difficulty of iris feature representation. Although the
human visual system can observe the distinguishing iris
features effortlessly (see Fig. 1 for some example iris
images), the computational characterization and compar-
ison of such features is far from a trivial task and has
attracted much attention for the past decade.

Daugman proposed the first successful algorithm for iris
recognition [1]. In this algorithm, even and odd Gabor filters
are proposed to demodulate phase information in each iris
region. Then, phase value is coarsely quantized to 2-bit
binary codes, and a given iris image is represented with
256 Bytes iris code. At the feature-matching step, the
dissimilarity between two iris codes is measured by
Hamming distance. Daugman’s algorithm [1], [2] has been
widely used in commercial iris recognition products.

Wildes et al. [3] represented iris patterns using the four-
level Laplacian pyramid and the goodness of matching was
determined by the normalized correlation results between
two registered iris images. Boles and Boashash [4] detected
zero crossings of one-dimensional wavelet transform over
concentric circles on the iris. Both the position and
magnitude information of zero-crossing representations
were used for matching. Ma et al. proposed describing iris
features using texture analysis, based on a bank of spatial
filters [5]. Regarding an iris image as a transient signal, Ma
et al. [6] identified the local sharp variation points as iris
features. Other iris representation methods include emer-
gent frequency and instantaneous phase [7], local texture
energy orientation [8], Haar wavelet frame decomposition
[9], multiscale zero-crossing representation [10], normalized
directional energy feature [11], Haar wavelet binary features
[12], correlation filters [13], Gaussian-Hermite moments
[14], local extreme points [15], discrete cosine transform
[16], direction of gradient vector field [17], etc.

Great progress has been made on iris feature representa-
tion, but it is still an open problem. First, although there is a
defined standard for raw iris data [42], there is none
regarding iris features. A number of iris recognition methods
[6], [7], [8], [9], [10], [15], [16], [17] have reported comparable
performances to that of Daugman’s algorithm [1], [2], but
these methods encoded iris features from different perspec-
tives. Second, recognition performance of the state-of-the-art
iris features still has much room to be improved. Testing
results of both International Biometrics Group ðFRR ¼
2-5% @ FAR ¼ 10�6Þ [18] and Iris Challenge Evaluation in
2006 ðFRR ¼ 1-3% @ FAR ¼ 10�3Þ [19] demonstrate that the
state-of-the-art iris recognition methods are far from perfect.
A possible way to improve iris recognition performance is to
explore more effective features for iris image representation.

The most challenging issue in iris feature representation
is to achieve sensitivity to interclass differences and at the
same time to maintain robustness against intraclass
variations. So, a most important question one may ask is
“What are the intrinsic and robust features of iris
patterns?” or in practice, “How do we computationally
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model iris texture effectively and efficiently?” An equally
important question to ask is “Do the currently best
performing iris recognition algorithms have anything in
common and what makes them effective?” Many iris
recognition methods [1], [2], [3], [4], [5], [6], [7], [8], [9],
[10], [11], [12], [13], [14], [15], [16], [17] have been reported,
but these questions remain open and intriguing.

In this paper, we introduce ordinal measures for iris
image representation in an attempt to answer some of these
questions. Ordinal measures encode qualitative information
of visual signal rather than its quantitative values. Such an
idea is motivated by findings in neuroscience [20]. For iris
recognition, the absolute intensity information associated
with an iris pattern can vary because it can change under
different illumination settings. However, ordinal measures
among neighboring image pixels or regions exhibit some
stability with such changes and reflect the intrinsic proper-
ties of iris. In iris patterns, microstructures exhibit sharp
intensity variations in iris images, which constitute numer-
ous high contrast and stable ordinal relationships between
iris regions. Therefore, ordinal measures are expected to be
capable of representing the distinctive and robust features
of iris patterns.

The remainder of this paper is organized as follows:
Section 2 presents a brief introduction to ordinal measures
and analyzes their important properties for iris image
analysis. Section 3 proposes a novel ordinal feature extractor,
namely, multilobe differential filter for iris recognition. In
Section 4, feature representation models of existing iris
recognition methods are discussed in the context of ordinal
measures. Experimental results on three publicly available
iris image databases are reported in Section 5. Section 6
concludes this paper. Preliminary results on ordinal mea-
sures in iris recognition were presented in [39], [40]. In
passing, it should be pointed out that ordinal measures and
ordinal features are interchangeable terms in this paper.

2 ORDINAL MEASURES AND THEIR PROPERTIES

FOR IRIS IMAGE ANALYSIS

2.1 A Brief Introduction to Ordinal Measures

Stevens suggested four levels of measurements from coarse
to fine: nominal, ordinal, interval, and ratio measures [21].
Ordinal measures come from a simple and straightforward
concept that we often use. For example, we can easily rank

or order the heights or weights of two persons, but it is hard

to tell their precise differences. This kind of qualitative

measurement, which is related to the relative ordering of

several quantities, is defined as ordinal measures (OMs).
A simple illustration of ordinal measures is shown in

Fig. 2, where the symbol “� ” or “� ” denotes the

inequality between the average intensities of two image

regions. The inequality represents an ordinal relationship

between two regions and this yields a symbolic representa-

tion of the relations. For digital encoding of the ordinal

relationship, only a single bit is enough, e.g., “1” for

“A � B” and “0” for “A � B,” and the equality case (a low

probability event) can be assigned to either.
Ordinal measures have been described [21] as a basic

category of human perceptual judgments and widely used

in social science. Ordinal measures also play an important

role in nonparametric statistics. For example, rank statistic

is proposed to measure the strength of the associations

between two variables. Rank correlation methods have been

widely used by statisticians, educators, psychologists, and

others involved in analyzing qualitative measurements [22].
Computer vision researchers prefer interval or ratio

measures for precise object feature description and pattern

recognition. As the lowest level of measurement, nominal

measures are actually too weak for pattern classification.

But the power of ordinal measures for visual feature

representation has been largely underestimated. We argue

that ordinal image representation provides a better trade-off

for computer vision systems between accuracy, robustness,

and efficiency for the following reasons:

. The dominant image feature representation models
in computer vision such as subspace analysis,
statistics of image filter outputs, wavelet transform,
etc., are based on high-level measurements. But the
experiences of the last 40 years show that robustness
is still the largest bottleneck of computer-based
vision systems. The main reason is that interval or
ratio measures of image contents are sensitive to
illumination changes, blur, noise, deformation, and
other image degradations. Fine models of visual
objects based on high-level measurements are useful
for image detail preservation and image reconstruc-
tion but unnecessary for object recognition. So, an
innovative idea to robust representation of image
features is to use ordinal measures.
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Fig. 2. Ordinal measure of relationship between two regions. An arrow

points from the darker region to the brighter one. (a) Region A is darker

than B, i.e., A � B. (b) Region A is brighter than B, i.e., A � B.

Fig. 1. Some iris images from the CASIA database [36].
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. Real-time processing of visual signals is desirable for
practical computer vision systems. However, the
mathematical models of high-level measures are
always complex and involve time-consuming com-
putations. Since ordinal measures are simple to
implement and compact in feature template, they are
more suitable for efficient image analysis and
pattern recognition than high-level measurements.

. The biological plausibility of visual ordinal measures
has been verified by many neuroscience researchers
[23], [24]. For example, DeAngelis et al. [23] found
that many striate cortical neurons’ visual responses
saturate rapidly with the magnitude of contrast as
the input. This indicates that the determining factor
of visual perception is not the absolute value of
contrast, but its polarity. Rullen and Thorpe [24]
suggested that temporal order coding might form a
rank-based image representation (i.e., ordinal mea-
sures) in the visual cortex.

The advantages of ordinal measures for visual represen-
tation have already been verified by some pioneering work
in the literature. Sinha was probably the first to introduce
ordinal measures to computer-based vision systems [25].
Based on the fact that several ordinal measures on facial
images, such as eye-forehead and mouth-cheek, are invar-
iant to individuals and imaging conditions, Sinha developed
a ratio template for face detection, which can be automati-
cally learned from examples [20], [25]. Combining qualita-
tive spatial and photometric relationships together, Lipson
et al. [26] applied ordinal measures to image database
retrieval. Bhat and Nayar employed the rank permutation of
pixel intensity values in image windows for stereocorre-
spondence [27]. After introducing ordinal measures into the
co-occurrence model, Partio et al. obtained better texture
retrieval results [28]. Smeraldi [29] proposed a complete
family of multiscale rank features, namely, Ranklets, to
describe the orientation-selective ordinal measures of image
regions. Sadr et al. [30] developed a regularization approach
for image reconstruction from ordinal measures.

Because of the simplicity of ordinal representation,
Thoresz [31] believed that this scheme can only be used
for simple detection and categorization tasks and did not
expect it to be applied to complex discrimination tasks such
as biometrics-based identity authentication.

However, we demonstrate in this paper that ordinal
measures can play a defining role for the complex iris
recognition task. Like any other pattern recognition pro-
blems, the key issue of iris feature representation is to handle
the challenges from intraclass variations and interclass
similarity. Some important intraclass variations of iris
pattern that may affect the performance of iris recognition
systems include illumination and contrast changes (Fig. 3a),
occlusion of eyelids and eyelashes (Fig. 3b), nonlinear
deformation (Fig. 3c), rotation difference (Fig. 3d, some
methods can compute and correct the rotation angle between
two iris images but alignment errors may exist), image
degradations (Fig. 3e), intersensor difference (Fig. 3f), etc.

In conclusion, an effective iris feature representation
model should be tolerant of the variations mentioned above
and, at the same time, be capable of efficiently encoding the

rich texture of iris images. Although this is a difficult
problem, we will demonstrate in the following that ordinal
measures provide a promising solution.

2.2 Desirable Properties of Ordinal Measures

The ordinal measures outlined above have a number of
properties very desirable for accurate and robust iris
recognition. This is briefly discussed in the following.

2.2.1 Robustness of Ordinal Measures

Formation of an iris image is jointly determined by both
intrinsic factors (anatomical characteristics) and extrinsic
factors (illumination, distance, position, rotation, etc.).
Intrinsic factors are identity-related and stable for
personal recognition, but extrinsic factors are independent
of identity and variable under various imaging condi-
tions. Iris image preprocessing methods can normalize
part of extrinsic factors such as translation, scale, and
rotation. We show in Appendix A that ordinal measures
indicate intrinsic iris features and are largely invariant to
illumination changes. A simple analysis of the robustness
of ordinal measures against additive Gaussian noise is
provided in Appendix B. Such a result can be extended to
robustness of ordinal measures against dust on eyeglasses,
partial occlusions, sensor noise, etc.

2.2.2 Uniqueness of Ordinal Measures

Iris pattern is a random texture characterized by many
interlacing minute structures. The microanatomical struc-
tures in the iris surface may exhibit different reflectance
properties in infrared light, leading to sharp intensity
variations across iris image regions. The noise-like chaos
may disturb the accuracy of traditional-segmentation-based
computer vision algorithms. On the contrary, the numerous
image region pairs with significant intensity difference
provide abundant high-quality building blocks for ordinal
template construction. We can imagine that the richness of
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Fig. 3. Various intraclass variations of iris images. (a) Illumination and

contrast variations. (b) Occlusions of eyelids and eyelashes.

(c) Nonlinear deformation. (d) Rotation difference. (e) Image degrada-

tions. (f) Intersensor difference.
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the uncorrelated ordinal measures is critical to the unique-
ness of iris pattern. For an arbitrary pattern, its ordinal
measure has equal probability to be “1” or “0.” It is not
difficult to find hundreds of independent ordinal measures
in a typical iris image [1], [2], so a well-developed ordinal
feature template of iris image should have at least hundreds
of degrees-of-freedom for personal identification. Although
the discriminating power of a single-bit ordinal measure is
limited, the composite iris representation constituted by
thousands of robust ordinal measures is powerful for large-
scale personal identification.

Since ordinal measures are both robust and distinctive,
they are ideal for feature representation. Fig. 4 illustrates the
core idea of ordinal-measures-based iris recognition. Robust-
ness contributes to high matching score of intraclass ordinal
measures and distinctiveness guarantees dissimilarity be-
tween interclass ordinal measures. So, it is easy to distinguish
genuine and imposter iris images based on the percentage of
matched ordinal measures with the enrolled templates.

2.2.3 Efficiency of Ordinal Measures

A well-developed iris feature representation should reduce
the computational complexity of feature extraction and
feature matching to a minimum, which is beneficial to
large-scale deployment and embedded applications of iris
recognition. Ordinal feature extraction typically involves
only additions and subtractions (e.g., the ordinal measure in
Fig. 2 can be computed by sum(RegionA)-sum(RegionB)).
This makes ordinal measures well suited for iris recognition
on many weak computational platforms such as mobile
phones and PDAs as they are not good at multiplications
and divisions. The dissimilarity between two ordinal
templates can be measured by bitwise XOR operator, which
can be computed on-the-fly and can be easily implemented
by hardware.

3 ORDINAL FEATURE EXTRACTION FOR IRIS

RECOGNITION

In the preceding sections, we have discussed the basic
concept of ordinal measures and their desirable properties

in the context of iris recognition. We now turn our attention
to the issue of how to extract ordinal iris features.

Ordinal feature extraction of iris images is not a
challenging issue due to the theoretical simplicity of ordinal
measures. For example, an ordinal measure can be easily
obtained by qualitatively comparing the features of two
groups of image regions (see Fig. 5 for an example).

However, due attention should be paid to the selection of
a number of intra and interregion parameters such as shape
of regions, orientation of regions, location of regions,
regional feature type (average intensity, wavelet coefficient,
etc.), interregion distance, spatial configuration of regions,
etc. These parameters lead to great flexibility in designing a
particular scheme for ordinal iris feature extraction. In this
sense, ordinal measures make it possible for us to develop a
general framework for iris feature extraction. Specific
feature extraction schemes can be derived from variations
of these parameters.

In this paper, we propose multilobe differential filters
(MLDFs) for ordinal iris feature extraction, aiming to model
the flexibility of ordinal measures. Mathematically, the
MLDFs are given as follows when Gaussian kernel is
employed as the basic lobe:

MLDF ¼ Cp

XNp

i¼1

1ffiffiffiffiffiffiffiffiffiffiffi
2��pi

p exp

�
�ðX � �piÞ2

2�2
pi

�

� Cn

XNn

j¼1

1ffiffiffiffiffiffiffiffiffiffiffi
2��nj

p exp

�
�ðX � �njÞ2

2�2
nj

�
;

ð1Þ

where the variables � and � denote the central position and
the scale of a 2D Gaussian filter, respectively, Np the
number of positive lobes, and Nn the number of negative
lobes. Constant coefficients Cp and Cn are used to ensure
zero sum of the MLDF, i.e., CpNp ¼ CnNn. The most
compelling feature of MLDF compared with traditional
differential filters is that it decouples the settings of
intralobe (scale) and interlobe (distance) parameters. So,
multilobe differential filters can be used to encode ordinal
measures of both connected and dissociated image regions.
Young et al. have already proposed difference-of-offset-
Gaussians (DOOG) filter as the spatiotemporal model in
visual neuroscience [34], which is similar to MLDF. DOOG
is defined as the offset differences of two or more Gaussian
functions. Higher order DOOG is created by additional
offset differencing of lower order DOOG filters [34].
Compared with DOOG, MLDF is a more general concept
of differential and bandpass filters and is more flexible in
terms of basic lobe choice, spatial configuration of lobes, etc.
Different from the dissociated dipole proposed by Balas and
Sinha [32], [33], MLDF is constituted by more basic lobes
and the shape of each lobe can be adaptive to image
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Fig. 4. Comparison of intraclass and interclass ordinal measures in
normalized iris images. The upper two iris images are from the same eye
and their ordinal measures are largely invariant even under different
illuminations. However, the probability of matching interclass ordinal
measures (e.g., corresponding regions between the lower two images)
is only around 50 percent.

Fig. 5. Computing ordinal measures of iris images.
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structures. The motivation is straightforward. When more
than two image regions are compared, the derived ordinal
measure is expected to be more robust. In addition, an ordinal
measure extracted by MLDF can represent more complex
image microstructures. Comparatively, a dissociated dipole
can only tell us a slope edge’s orientation. Some examples of
MLDF with different settings of distance, scale, orientation,
number, and location are illustrated in Fig. 6.

Each ordinal measure may have its unique visual
meaning. For example, as Fig. 7 shows, a group of two-
lobe ordinal measures may denote point, line, edge, corner,
ridge, slope, etc.

The procedure of iris feature extraction using MLDF is
as follows: An MLDF operator slides across the whole
normalized iris image and each ordinal comparison is
encoded as one bit, i.e., 1 or 0 according to the sign of the
filtering result. All of the binary iris codes constitute a
composite feature of the input iris image, namely, ordinal
code (OC). The dissimilarity between two iris images is
determined by the Hamming distance of their features. In
order to cope with the possible rotation difference between

the two iris images, the input ordinal code is circularly
rotated at different starting angles to match the template
ordinal code. And the minimum Hamming distance of all
matching results is the measure describing the dissimilarity
between the two iris images. Because iris localization and
normalization have complemented the position and scale
differences between two iris images, the whole procedure
of iris matching is insensitive to position, scale, and
rotation changes.

In summary, iris features based on ordinal comparisons
represent iris image contents at three levels of scales: each
iris feature element (ordinal code) describes the ordinal
information of an image patch covered by the MLDF which
is localized by the central pixel of the image patch; each
ordinal measure is jointly determined by weighted inten-
sities of several regions; and finally, all ordinal measures are
concatenated to build a global description of the iris image.

4 EXISTING IRIS RECOGNITION ALGORITHMS IN THE

CONTEXT OF ORDINAL MEASURES

Based on ordinal measures, we can provide a general
framework for iris feature representation and extraction.
Specific iris coding schemes can be obtained under the
guidance of this framework by changing parameter config-
urations. Furthermore, with the above OM representation
model in place, we show in the following that iris image
features of a number of best-performing iris recognition
methods may be interpreted as special cases of this model.

Gabor-based encoding filters used in iris code [1], [2] are
essentially ordinal operators (see Fig. 8). Gabor filters by
definition are continuous functions and have numerous
lobes, but only a very small number of main lobes really
matter. For odd Gabor filtering of local image patch, the
image regions covered by two excitatory lobes are com-
pared with the image regions covered by two inhibitory
lobes (Fig. 8b). The filtered result is qualitatively encoded as
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Fig. 6. Some examples of multilobe differential filters.

Fig. 7. Ordinal measures and their visual meanings. (a) Point. (b) Line.

(c) Edge. (d) Corner. (e) Ridge. (f) Slope.

Fig. 8. Odd and even Gabor filters used in [1], [2]. (a) Odd Gabor filter.
(b) Ordinal comparison of image regions using odd Gabor filter, where
“þ” denotes image region covered by excitatory lobe and “�” represents
image region covered by inhibitory lobe. (c) Even Gabor filter. (d) Ordinal
comparison of image regions using even Gabor filter.
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“1” or “0” based on the sign of this inequality. Similarly,
even Gabor-generated iris code is mainly determined by the
ordinal relationship between one excitatory lobe-covered
region and two small inhibitory lobes-covered regions
(Fig. 8d). Because the sum of the original even Gabor filter’s
coefficients is not equal to 0, the average coefficient value is
subtracted from the filter to keep the balance between
positive coefficients and negative coefficients. Thus, each
iris code has approximately equal probability of being “1”
or “0” to maximize the randomness of iris features [1], [2].

Similarly, the Haar wavelet [9], quadratic spline wavelet
[6], [10], and the derivative of Gaussian filter [15] may also
be seen as typical ordinal filters (Fig. 9). The encoding
methods of [9], [10], [15] are based on the sign representa-
tion of ordinal filtering results. Ma et al. [6] used the
wavelet transform results as the measurements for ordinal
comparison and a magnitude threshold was used to
suppress the insignificant ordinal measures. Monro et al.
proposed to compare the power spectrum of two iris image
patches for ordinal encoding [16]. These iris recognition
methods [1], [6], [9], [10], [15], [16] all perform well in large
scale testing.

Although the connection between the state-of-the-art
iris recognition methods and ordinal measures is only
qualitatively established, our findings may help to explain
these originally different and complex algorithms using a
single framework (the OM framework), and provide a
general iris feature exchange format based on ordinal
measures. More importantly, such a framework is bene-
ficial to guide further development of advanced iris
feature representations. Because the difference in accuracy

between the state-of-the-art iris recognition methods
mainly comes from the different ordinal features they
employed for recognition, our future work will focus on
the selection of the optimal ordinal features.

5 EXPERIMENTAL RESULTS

Extensive experiments have been conducted to evaluate the
performance of the proposed ordinal measures for iris
recognition. Three iris image databases, namely, UBath [35],
CASIA [36], and ICE2005 [19], are used as the test data sets.
These databases represent the most challenging data set for
iris recognition currently available in the public domain.
The Gabor phase encoding method (iris code) [1], [2], which
is the most successful iris recognition algorithm in
commercial applications, and local sharp variation method
(shape code) [6], which achieved high performance in both
accuracy and speed simultaneously, are implemented by
ourselves as the benchmark algorithms in this paper.

Before iris image feature extraction using different
encoding algorithms, the original iris image must be
preprocessed. It mainly includes iris localization and
normalization (see Fig. 10).

Since the focus of this paper is on iris feature representa-
tion, details of iris image preprocessing are not reviewed
here but may be found in the literature [1], [3], [5], [6].

5.1 Results on the UBath Iris Image Database

The UBath Database [35] includes 8,000 iris images of
200 people (see Fig. 11 for some example images). The
database is constructed with a machine vision camera
under NIR illumination. Because of controlled capture
interface, illumination, and cooperative volunteers, the
quality of iris images in this database is good. The original
image resolution is 1;280� 960. To reduce computational
costs, only the downsampled images (resolution 640� 480)
are used in this paper.

Two kinds of typical and simple ordinal filters (Fig. 12)
with different configurations (in terms of the number of
lobes and the interlobe distance) are used on the UBath
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Fig. 9. Other special ordinal filters used for iris recognition. (a) Haar

wavelet. (b) Quadratic spline wavelet. (c) The derivative of Gaussian.

Fig. 10. Illustration of iris image preprocessing. (a) Original iris image.

(b) Iris localization (specular reflections in the pupil region are

automatically detected and filled with low-intensity pixels). (c) Iris

normalization.

Fig. 11. ROI of the sample iris images in the UBath database [35].

Fig. 12. Two kinds of multilobe differential filters. (a) Dilobe ordinal filter.

(b) Trilobe ordinal filter.
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database. The basic lobes of these filters are the same
Gaussian filter (size is 5� 5 and � is 1.7). All the basic lobes
are arranged horizontally to be comparable with previous
schemes [2], [5], [6].

Each ordinal filter (dilobe or trilobe, with a variable
interlobe distance ranging from 3 to 21) is performed on
1,024 densely sampled image regions, to obtain 128 bytes
ordinal code for every iris image in the UBath database.
Then, all possible intraclass comparisons (totally 76,022) are
made to estimate the genuine distribution. To measure the
imposter distribution, each image of one class is used to
match all iris images with the same index in other classes,
generating 1,595,978 interclass matching results (Note: The
ground truth errors of class labels in the original UBath
database have been corrected). Given the intra and
interclass iris matching results, the recognition performance
of every single ordinal filter is measured by the following
two common indicators:

1. Equal error rate (EER), i.e., the cross-over error rate
when false accept rate is equal to the false reject
rate. Lower EER means higher accuracy of a
biometric matcher.

2. Discriminating index d0(DI) [37], with the following
definition:

d0 ¼ m1 �m2j jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
�2

1 þ �2
2

�
=2

q ; ð2Þ

where m1 and �2
1 denote the mean and variance of

intraclass Hamming distances, and m2 and �2
2 denote

the mean and variance of interclass Hamming
distances. Higher DI denotes higher discriminability
of a biometric system.

Performance of ordinal filters measured by the above
two indicators is shown in Fig. 13 with varying interlobe

distances (d). From the experimental results, we can see that
increasing interlobe distance improves recognition perfor-
mance significantly, with lower EER and higher DI.

Here, we give a brief explanation of the advantages of
increasing interlobe distance of ordinal measures. Because
adjacent iris image regions are highly correlated to each
other, the probability of two distant regions being different
is much greater than that of two adjacent regions. For a
typical iris image, the mean contrast magnitude of
randomly sampled 1,000 pixel pairs as a function of the
interpixel distance is shown in Fig. 14. From Fig. 14, it is
obvious that the mean contrast magnitude is a monotonic
increasing function of the interlobe distance. Of course, the
contrast magnitude saturates when the interpixel distance is
higher than a threshold, i.e., the two image pixels involved
in ordinal comparison is completely uncorrelated. As
discussed in Appendix B, the larger the contrast magnitude,
the more robust the contrast polarity (ordinal measure). So,
long-distance ordinal comparisons are more tolerant to
common image degradations than purely local ones.

However, it is interesting to note that increasing
interlobe distance does not always contribute positively to
system performance (see Fig. 13b). We think that there may
be two disadvantages of long-distance ordinal filter.

. When the overall kernel size of an ordinal filter
becomes larger with the increasing of interlobe
distance, more ordinal features are occluded by the
eyelids and eyelashes due to the limited area of
effective iris regions (Fig. 15). So, the number of
valid feature codes in iris template decreases when
the basic lobes of ordinal filter are further separated
from each other, which is negative to recognition
performance.

. Ordinal measures computed from too distant image
regions lose the locality property and are easily
affected by nonuniform illuminations, violating the
basic assumption of ordinal feature extraction
(Appendix A).

Considering that separating the basic lobes of an ordinal
filter far from each other has its advantages and dis-
advantages, the trade-off is that an intermediate interlobe
distance should be used for ordinal feature representation.
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Fig. 13. Performance of ordinal filter as a function of interlobe distance

on the UBath database. (a) DI of dilobe ordinal filter. (b) EER of dilobe

ordinal filter. (c) DI of trilobe ordinal filter. (d) EER of trilobe ordinal filter.

Fig. 14. The mean contrast magnitude as a function of the interpixel

distance.
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Experimental results (Fig. 13b) show that, when the
interlobe distance is about twice the diameter of the basic
lobe, optimal recognition performance is achieved.

Since different ordinal filters have their specific char-
acteristics, it is interesting to investigate the benefit of
integrating multiple ordinal filters for iris recognition. As an
example, we study two kinds of information fusion
strategies, namely, fusion of dilobe and trilobe ordinal
filters at score-level based on Sum rule, and fusion of
neighboring (local) and dissociated (nonlocal) ordinal filters
at score-level based on Sum rule.

Here, different performance indicators including EER, DI,
Template size, and Computational cost of iris recognition
algorithms with various parameter settings in ordinal filter
are summarized in Table 1. Here, the computational cost
means the time used for feature extraction, i.e., create one iris
template from a normalized iris image. It is obvious that
significant improvements of EER can be achieved by
combining multiple ordinal filters. Both the iris code [1],
[2] and the shape code [6] are tested on the same
environment and compared with the local and nonlocal
ordinal code (Table 1). ROC curves of iris recognition
algorithms along with the confidence interval (CI) curve of
FRR are shown in Fig. 16.

Compared with millions of interclass comparisons, the
number of intraclass matchings is too small to achieve
precise FRR estimation. Instead of point estimation, the
confidence interval of FRR is more convincing to
illustrate an algorithm’s performance. FRR in ROC curve
can be statistically estimated using bootstrap. Our
experimental method based on the subsets bootstrap
[38] is implemented as follows:

1. Obtain the Hamming distances of all intraclass and
interclass iris image matching pairs.

2. Compute the thresholds ft1; t2; . . . ; t13g correspond-
ing to logarithmically spaced FARs ranging from 10�6

to 10�2 (biometric system is often operated in this
interval) based on the interclass Hamming distances.

3. Rewrite the N intraclass Hamming distances X as

X ¼
�
x1

1; x
2
1; . . . ; xy11 ;x1

2; x
2
2; . . . ; xy22 ; . . . ;x1

n; x
2
n; . . . ; xynn

�
¼ ð�1; �2; . . . ; �nÞ;

ð3Þ

where xji denotes the jth intraclass Hamming

distance of the ith class iris images, yi denotes the

total number of intraclass comparisons in the

ith class, and �i denotes the set containing all

intraclass Hamming distances of the ith class.
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Fig. 16. ROC curves of iris recognition algorithms on the UBath

database.

TABLE 1
Comparison of Recognition Performance

on the UBath Iris Database

Fig. 15. Explanation of the disadvantage of ordinal measures between

distant image regions.
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4. Create a bootstrap sample X� ¼ f��1; ��2; � � � ; ��ng by
resampling n subsets � with replacement from set X.

5. Calculate FR̂R1ðt1Þ; F R̂R2ðt2Þ; � � � ; F R̂R13ðt13Þ from
X�.

6. Repeat steps 4-5 20,000 times, resulting in 20,000
different estimates of FRRs denoted as FR̂RK

1 ðt�1Þ ;
FR̂RK

2 ðt�2Þ; � � � ; FR̂RK
13ðt�13Þ, K ¼ 1; 2; � � � ; 20;000.

7. Estimate the 95 percent confidence interval of each
FRR by the percentile method.

From the results in Fig. 16 and Table 1, we can see that all
iris recognition algorithms perform well and are with
overlapping confidence intervals. Accuracy of iris code,
shape code, and ordinal code is comparable since there are
totally 2,048 ordinal measures used in these methods, which
are powerful enough to recognize successfully almost all iris
images in the test set. However, there still exist some
differences in the reported ROC curves of these four methods
due to the different ordinal filtering strategies employed in
feature extraction. Because even Gabor filter can be seen as a
trilobe local ordinal filter (Fig. 8d) and odd Gabor filter can be
seen as a quadlobe local ordinal filter (Fig. 8b), iris code
performs like local ordinal code. Similarly, shape code’s
performance is also on the level of local ordinal code. It is
demonstrated that suitable nonlocal ordinal code achieves
better recognition performance than local one (see Table 1
and Fig. 16). Therefore, a possible way to improve state-of-
the-art iris recognition performance is to break the limitation
in local image filter configuration and introduce nonlocal
ordinal measures for iris feature representation.

The time used for the computation of 256 bytes ordinal
code using Matlab 7.0 on a Pentium IV 3.2 GHz processor
with 1 GB RAM is 10.4 ms, but iris code needs 35.2 ms and
shape code takes 29.6 ms under the same conditions (see
Table 1). Ordinal code is more efficient than iris code and
shape code because ordinal code generation only involves
simple low-pass filtering and qualitative comparison. In
contrast, iris code and shape code involve image filtering
with complex Gabor and wavelet kernels, respectively.

5.2 Results on the CASIA Iris Image Database

CASIA Iris Image Database developed by our research
group has been released to the international biometrics
community for many years and has been considered as a
standard database for the evaluation of iris recognition
algorithms [36]. An earlier version of this database, CASIA
Iris Database Ver 1.0 (CASIA V1.0), has been widely used in
the literature, and it is also employed here as a benchmark to
facilitate comparison between our results and others. Iris
images of CASIA V1.0 were captured with a homemade iris
camera. CASIA V1.0 contains 756 iris images from 108 sub-
jects. In order to protect our IPR in the design of the iris
camera (especially the NIR illumination scheme) before
appropriate patents were granted, the pupil regions of all
iris images in CASIA V1.0 were automatically detected and
replaced with a circular region of constant intensity to mask
out the specular reflections from the NIR illuminators before
public release. Clearly, such processing may affect pupil
detection but has basically no effects on other components of
an iris recognition system such as iris feature extraction
since iris feature extraction only uses the image data in the
region between the pupil and the sclera, i.e., the ring-shaped
iris region. All possible intra and interclass iris matchings
are performed on CASIA V1.0 and the experimental results
are shown in Figs. 17 and 18 and Table 2.

We note that Phillips et al. recently made some comments
about CASIA V1.0 [41]. They stated the fact that the images in
CASIA V1.0 had been preprocessed to have circular pupil
regions of constant intensity before public release. They then
recommend that “reporting experimental results on the
CASIA Version 1.0 data set be discontinued, unless there is
a compelling scientific reason to use it.” As the preprocessing
affects only the pupil region and iris feature extraction uses
only iris data in the ring-shaped iris region which is not
affected by the preprocessing, CASIA V1.0 is perfectly fine for
the evaluation of iris feature extraction algorithms such as in
this paper and [5]. Therefore, we think that their recommen-
dations and comments about CASIA V1.0 are overstated and
may lead to confusion and misunderstanding.

In addition to CASIA V1.0, the latest version of the
CASIA database, CASIA-IrisV3, is also used in this paper
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Fig. 17. Performance of ordinal filter as a function of interlobe distance

on CASIA V1.0 database. (a) DI of dilobe ordinal filter. (b) EER of dilobe

ordinal filter. (c) DI of trilobe ordinal filter. (d) EER of trilobe ordinal filter.

Fig. 18. ROC curves of iris recognition algorithms on CASIA V1.0

database.
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for testing. In particular, one of CASIA-IrisV3’s three
subsets, namely, CASIA-IrisV3-Interval, is used for evalua-
tion in this paper. There are totally 2,655 iris images in this
subset, acquired from 396 eyes of 249 subjects. Most
volunteers of CASIA database are Chinese and most images
were captured in two sessions, with at least one-month
interval. All possible intra- and interclass iris matchings are
performed on CASIA-IrisV3-Interval and the experimental
results are shown in Figs. 19 and 20 and Table 3.

5.3 Results on the ICE2005 Iris Image Database

Iris Challenge Evaluation is organized by NIST and the first

evaluation held in 2005 has released the data, protocol, and

ground truth to participants [19]. The iris images of ICE2005

database were collected using LG2200 sensor, including

1,528 images of 120 left eyes and 1,425 images of 124 right eyes

(see Fig. 21 for two example iris images). The data set was

constructed in weekly acquisition sessions and contains iris

images of different quality. To be compliant with the ICE2005

protocol [19], the iris recognition algorithms are separately

evaluated on the left- and right-eye subsets, respectively.
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TABLE 2
Comparison of Recognition Performance

on CASIA V1.0 Database

Fig. 19. Performance of ordinal filter as a function of interlobe distance

on CASIA-IrisV3-Interval database. (a) DI of dilobe ordinal filter. (b) EER

of dilobe ordinal filter. (c) DI of trilobe ordinal filter. (d) EER of trilobe

ordinal filter.

Fig. 20. ROC curves of iris recognition algorithms on CASIA-IrisV3-

Interval database.

TABLE 3
Comparison of Recognition Performance
on CASIA-IrisV3-Interval Iris Database
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5.3.1 Performance on Left-Eye Subset

All possible intra and interclass iris matchings are
performed on ICE2005-Left iris database and the experi-
mental results are shown in Figs. 22 and 23 and Table 4.

5.3.2 Performance on Right-Eye Subset

All possible intra and interclass iris matchings are
performed on ICE2005-Right iris database and the experi-
mental results are shown in Figs. 24 and 25 and Table 5.

5.3.3 Multiscale Ordinal Measures

The ordinal measures discussed above are all implemented
at one scale (lobe size 5� 5; � is 1.7). However, it is well
accepted that iris texture details are exhibited in multiscale
space [1], [3]. So, ordinal measures with different lobe size
(5� 5 and 9� 9) are integrated together to build a more
powerful iris feature model. Experimental results in Fig. 26
and Tables 4 and 5 demonstrate that the performance of
multiscale ordinal measures is comparable to that of the top
algorithms (Daugman’s new methods, Sagem, CMU,
Iritech) reported in the ICE2005 evaluation [19]. It should
be noted that in this paper, no efforts have been made to
optimize the ordinal code. Nevertheless, the recognition
results demonstrate that ordinal measures are promising for

iris feature representation. Moreover, it is possible to
develop more advanced iris recognition engines by explor-
ing the huge feature space of ordinal measures.

5.4 Remarks

Although the UBath, CASIA, and ICE iris image databases
are different in sensors and subjects, a number of consistent
conclusions can be drawn from the experimental results
with these databases.
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Fig. 23. ROC curves of iris recognition algorithms based on ICE2005-

Left database.

Fig. 21. Example iris images of ICE2005 database.

Fig. 22. Performance of ordinal filter as a function of interlobe distance

on ICE2005-Left database. (a) DI of dilobe ordinal filter. (b) EER of

dilobe ordinal filter. (c) DI of trilobe ordinal filter. (d) EER of trilobe ordinal

filter.

TABLE 4
Comparison of Recognition Performance

on ICE2005-Left Iris Database
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. Ordinal feature representation appears to be the
common factor to the success of the state-of-the-art
iris recognition algorithms. They all achieve good
performance in evaluation (i.e., high accuracy, fast
processing, and compact templates).

. Ordinal measures are a general image analysis
method and differences in ordinal filters result in
the difference of recognition results.

. In general, increasing the interlobe (or interregion)
distance makes ordinal measures more effective in
iris recognition. Nonlocal ordinal measures are
superior to local ones since neighboring image
regions are highly redundant in information and
long-distance comparison has higher contrast mag-
nitude so as to improve the robustness of ordinal

codes. However, if the image regions involved in

ordinal comparison are too far from each other, the

performance of ordinal measures may degrade due

to occlusions and nonuniform illumination. So, the

trade-off is that an intermediate interregion distance

should be chosen in ordinal feature extraction. A

simple rule learned from the experiences is that the

interlobe distance should be twice the basic lobe’s

diameter to achieve optimal results.
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TABLE 5
Comparison of Recognition Performance

on ICE2005-Right Iris Database

Fig. 24. Performance of ordinal filter as a function of interlobe distance

on ICE2005-Right database. (a) DI of dilobe ordinal filter. (b) EER of

dilobe ordinal filter. (c) DI of trilobe ordinal filter. (d) EER of trilobe ordinal

filter.

Fig. 26. ROC curves of multiscale ordinal measures on the ICE2005

database.

Fig. 25. ROC curves of iris recognition algorithms on ICE2005-Right

database.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on December 21, 2009 at 02:52 from IEEE Xplore.  Restrictions apply. 



. The computation of ordinal measures can be
simplified to additions and subtractions only, which
facilitates the realization of iris recognition algo-
rithms via hardware and makes real-time iris
recognition possible in embedded systems such as
PDAs and cell phones.

. Ordinal measures with different parameters are
complementary to each other. So, information
fusion of ordinal filters with different intra and
interlobe parameters such as scale, shape, orienta-
tion, distance, and measurements (such as inten-
sity, energy, contrast, and some well-developed
texture features) can further improve the accuracy
of iris recognition.

. Because existing iris recognition methods are almost
all limited to local image filtering (i.e., exhibitory and
inhibitory lobes are very close to each other), the
ordinal measures based on nonlocal differential filters
break this limitation and illustrate the promising
direction to improve iris recognition performance.

6 DISCUSSIONS AND CONCLUSIONS

In this paper, a novel and general framework for iris feature
representation and recognition has been presented. The
framework is based on ordinal measures, a theoretically
simple but practically very powerful feature model. The
major contributions of this paper include:

1. The results of this study demonstrate that ordinal
measures are informative and robust features for iris
recognition despite its simplicity. Our work has
shown that ordinal features can be powerful enough
for complex tasks such as personal identification,
contrary to some views [31].

2. Since the state-of-the-art iris recognition methods
can be interpreted in the framework of ordinal
measures, it is possible to develop an iris feature
model based on ordinal measures as a standard
iris feature format. Such a compact representation
of iris features is helpful for widespread applica-
tions of iris recognition in the storage, transmis-
sion, and identification process.

3. The results obtained from this novel approach
provide better insight into why some best perform-
ing state-of-the-art iris recognition algorithms can
work successfully. Our results help to explain why
the iris pattern is so discriminative, and provide
useful information for the investigation into the
individuality and discriminability of iris biometrics.

4. Compared with local ordinal measures, nonlocal
ordinal measures, in general, perform better. The
work in this paper greatly enriches the previous
general framework of iris recognition from local
comparisons [39] to nonlocal comparisons [40]
because the local ordinal relationships are the special
cases of nonlocal comparisons.

5. With the guidance of this novel feature representa-
tion model, new and improved iris recognition
systems may be developed by different parameter
settings of ordinal filters.

6. Due to the easy implementation of ordinal measures,
fast algorithms of iris recognition can be developed

for embedded systems such as mobile phones,
PDAs, and digital cameras.

7. Although the method based on ordinal measures is
developed in the context of iris recognition, we
think that this is a general scheme for image
representation applicable to many other detection
or recognition tasks.

Although promising results have been obtained in this
paper, there are many open questions deserving further
investigation:

. Theoretic basis of ordinal measures. This paper only
provides a simple analysis of some basic properties
of ordinal measures. Mathematical models may be
adopted to better define and analyze ordinal
measures. For example, nonparametric robust sta-
tistics (e.g., the concepts of order statistics, rank
statistics, Wilcoxon rank sum, break points, etc.) can
be introduced to establish the theoretic basis of
ordinal measures.

. Novel image features based on ordinal measures. Novel
image descriptors can be proposed in the framework
of ordinal measures. Ordinal measures may be
combined with other image operators to achieve
some desirable properties in image representation,
such as scale invariance, rotation invariance, affine
invariance, and robustness against deformation. For
example, rotation invariant ordinal coding may be
achieved by transforming all circular ordinal mea-
sures into a uniform code (see Fig. 27).

. Ordinal feature selection. Flexibility of parameters in
ordinal measures results in an extremely huge
feature set. Of course, different ordinal features
have different distinctiveness and robustness for
visual recognition. Moreover, correlation between
different ordinal measures causes the redundancy of
information in feature representation. So, machine
learning methods such as boosting can be used to
select the optimal ordinal feature set from the
massive vocabulary.

. Fusion of ordinal measures and higher level image
measures. Nominal, ordinal, interval, and ratio mea-
sures describe image contents from different scales.
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Fig. 27. Rotation invariant ordinal feature coding scheme.
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Although ordinal measures are robust, they lose
some magnitude information which may be useful
for visual recognition. So, it is expected to obtain a
more powerful image representation by combining
ordinal measures with higher level image measures
such as interval measures. However, information
fusion of cross-level image measurements is a
relatively new and challenging research issue. We
plan to train object recognition classifier with a
cascaded structure so that ordinal measures and
higher level measures may be used at multiple stages
to achieve a coarse-to-fine feature representation.

APPENDIX A

INVARIANCE OF ORDINAL MEASURES

According to the Lambertian model, the intensity field of a

digital iris image Iðx; y; tÞ at a given time t is jointly

determined by illumination iðx; y; tÞ, reflectance rðx; yÞ, and

geometry �ðx; y; tÞ:

Iðx; y; tÞ ¼ iðx; y; tÞrðx; yÞ cos�ðx; y; tÞ: ð4Þ

Because the pigment of microstructures in iris has

different photometric properties on absorption and reflec-

tion of NIR illumination, rðx; yÞ always varies from region to

region and determines the randomness of iris texture.

Clearly, the reflectance rðx; yÞ is the intrinsic property of

iris patterns, being both informative and invariant to the

external environment. In contrast, both iðx; y; tÞ and �ðx; yÞ
are the extrinsic factors of iris image formation. In order to

extract the intrinsic features of iris image for recognition, it

is a straightforward idea to estimate the exact value of rðx; yÞ
given the observation Iðx; y; tÞ. Then, iris matching could be

simplified to compare the reflectance of two iris images

from pixel to pixel. However, it is a difficult computer vision

problem to reconstruct reflectance from image and almost

impossible in real-time iris recognition application. But it is

fortunate that we can estimate ordinal measures of

reflectance instead of intrinsic iris feature representation.
Suppose the reflectance coefficients of two iris image

regions are rðx; yÞ and rðxþ�x; yþ�yÞ, respectively.

Because the iris is physically very small and illuminated

at a distance, the illumination strength received by different

iris regions is expected to be approximately identical. As iris

surface is piecewise smooth, the surface normal of

neighboring iris regions should also be approximately

identical. So, given small �x and �y, we have

iðxþ�x; yþ�y; tÞ � iðx; y; tÞ ð5Þ

and

�ðxþ�x; yþ�y; tÞ � �ðx; y; tÞ; ð6Þ

so

rðx; yÞ
rðxþ�x; yþ�yÞ �

Iðx; y; tÞ
Iðxþ�x; yþ�y; tÞ : ð7Þ

From the above equations, it is reasonable (at least for most

cases) to derive that

rðx; yÞ>< rðxþ�x; yþ�yÞ
, Iðx; y; tÞ>< Iðxþ�x; yþ�y; tÞ:

ð8Þ

Equation (8) means that ordinal measures of reflectance can
be estimated from ordinal intensity relationship between
the corresponding image regions. Moreover, such an
ordinal relation is stable across multiple sessions of iris
image acquisition. In ideal situation (without noise), the
corresponding ordinal measures of within-class iris images
should be identical:

rðx; yÞ
rðxþ�x; yþ�yÞ ¼

Iðx; y; t1Þ
Iðxþ�x; yþ�y; t1Þ

¼ . . . . . . ¼ Iðx; y; tnÞ
Iðxþ�x; yþ�y; tnÞ

:

ð9Þ

So, for intraclass iris images captured at different sessions t1
and t2,

Iðx; y; t1Þ>< Iðxþ�x; yþ�y; t1Þ ,
Iðx; y; t2Þ>< Iðxþ�x; yþ�y; t2Þ:

ð10Þ

Equation (10) illustrates the core idea of ordinal-
measures-based iris recognition method, establishing an
individual’s identity by comparing the ordinal measures of
his iris image with that of a template. It is assumed that
ordinal measures of intraclass iris images should be largely
matched. In contrast, ordinal measures of interclass iris
images have no intrinsic correlation, so their match rate is
only around 50 percent.

Of course, ordinal measures of iris images are not limited
to pixel intensity values. The values used for ordinal
comparison may be the results of image transformation or
the weighted intensity of a group of pixels. For example, we
can derive a series of ordinal measures from (8):

rðx; yÞ>< rðxþ�x; yþ�yÞ
) fðrðx; yÞÞ>< fðrðxþ�x; yþ�yÞÞ
) fðIðx; y; tÞÞ>< fðIðxþ�x; yþ�y; tÞÞ;

ð11Þ

w1Iðx1; y1Þ þ w2Iðx2; y2Þ < w3Iðx3; y3Þ þ w4Iðx4; y4Þ
) w1rðx1; y1Þ þ w2rðx2; y2Þ < w3rðx3; y3Þ þ w4rðx4; y4Þ;

ð12Þ

where f(x) is a monotonic increasing function, wi
(i ¼ 1; 2; 3; 4) are the positive coefficients, and (xi; yi)
(i ¼ 1; 2; 3; 4) are the spatial locations of the image region.
Equation (11) indicates that ordinal measures of iris image
are inherently illumination insensitive and stable to any
monotonic or linear intensity transform, like Gamma
correction and gain difference between sensors. Ordinal
measures across image regions are also robust against
misalignment and nonlinear deformation to some extent
due to the local similarity property of image pixels. Because
the ordinal measures of iris images are determined by the
physical properties of iris physiological structures, they are
expected to be invariant to sensor differences.

It should be noted that the above derivations are not so
strict and only hold for most of iris image regions under
normal imaging conditions. In particular, relief features
(e.g., a raised bump or ridges, versus a depressed crypt in

2224 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 12, DECEMBER 2009

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on December 21, 2009 at 02:52 from IEEE Xplore.  Restrictions apply. 



the iris) may yield different ordinal measures when the

angle of illumination is changed, from one side to the other.

In addition, abnormal illumination settings may break the

conclusions. For example, when iris is illuminated with

nonuniform structured lighting, the received photons may

be largely different between neighboring iris regions. Then,

the ordinal measures of the iris image regions may not be

equal to the ordinal relations of their reflectance. Never-

theless, iris recognition is determined by a large number of

ordinal measures, so these exceptions usually cannot

change the decision results.

APPENDIX B

ROBUSTNESS OF ORDINAL MEASURES

Here, ordinal measure is defined as the qualitative relation-

ship between the average intensity of two iris image regions

(A andB). Each region includesK pixels and the intensity of

each pixel is assumed to follow an independent and identical

Gaussian distribution. Suppose A 	 ð�A; �2Þ; B 	 ð�B; �2Þ,
and the average intensity difference Id ¼ �A � �B > 0. If

there is additive Gaussian noise N in iris image and

N 	 ð�N; �2
NÞ, so region A0 	 ð�A þ �N; �2 þ �2

NÞ and aver-

age intensity of region A0IA0 	 ð�A þ �N; ð�2 þ �2
NÞ=K);

region B0 	 ð�B þ �N; �2 þ �2
NÞ, and average intensity of

region B0IB0 	 ð�B þ �N; ð�2 þ �2
NÞ=K). Then, the average

intensity difference between A0 and B0 is Id0 ¼ IA0 �
IB0 	 ð�A � �B; ð2�2 þ 2�2

NÞ=KÞ. So, the probability of flip-

ping the ordinal code between regions A and B because of

noise is

PfOMðA;BÞ 6¼ OMðA0; B0Þg ¼ PfId0 < 0g

¼
Z 0

�255

1ffiffiffiffiffiffiffiffiffiffi
2��d
p e�½x�ð�A��BÞ


2=2�2
d dx;

ð13Þ

where

�d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2�2 þ 2�2

N

�
=K

q
: ð14Þ

The probability of OM flipping is also illustrated as the

shaded area in Fig. 28. From (13) and Fig. 28, we can draw

two conclusions:

. The larger the magnitude difference between two
variables involved in ordinal comparison, the more
robust their ordinal measures against additive
Gaussian noise. For example, higher �A � �B leads
to lower PfOMðA;BÞ 6¼ OMðA0; B0Þg.

. The larger the image region used for ordinal feature
extraction, the more robust the ordinal measures. For
example, larger K leads to smaller �d, which, in turn,
leads to lower PfOMðA;BÞ 6¼ OMðA0; B0Þg.

For a typical iris image in practice, the contrast

magnitude between two 7� 7 image block pairs is 17.36

(the average contrast magnitude of thousands of iris image

block pairs with random orientations), and the average

standard deviation is 18.11. So, the probability of OM

flipping is only 0.04 percent when the signal to noise ratio

�2=�2
N ¼ 1 according to (13). Even when �2=�2

N ¼ 0:1, the

probability of OM flipping only increases to 7.61 percent.

Based on the above analysis, we can see the robustness of

ordinal measures against noise.
Although the above analysis is based on the assumption

of additive Gaussian noise and independent and identical

Gaussian distributions of pixel values, the conclusions we

have made are of general value.
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