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Trace ratio is a natural criterion in discriminant analysis as it directly connects to the Euclidean distances
between training data points. This criterion is re-analyzed in this paper and a fast algorithm is developed
to find the global optimum for the orthogonal constrained trace ratio problem. Based on this problem, we
propose a novel semi-supervised orthogonal discriminant analysis via label propagation. Differing from
the existing semi-supervised dimensionality reduction algorithms, our algorithm propagates the label
information from the labeled data to the unlabeled data through a specially designed label propagation,
and thus the distribution of the unlabeled data can be explored more effectively to learn a better sub-
space. Extensive experiments on toy examples and real-world applications verify the effectiveness of our
algorithm, and demonstrate much improvement over the state-of-the-art algorithms.
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1. Introduction

In many real-world applications in data mining, information
retrieval and pattern recognition, labeled data are usually very insuf-
ficient and labeling a huge number of data points needs expensive
human labor and takes much time. On the other hand, unlabeled
data may be abundant and can be easily and cheaply obtained. Thus
how to use the labeled and unlabeled data to improve the perfor-
mance becomes an important problem. This motivation opens a hot
research direction of semi-supervised learning [1–8].

Recently, semi-supervised dimensionality reduction has attracted
great interest [9–14]. One of the advantages of semi-supervised di-
mensionality reduction is that it can be directly applied in the whole
input space. Therefore, semi-supervised dimensionality reduction is
an inductive method and the out-of-sample problem [15] is natu-
rally solved, which makes it more applicable in practice.

Most dimensionality reduction methods fall into the graph
embedding framework [16]. Under this framework, current semi-
supervised dimensionality reduction algorithms [9–12] construct
the weight matrix on graph with the labeled and unlabeled data.
However, these algorithms only use the labeled and unlabeled data
in a simple manner to construct the weight matrix on graph, which
may not sufficiently explore the distribution of the unlabeled data.
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In this paper, we propose a novel semi-supervised dimensional-
ity reduction algorithm via a specially designed label propagation
procedure. Through the label propagation, the label information
in the labeled data is propagated to the unlabeled data accord-
ing to the distribution of the labeled and unlabeled data, thus
the distribution of the unlabeled data can be effectively explored
to learn a better subspace. The scatter matrices based on soft
label learned by label propagation are defined to perform the
discriminant analysis, which gives us a general framework to ex-
tend many variants of supervised discriminant analysis to the
semi-supervised ones. As the orthogonal projection is of desirable
property and often demonstrates good performance empirically,
in this paper, we focus on a trace ratio based orthogonal discrim-
inant analysis (ODA), and propose the semi-supervised orthog-
onal discriminant analysis (SODA) algorithm for dimensionality
reduction.

The trace ratio based orthogonal discriminant analysis is an or-
thogonal variant of linear discriminant analysis (LDA). The projection
matrix in LDA is not orthogonal, as pointed out in [17], nonorthog-
onal projection matrix essentially puts different weights on differ-
ent projection directions, while orthogonal matrix will not change
the similarity if it is based on the Euclidean distance. Recently, or-
thogonality has attracted great attention in many learning problems
[18–24], and there are also several algorithms to extract the orthog-
onal projection matrix for LDA.

A step-by-step procedure was proposed in [25] to obtain a set
of orthogonal projections {w1,w2, . . . ,wm}. After calculating the first
k − 1 projections {w1,w2, . . . ,wk−1}, the k-th projection wk is
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calculated by solving the following optimization problem:

wk = arg min
WT

k−1wk=0

wT
kSbwk

wT
kSwwk

, (1)

where Wk−1 = [w1,w2, . . . ,wk−1], Sw and Sb are the scatter matri-
ces defined in LDA. The step-by-step procedure makes the algorithm
computationally more expensive. Moreover, the optimization objec-
tive w.r.t. the whole projections {w1,w2, . . . ,wm} is unclear in this
procedure.

Recently, [26] proposed another orthogonal LDA (OLDA) algo-
rithm, which is to solve the ratio trace optimization problem as
follows:

WOLDA = arg max
WTW=I

tr((WTStW)+WTSbW), (2)

where St = Sw + Sb is the total scatter matrix, I denotes the iden-
tity matrix, (·)+ denotes the Moore–Penrose generalized inverse of
a matrix [27] and tr(·) denotes the trace of a matrix. The compu-
tation burden of the orthogonal LDA algorithm is a little alleviated
compared to the above one, but the ratio trace criterion used in it is
only an approximation to the trace ratio criterion [17,28].

Directly optimizing the trace ratio problem under the orthogo-
nal constraint is a little difficult and time consuming. Recently, [17]
proposed a fast algorithm to solve this problem using an iterative
procedure. In this paper, we further analyze the trace ratio prob-
lem, and reveal that the solution to the trace ratio problem under
the uncorrelated constraint is exactly the same as the solution to
LDA when Sw is nonsingular. For the trace ratio problem under the
orthogonal constraint, we propose a faster algorithm than the pre-
vious ones [17,28] to find the global optimum. Combining the scat-
ter matrices based on soft label learned by label propagation and
the trace ratio problem under the orthogonal constraint, we propose
the semi-supervised orthogonal discriminant analysis algorithm for
dimensionality reduction.

The proposed algorithm is linear, which can be easily extended
to the nonlinear one by the kernel trick [29] to better fit the linear
inseparable but nonlinear separable data. Experimental results on
toy and real-world datasets verify the effectiveness of the proposed
algorithms, and demonstrate much improvement over the state-of-
the-art algorithms.

The rest of this paper is organized as follows: we analyze the
trace ratio problem and introduce the orthogonal discriminant anal-
ysis with a faster algorithm in Section 2. In Section 3, we introduce
the new label propagation and the soft label based scatter matrices,
and propose the semi-supervised orthogonal discriminant analysis
algorithm. In Section 4, we extend the proposed algorithm to the
nonlinear one by the kernel trick. Extensive experiments are pre-
sented in Section 5 and conclusions are drawn in Section 6.

2. Trace ratio based orthogonal discriminant analysis

2.1. Linear discriminant analysis

The goal of LDA is to learn a linear transformation matrix W ∈
Rd×m (m<d), and the original high-dimensional data x ∈ Rd is trans-
formed into a low-dimensional vector y ∈ Rm by

y = WTx. (3)

Given the training dataset X = {xi ∈ Rd|i = 1, . . . ,n}, each data xi is
associated with a class label ci from {1, 2, . . . , c}. Denote by Xi the
dataset of class i and denote by ni the number of data points in class
i. LDA defines the within-class scatter matrix Sw, the between-class

scatter matrix Sb and the total-class scatter matrix St as follows:

Sw =
c∑

i=1

∑
x∈Xi

(x − x̄i)(x − x̄i)
T , (4)

Sb =
c∑

i=1

ni(x̄i − x̄)(x̄i − x̄)T , (5)

St =
∑
x∈X

(x − x̄)(x − x̄)T , (6)

where x̄i = (1/ni)
∑

xj∈Xi
xj is the mean of the samples in class i and

x̄= (1/n)
∑n

i=1 xi is the mean of all the samples. It can be verified that
St = Sw + Sb.

The purpose of linear discriminant analysis is to simultaneously
maximize the between-class scatter and minimize the within-class
scatter. To this end, LDA solves the following ratio trace optimization
problem:

WLDA = argmax
W

tr((WTSwW)−1WTSbW). (7)

In LDA, it is assumed that the matrix Sw is nonsingular. It is well
known that the solution to LDA is reduced to solving the following
generalized eigen-decomposition problem:

SbW = SwWK. (8)

Finally, the columns in WLDA are formed by the generalized eigen-
vectors of Sb and Sw corresponding to the firstm largest eigenvalues.

2.2. Trace ratio criterion

Another reasonable strategy to obtain great discriminative power
is maximizing the term tr(WTSbW) and at the same time minimizing
the term tr(WTSwW) since these two terms directly reflect the Eu-
clidean distances between training data points. As has been pointed
out in [17], a natural solution to these dual objectives is to pose a
trace ratio optimization problem as follows:

WTRDA = argmax
W

tr(WTSbW)
tr(WTSwW)

. (9)

To avoid trivial solution, the projection matrix W in (9) should be
constrained. There are two usually used constraints, including the
uncorrelated constraint [30] and the orthogonal constraint [25]. In
the following, we will derive the solution under the uncorrelated
constraint or the orthogonal constraint, respectively.

2.2.1. Uncorrelated constraint
Under the uncorrelated constraint, the trace ratio problem (9)

becomes

WUTRDA = arg max
WTStW=X

tr(WTSbW)
tr(WTSwW)

, (10)

where X is a given constant and diagonal matrix.
Note that St =Sw+Sb, therefore, problem (10) can be rewritten as

WUTRDA = arg max
WTStW=X

tr(WTSbW). (11)

The Lagrangian function of problem (11) is

tr(WTSbW) − tr(k(WTStW −X)). (12)

In order to obtain the optimal solution to problem (11), we should
find out an appropriate k andW such that the constraintWTStW=X
holds and the derivative of Eq. (12) w.r.t. W is equal to zero. Note
that k is a symmetric matrix, suppose the eigen-decomposition of
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k is k = UKUT , where K is the eigenvalue matrix of k, and U is
the corresponding eigenvector matrix. By setting the derivative of
Eq. (12) w.r.t. W to zero, we have

SbW − StWk= 0 ⇒ SbW = StWUKUT ⇒ S−1
t SbWU = WUK. (13)

Let U be an identity matrix, then the Lagrangian coefficient k = K,
and Eq. (13) becomes

SbW = StWK. (14)

Note that St and Sb are symmetric, the W in Eq. (14) satisfies that
WTStW is a diagonal matrix. Therefore, when the Lagrangian coef-
ficient k = K and W is formed by the generalized eigenvectors of
Sb and St as in Eq. (14), the constraint WTStW =X will hold and
the derivative of Eq. (12) w.r.t. W is equal to zero. So the solution
to problem (10) can be reduced to solving the generalized eigen-
decomposition problem in Eq. (14), and the columns in WUTRDA are
formed by the generalized eigenvectors of Sb and St corresponding
to the first m largest eigenvalues.

It is interesting to see that the solution to the uncorrelated con-
strained trace ratio problem (10) is exactly the solution to LDA, which
give us a new insight into the LDA method.

2.2.2. Orthogonal constraint
Under the orthogonal constraint, the trace ratio problem (9)

becomes

WOTRDA = arg max
WTW=I

tr(WTSbW)
tr(WTSwW)

, (15)

where I is an identity matrix.
In practice, to avoid overfitting, we can add a regularization term

to Sw, and the optimization problem (15) becomes

WSODA = arg max
WTW=I

tr(WTSbW)
tr(WT (Sw + �Id)W)

, (16)

where Id is a d × d identity matrix, and �>0 is the regulariza-
tion parameter. We call the algorithm that solves the orthogonal
constrained trace ratio problem (16) as orthogonal discriminant
analysis.

In comparison with problem (10), problem (15) or (16) is more
difficult to solve, and the closed solution is hard to derive. For-
tunately, there exists efficient algorithm to solve the problem by
iterative procedure.

2.3. Efficient algorithm for the orthogonal constrained trace ratio
problem

2.3.1. A recently proposed fast algorithm revisited
Recently, an efficient algorithm [17] was proposed to solve the

orthogonal constrained trace ratio problem (15). The algorithm is
briefly stated as below:

Step 1: Initialize W as an arbitrary column-orthogonal matrix.
Step 2: Compute the trace ratio value �= tr(WTSbW)/tr(WTSwW).
Step 3: Construct the trace difference problem as

W∗ = arg max
WTW=I

tr(WT (Sb − �Sw)W). (17)

Step 4: It is well known that W∗ is formed by the m eigenvectors
of Sb − �Sw corresponding to the m largest eigenvalues. Update W
by W∗.

Step 5: Iteratively perform steps 2–4 until convergence.
It was rigorously proved that the algorithm converges to the

global optimum [17]. To better understand it, we give a theorem to
reveal the connection between the trace difference problem and the

trace ratio problem. Denote W� = arg maxWTW=I tr(W
T (Sb −�Sw)W),

we define a function as below:

f (�) = tr(WT
�SbW�)

tr(WT
�SwW�)

. (18)

Suppose that

�∗ = max
WTW=I

tr(WTSbW)
tr(WTSwW)

, (19)

then we have the following theorem:

Theorem 1. The function f (�) is monotonically increasing when ���∗,
and is monotonically decreasing when ���∗.

The proof is given in Appendix A. Theorem 1 indicates that func-
tion f (�) has only a single peak, which gives a theoretical confirma-
tion to the experimental observation in [31]. Theorem 1 gives us an
insight into the orthogonal constrained trace ratio problem. Although
the trace ratio problem is not convex, the function f (�) which is as-
sociated with the trace difference problem is exactly convex. There-
fore, it is not hard to understand why the algorithm that converts
the trace ratio problem to the trace difference problem can find the
global optimum.

2.3.2. A faster algorithm
The algorithm stated in Section 2.3.1 is efficient to solve problem

(15). Here, we propose a more efficient algorithm to solve it.
The Lagrangian function of problem (15) is

tr(WTSbW)
tr(WTSwW)

− tr(k(WTW − I)). (20)

Note that k is a symmetric matrix, suppose the eigen-decomposition
of k is k = UKUT , where K is the eigenvalue matrix of k, and U is
the corresponding eigenvector matrix. By setting the derivative of
Eq. (20) w.r.t. W to zero, we have

tr(WTSwW)SbW − tr(WTSbW)SwW

tr(WTSwW)2
SbW − Wk= 0

⇒
(
Sb − tr(W̃TSbW̃)

tr(W̃TSwW̃)
Sw

)
W̃ = W̃K̃, (21)

where W̃ = WU and K̃= tr(WTSwW)K.
Eq. (21) indicates two facts. First, if W is the optimal solution to

problem (15), then W̃ = WU is also an optimal solution, where U
could be an arbitrary orthogonal matrix. Second, the optimal solution
W̃ should satisfy Eq. (21). Based on these two facts, we know that
finding the optimal solution to problem (15) is equivalent to finding
a W̃ such that Eq. (21) is satisfied. We propose an iterative procedure
to find such a W̃ that satisfies Eq. (21). The iterative procedure is
stated as follows:

Step 1: Initialize W as an arbitrary column-orthogonal matrix.
Step 2: Compute the trace ratio value �= tr(WTSbW)/tr(WTSwW).
Step 3: Compute the eigen-decomposition of Sb − �Sw as

(Sb − �Sw)wi = �iwi, (22)

where wi (i = 1, 2, . . . d) is the eigenvector of Sb − �Sw.
Step 4: Solve the following problem:

W∗ = argmax
W∈�

tr(WTSbW)
tr(WTSwW)

, (23)

where � is the set of matrix whose columns are formed by m differ-
ent eigenvectors selected from wi (i = 1, 2, . . . d). Update W by W∗.

Step 5: Iteratively perform steps 2–4 until convergence.
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Comparing this algorithm with the algorithm in [17] (described
in Section 2.3.1), we can see that the main difference is in the step
4. That is, the main difference is how to update W in the next it-
eration. The algorithm in [17] uses the m eigenvectors of Sb − �Sw
corresponding to the m largest eigenvalues to update W. However,
the solution W∗ to problem (23) is not necessarily formed by these
top m eigenvectors. Therefore, the trace ratio value � in each itera-
tion in the proposed algorithm is usually greater than that of in the
algorithm in [17]. In addition, problem (23) can be efficiently solved
without performing eigenvalue decomposition and the computation
cost can be ignored compared with the eigenvalue decomposition
[32]. Therefore, the proposed iterative algorithm is faster than the
algorithm in [17]. As it has been proved that the algorithm in [17]
can find the global optimum, the proposed algorithm can also find
the global optimum.

Now we have introduced the trace ratio based orthogonal dis-
criminant analysis method with a fast algorithm to find the global
optimum of the orthogonal constrained trace ratio problem. In the
next section, we will propose a general framework to extend the
variants of supervised discriminant analysis to the semi-supervised
ones. Based on the framework and the introduced orthogonal dis-
criminant analysis, we will propose the semi-supervised orthogonal
discriminant analysis algorithm and its kernel version.

3. Semi-supervised orthogonal discriminant analysis via label
propagation

3.1. Calculate the soft label through label propagation

Label propagation is a key idea in many graph based semi-
supervised learning algorithms [4,5]. It propagates label information
from labeled data to unlabeled data according to the distribution of
labeled and unlabeled data.

In the label propagation, a neighborhood weighted graph on data
should be constructed first. A popular construction method is as
follows: if xi is among the k nearest neighbors of xj or xj is among
the k nearest neighbors of xi, then xi and xj are linked by a weight
computed by

Aij = e−‖xi−xj‖2/�2
, (24)

otherwise, Aij =0. Here � is the variance, ‖ ·‖ is the 2-norm of vector,
i.e., ‖x‖2 = xTx.

In this paper, we introduce an additional class c+1 in order to de-
tect outlier data. Let F=[FT1, . . . , F

T
n]

T ∈ Rn×(c+1) be the predicted label
matrix, where Fi ∈ Rc+1 (1� i�n) are row vectors and 0�Fij�1.

Define the initial label matrix Y= [YT
1, . . . ,Y

T
n]

T ∈ Rn×(c+1), where Yi ∈
Rc+1 (1� i�n) are row vectors. For the labeled data, Yij = 1 if xi is
labeled as j and Yij = 0 otherwise. For the unlabeled data xi, Yij = 1
if j = c + 1 and Yij = 0 otherwise.

Denote a stochastic matrix P = D−1A, where D is the diagonal
matrix with the i-th diagonal element being Dii =

∑
j Aij. Let us con-

sider a new iterative process for label propagation. In each iteration,
the label information of each data point is partly received from its
neighbors, and the rest is received from its initial label (see Fig. 1).
The label information of the data at time t + 1 is propagated based
on the following equation:

F(t + 1) = I�PF(t) + I�Y, (25)

where I� is an n × n diagonal matrix with the i-th entry being �i,
I� = I − I�, �i (0��i <1) is a parameter for data xi to balance the
initial label information of xi and the label information received from
its neighbors during the iteration. In practice, for labeled data xi, �i
could be set to 0, while for unlabeled data xi, �i could be set to a
value near to 1.

 xi

 xj αiPij
βi

 yi

Fig. 1. A new label propagation on graphs. The blue circle data denotes the neighbors
of the yellow circle data xi , and the red square denotes the initial label yi of xi . In
each iteration of the label propagation process, the label information of xi is partly
received from its neighbors' labels, and the rest is received from its initial label yi .
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

By the iteration equation (25), we have

F(t) = (I�P)
tF(0) +

t−1∑
i=0

(I�P)
iI�Y (26)

and the iteration process converges to

F = lim
t→∞

F(t) = (I − I�P)
−1I�Y. (27)

It can be easily verified that the sum of each row of F is equal to 1,
which indicates the elements in F are probability values, and Fij can
be seen as an estimation of the posterior probability of xi belonging
to class j. When j=c+1, Fi,c+1 denotes the probability of xi belonging
to outlier. As the value of Fij is probability value, in this paper, we
call Fij (1� j�c) as the soft label of xi.

By this specially designed label propagation, the outlier in data
can be detected and the soft label of each data is obtained. As can be
seen in the next subsection, it is convenient to construct the scatter
matrices for discriminant analysis using the soft label.

3.2. Soft label based scatter matrices

After the label propagation, we obtain the soft label for each
data xi (i = 1, 2, . . . ,n), i.e., the probability Fij of xi belonging to class
j (j = 1, 2, . . . , c). While in LDA, the scatter matrices Sw, Sb and St are
defined based on the hard label of each data xi (i = 1, 2, . . . ,n), i.e.,
the probability Fij of xi belonging to class j (j = 1, 2, . . . , c) is either 0
or 1. Here we extend the scatter matrices defined in LDA to the soft
label based scatter matrices, and defined as follows:

S̃w = 1
ñ

c∑
i=1

n∑
j=1

Fji(xj − x̃i)(xj − x̃i)
T = 1

ñ
X(B − FcDFTc )X

T , (28)

S̃b =
c∑

i=1

ñi
ñ
(x̃i − x̃)(x̃i − x̃)T = 1

ñ
X
(
FcDFTc − 1

ñ
B11TB

)
XT , (29)

S̃t = 1
ñ

n∑
i=1

Bii(xi − x̃)(xi − x̃)T = 1
ñ
X
(
B − 1

ñ
B11TB

)
XT , (30)

where ñi=
∑n

j=1 Fji, ñ=∑c
i=1 ñi, x̃i=

∑n
j=1 Fjixj/ñi, x̃=∑n

i=1
∑c

j=1 Fijxi/ñ,
B ∈ Rn×n is a diagonal matrix, the i diagonal element of which is
Bii=

∑c
j=1 Fij. D ∈ Rc×c is a diagonal matrix, the i diagonal element of

which is Dii = 1/
∑n

j=1 Fji, Fc ∈ Rn×c is formed by the first c columns

of F, 1 = [1, 1, . . . , 1]T ∈ Rn×1, X = [x1, x2, . . . , xn] ∈ Rd×n.
It can be easily checked that S̃t = S̃w + S̃b. When the soft label

becomes hard label, i.e., Fij is either 0 or 1, the soft label based scatter
matrices S̃w, S̃b and S̃t defined here become the scatter matrices
defined in LDA, respectively.
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Table 1
Semi-supervised orthogonal discriminant analysis algorithm.

Input:
Data matrix X ∈ R

d×n (each column is a data point). Projected dimension m and other related parameters.
Output:

The projection matrix W ∈ R
d×m .

Algorithm:
1. Construct the neighborhood graph and calculate the weight matrix A.
2. Perform label propagation by Eq. (27) and obtain the soft label matrix F.
3. Calculate the soft label based scatter matrices S̃w and S̃b by Eqs. (28) and (29), respectively.
3. Solve the orthogonal constrained trace ratio problem (32) by the algorithm proposed in Section 2.3.2.

Note that S̃w and S̃b are constructed based on the soft labels
which are learned from the label propagation between labeled and
unlabeled data, thus by using these scatter matrices in a discriminant
analysis algorithm, the distribution of the unlabeled data can be
effectively explored to learn a better subspace.

3.3. Semi-supervised orthogonal discriminant analysis

Now, we have the scatter matrices based on soft labels learned
by label propagation within labeled data and unlabeled data. Apply-
ing them to a supervised discriminant analysis will derive a semi-
supervised counterpart, which give us a general framework to ex-
tendmany variants of LDA to the semi-supervised ones. In this paper,
we focus on the trace ratio based orthogonal discriminant analysis,
and propose the semi-supervised orthogonal discriminant analysis
algorithm, which is to solve the following optimization problem:

WSODA = arg max
WTW=I

tr(WT S̃bW)

tr(WT S̃wW)
, (31)

where S̃w and S̃b are the soft label based scatter matrices defined in
(28) and (29), respectively.

Similarly to the orthogonal discriminant analysis, to avoid over-
fitting in practice, we add a regularization term to S̃w, and the
optimization problem (31) becomes

WSODA = arg max
WTW=I

tr(WT S̃bW)

tr(WT (S̃w + �Id)W)
, (32)

where Id is a d × d identity matrix and �>0 is the regularization
parameter.

We summarize the proposed semi-supervised orthogonal dis-
criminant analysis algorithm in Table 1. It is worth noting that the
step of label propagation in the algorithm only needs to solve sparse
linear equations, which has been intensively studied and there exist
efficient algorithms whose computational time is nearly linear [33].
Therefore, the computational burden of this step can be ignored in
the algorithm.

4. Kernel semi-supervised orthogonal discriminant analysis

The proposed semi-supervised orthogonal discriminant analysis
is a linear algorithm. By the kernel trick, it is easy to extend the
linear algorithm to a nonlinear one.

Suppose the data are mapped from the original input space to a
higher dimensional Hilbert space F with a nonlinear mapping 	 :
x → F, and the map is implicitly implemented via kernel function
K(xi, xj) = 	(xi) · 	(xj). The kernel function K : Rd × Rd → R
may be any positive kernel satisfying Mercer's condition [34,35]. For
instance, a frequently used one is the radial basis function (RBF)
kernel defined by

K(xi, xj) = e−‖xi−xj‖2/�2
. (33)

Performing the semi-supervised orthogonal discriminant analysis al-
gorithm in the nonlinearly mapped high-dimensional space F will
derive the kernel semi-supervised orthogonal discriminant analysis
(KSODA).

Denote 	̄ = (1/n)
∑

i 	(xi), 	(X)= [	(x1),	(x2), . . . ,	(xn)]. Denote
a centralization matrix by Lc=I−(1/n)11T , where I is an n×n identity
matrix, and 1 ∈ Rn is a column vector in which all the elements are
equal to one. Note that the solution W lies in the subspace spanned
by the centralized training data {	(x1)− 	̄,	(x2)− 	̄, . . . ,	(xn)− 	̄},
we can express W as W = 	(X)Lca, where a ∈ Rn×m. Denote the
centralized kernel matrix by

K = Lc	(X)T	(X)Lc, (34)

then we have the following optimization problem from (32):

aKSODA = arg max
aTKa=I

tr(aTKL̃bKa)

tr(aT (KL̃wK + �Ka)
, (35)

where L̃w = B − FcDFTc and L̃b = FcDFTc − (1/ñ)B11TB, both of which
are Laplacian matrices.

Suppose the eigen-decomposition of K is

K = UKUT , (36)

where K is the positive eigenvalue matrix and U is the correspond-
ing eigenvector matrix. Let a = UK−1/2b, then problem (35) can be
rewritten as an orthogonal constrained trace ratio problem:

bKSODA = arg max
bTb=I

tr(bTHbb)

tr(bT (Hw + �Ir)b)
, (37)

where

Hw =K−1/2UTKL̃wKUK
−1/2 (38)

and

Hb =K−1/2UTKL̃bKUK
−1/2. (39)

Problem (37) is exactly an orthogonal constrained trace ratio
problem, and can be efficiently solved by the algorithm pro-
posed in Section 2.3.2. After computing bKSODA, we have WKSODA =
	(X)LcUK

−1/2bKSODA. For any data point x ∈ Rd, the projected data
point is

y = WT
KSODA	(x) = bTKSODAK−1/2UTLc	(X)T	(x). (40)

5. Experiments

In this section, we evaluate the proposed algorithms with toy
examples and several real-world applications, and compared them
with several representative algorithms. The algorithms performed
in the experiments are as follows: linear discriminant analysis,
orthogonal linear discriminant analysis [26], orthogonal discrimi-
nant analysis (to solve problem (16)), semi-supervised discriminant
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Fig. 2. (a) The projection direction learned by LDA, SDA and SODA; Gaussian. The blue star points are the outlier data detected by SODA. (b) The contour lines learned by
KSODA; two moon. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

analysis (SDA) [10], semi-supervised orthogonal discriminant anal-
ysis (to solve problem (32)) and kernel semi-supervised orthogonal
discriminant analysis (to solve problem (35)).

5.1. Toy examples

We present two toy examples to demonstrate the effectiveness
of our algorithms.

In the first toy example, we generate a dataset with two classes,
each of which is distributed with a Gaussian. We also add some
outlier data in the dataset. Two data points of each class are labeled
(shown as the purple points). Fig. 2(a) shows the learned projection
directions by LDA, SDA and SODA, respectively. The experimental
result indicates that SDA can improve LDA by use of unlabeled data.
However, SDA only use the labeled and unlabeled data in a simple
manner to construct the weightmatrix on graph, and the distribution
in data might not be explored thoroughly. In contrast, SODA use label
propagation to learn the soft labels for the unlabeled data, thus the
labeled information and the distribution of the unlabeled data can be
effectively explored to learn a better subspace. Moreover, by virtue
of the new defined label propagation procedure, the outlier in the
data (shown as the green star points) can be effectively detected. In
fact, for the green star samples, the values of Fij (j = 1, 2) calculated
by Eq. (27) are very small and approach zero, while the values of
Fij (j = 3) approach 1.

�) of each algorithm are reported in Table 2
In the second toy example, we generate another dataset with two

classes, each of which is distributed with a half moon. In this dataset,
only one data point of each class is labeled (shown as the purple
points). Since the distribution of the data is non-Gaussian, here only
the kernelized SODA is evaluated. Fig. 2(b) shows the contour lines
learned by KSODA. The projected dimension is one in this experi-
ment. The value in each line is the distance difference of the data
point in the line to the two labeled data points after projection by
KSODA. Therefore, the line with value 0 can act as the classification
boundary. From Fig. 2(b) we observe that KSODA fits the nonlinear
data well and obtains a desired nonlinear classification, which indi-
cates that KSODA is a more suitable algorithm when the distribution
of data is nonlinear. Although other semi-supervised dimensionality
reduction methods (such as kernel SDA) can also cope with the two-
moon problem, our method can learn a smoother and more accurate
decision boundary. In fact, the decision boundary and the contour
lines learned by our method with only two labeled data is almost
the same as those learned by using all the samples as the labeled

data, which indicates that our method could effectively explore the
labeled and unlabeled data in the learning procedure.

5.2. Real-world applications

In this subsection, we evaluate our algorithms in four real-world
problems, including face recognition, object recognition, digit recog-
nition and text categorization.

We use PCA as the preprocessing step to eliminate the null space
of data covariance matrix. For LDA, we further reduce the dimension
of data such that the within-class scatter matrix Sw is nonsingular.

In the experiments, we select a part of data as the transductive
set and the remaining data as the unseen set. We randomly split the
transductive set into labeled set and unlabeled set, and the exper-
imental results over 20 random splits are recorded. For LDA, OLDA
and ODA, only the labeled set is used to learn the subspace, while
for SDA, SODA and KSODA, the whole transductive set is used to
learn the subspace. The 1-nearest neighbor classifier is then per-
formed in the subspace. When there is only one labeled sample in
each class, the supervised methods LDA, OLDA and ODA cannot be
performed.

For ODA, SDA, SODA and KSODA, the regularization parameter �
is simply set to be 0.1�0, where �0 is the largest value of the diagonal
elements of the matrix calculated by Eqs. (4), (28) and (38) for ODA,
SODA and KSODA, respectively. For semi-supervised algorithms SDA,
SODA and KSODA, the number k of neighbors to construct the graph
is simply set to 8. For simplicity, we use a polynomial kernel function
instead of a Gaussian kernel in KSODA to avoid tuning the kernel
parameter, which is defined by

K(x, x′) = (xTx′ + 1)3. (41)

5.2.1. Face recognition
The UMIST repository is a multiview face database, consisting of

575 images of 20 people, each covering a wide range of poses from
profile to frontal views. The size of each cropped image is 112 × 92
with 256 gray-levels per pixel [36]. We down-sample the size of
each image to 28 × 23 and no other preprocessing is preformed.

In this dataset, 80 percent of the data are selected as the trans-
ductive set and the remaining data are as the unseen set. In the
transductive set, 1, 4 or 7 samples per class are randomly selected
as the labeled set and the others are as the unlabeled set.

For semi-supervised algorithms SDA, SODA and KSODA, the
weights in the neighborhood graph are computed by Eq. (24), and
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Table 2
Experimental results on the unlabeled dataset and the unseen dataset over 20 random splits in each dataset (mean ± std-dev%).

Dataset Method 1 labeled 4 labeled 7 labeled

Unlabel (%) Unseen (%) dim Unlabel (%) Unseen (%) dim Unlabel (%) Unseen (%) dim

UMIST LDA – – – 85.4 ± 3.1 81.9 ± 5.1 19 93.3 ± 2.5 93.1 ± 1.9 19
OLDA – – – 91.1 ± 2.4 88.8 ± 4.9 10 96.6 ± 1.5 96.1 ± 1.7 10
ODA – – – 89.0 ± 3.3 86.1 ± 4.9 10 96.3 ± 1.6 95.2 ± 1.9 10
SDA 46.6 ± 4.9 44.9 ± 4.5 19 89.1 ± 3.7 86.9 ± 4.9 19 95.5 ± 2.1 94.5 ± 2.2 16
SODA 73.1 ± 5.0 69.6 ± 6.9 7 94.9 ± 2.7 92.6 ± 4.3 16 97.8 ± 0.8 96.5 ± 1.3 10
KSODA 69.7 ± 5.1 68.5 ± 8.0 7 93.7 ± 2.9 90.5 ± 4.1 16 96.7 ± 1.1 95.1 ± 1.7 16

COIL20 LDA – – – 78.4 ± 1.8 77.8 ± 1.4 19 84.1 ± 2.1 83.7 ± 1.9 19
OLDA – – – 84.0 ± 2.2 84.1 ± 2.2 7 88.8 ± 2.0 89.2 ± 2.0 10
ODA – – – 85.4 ± 2.3 85.1 ± 2.7 7 91.7 ± 1.5 91.8 ± 1.9 10
SDA 62.0 ± 2.8 61.9 ± 3.0 19 85.5 ± 1.8 85.0 ± 2.1 10 92.8 ± 2.0 91.9 ± 1.8 10
SODA 77.3 ± 2.4 75.5 ± 3.0 40 89.1 ± 1.1 89.5 ± 1.2 13 93.9 ± 1.0 93.3 ± 1.3 16
KSODA 76.9 ± 3.2 75.9 ± 3.3 16 89.8 ± 1.6 88.5 ± 2.3 16 93.4 ± 1.3 93.0 ± 1.3 16

Dataset Method 5 labeled 20 labeled 50 labeled

Unlabel (%) Unseen (%) dim Unlabel (%) Unseen (%) dim Unlabel (%) Unseen (%) dim

USPS LDA 70.0 ± 3.0 70.2 ± 2.9 9 51.8 ± 2.9 51.2 ± 3.1 9 78.6 ± 1.3 78.3 ± 1.1 9
OLDA 68.3 ± 2.8 68.8 ± 3.1 9 50.0 ± 3.2 50.2 ± 2.8 9 74.7 ± 2.3 74.2 ± 2.0 9
ODA 79.0 ± 2.2 79.5 ± 2.0 21 85.9 ± 1.1 86.6 ± 1.1 69 89.0 ± 0.7 89.1 ± 0.5 99
SDA 79.3 ± 1.7 80.0 ± 1.6 9 86.7 ± 1.1 87.3 ± 1.0 9 90.1 ± 0.6 89.9 ± 0.4 9
SODA 76.7 ± 4.5 77.5 ± 3.9 105 85.8 ± 1.3 86.2 ± 1.0 105 89.4 ± 0.7 89.1 ± 0.5 105
KSODA 80.7 ± 2.6 81.0 ± 2.3 105 89.6 ± 0.9 89.7 ± 0.8 21 93.0 ± 0.6 92.7 ± 0.5 9

20NEWS LDA 32.3 ± 7.8 33.3 ± 7.8 3 44.2 ± 8.6 45.9 ± 8.4 3 56.6 ± 9.3 57.7 ± 9.1 3
OLDA 33.1 ± 4.1 33.6 ± 3.8 3 49.6 ± 7.8 51.9 ± 6.7 3 70.8 ± 6.3 72.2 ± 4.8 3
ODA 37.0 ± 6.8 37.6 ± 6.0 3 69.8 ± 4.3 71.0 ± 3.4 7 86.5 ± 2.1 87.1 ± 1.8 3
SDA 40.8 ± 8.2 41.9 ± 7.4 3 71.0 ± 4.9 72.9 ± 4.3 3 86.8 ± 2.0 87.1 ± 1.6 3
SODA 68.5 ± 8.5 67.2 ± 8.8 23 86.3 ± 2.1 86.5 ± 1.9 11 90.2 ± 1.3 90.9 ± 1.1 3
KSODA 48.6 ± 8.7 42.1 ± 8.0 2 67.7 ± 4.2 64.3 ± 5.8 3 79.8 ± 1.9 79.1 ± 1.9 3

The `dim' is the corresponding dimensionality of the best result.

the variance � is determined by

� =
√

− d̄
ln(s)

, (42)

where d̄ is the average of squared Euclidean distances for all the
edged pairs on the graph, and s is searched from: s ∈ {10−9/k, 10−7/k,
10−5/k, 10−3/k, 10−1/k} (k = 8 is the neighbor number to construct
the neighborhood graph).

The average results over 20 random splits with the best parame-
ters (dimension m and variance . Fig. 3 shows the average accuracy
of the unlabeled and unseen set over 20 random splits with the best
parameter � for each algorithm under different dimensions.

From the results we observe that, the two orthogonal supervised
methods outperform the LDA, the semi-supervised methods outper-
form the supervised counterparts, and the proposed semi-supervised
method (SODA) further outperforms the semi-supervised discrimi-
nant analysis. In this experiment, the result of the trace ratio based
orthogonal method (ODA) is not as good as that of the ratio trace
based orthogonal method (OLDA). However, if the regularization pa-
rameter � is well tuned, as can be seen in Section 5.3, the perfor-
mance of ODA in this dataset can be improved and outperforms that
of OLDA.

In this dataset, the linear algorithm (SODA) outperforms the non-
linear one (KSODA). The phenomenon can also be observed in the
datasets COIL20 and 20NEWS, which indicates that linear algorithm
may perform very well in some applications with high-dimensional
and under-sampled data, where the data are more likely to be lin-
early separable. The possible reason for the poor performance of
KSODA is that we use a polynomial kernel function in the experi-
ment. If the Gaussian kernel function with a well-tuned parameter
is used in KSODA, the performance could be expected to be com-
parable to that of SODA. Nevertheless, the linear SODA is preferable
in this case as it performs well without having to heavily tune the
parameter.

5.2.2. Object recognition
The COIL-20 dataset [37] consists of images of 20 objects viewed

from varying angles at the interval of 5◦, resulting in 72 images per
object. Each image is down-sampled to the size of 32 × 32.

In this dataset, 60 percent of the data are selected as the trans-
ductive set and the remaining data are as the unseen set. In the
transductive set, 1, 4 or 7 samples per class are randomly selected
as the labeled set and the others are as the unlabeled set.

For semi-supervised algorithms SDA, SODA and KSODA, the
weights in the neighborhood graph are computed as the same as
that in the experiment of face recognition.

The average results over 20 random splits with the best param-
eters (dimension m and variance �) of each algorithm are reported
in Table 2. Fig. 4 shows the average accuracy of the unlabeled and
unseen set over 20 random splits with the best parameter � for each
algorithm under different dimensions.

In this dataset, we observe similar results. The semi-supervised
methods demonstrate significant improvement over the supervised
counterparts, and the proposed semi-supervised method (SODA) see
a further improvement over the semi-supervised discriminant anal-
ysis. Meanwhile, the two orthogonal supervised methods also out-
perform the LDA, and the trace ratio based orthogonal method (ODA)
outperforms the ratio trace based orthogonal method (OLDA) in this
experiment.

5.2.3. Digit recognition
In this experiment, we focus on the digit recognition task using

the USPS handwritten 16 × 16 digits dataset.1 The dataset consists
of 9298 images of 10 classes.

1 Available at http://www.kernel-machines.org/data.

http://www.kernel-machines.org/data
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Fig. 4. Accuracy vs. dimension on the COIL20 dataset. The transductive set (including the labeled set and the unlabeled set) consists 60 percent of the total data in the
dataset. The number of labeled data per class is (a) 1, (b) 4, (c) 7, respectively.

In this dataset, 20 percent of the data are selected as the trans-
ductive set and the remaining data are as the unseen set. In the
transductive set, 5, 20 or 50 samples per class are randomly selected
as the labeled set and the others are as the unlabeled set.

For semi-supervised algorithms SDA, SODA and KSODA, the
weights in the neighborhood graph are computed as the same as
that in the experiment of face recognition.

The average results over 20 random splits with the best param-
eters (dimension m and variance �) of each algorithm are reported
in Table 2. Fig. 5 shows the average accuracy of the unlabeled and
unseen set over 20 random splits with the best parameter � for each
algorithm under different dimensions.

In this dataset, the LDA outperforms the ratio trace based or-
thogonal method (OLDA), and the trace ratio based orthogonal
method (ODA) significantly outperforms both of the two meth-
ods. We observe that the proposed semi-supervised method SODA
does not perform very well. The reason may be that the unla-
beled data do not play important role on the linear algorithm.
Although the semi-supervised method SDA show improvement
over its supervised counterpart (LDA), it is the regularization � but
not the unlabeled data takes effect, which can be seen in Section
5.3. We can also see in Section 5.4 that the increasing number of
unlabeled data does not improve the performance of the semi-
supervised methods SDA and SODA, which further confirms the
analysis.

We also observe that the nonlinear algorithm (KSODA) outper-
forms its linear one (SODA) in this dataset, which indicates that the
kernel algorithm may make improvement over its linear one and
perform very well in some applications with low-dimensional and
over-sampled data, where the data are more likely to be linearly
nonseparable but nonlinearly separable.

5.2.4. Text categorization
In this experiment, we investigated the task of text categoriza-

tion using the 20-newsgroups dataset.2 The topic rec which con-
tains autos, motorcycles, baseball, and hockey was chosen from the
version 20-news-18828. The articles were preprocessed with the
same procedure as in [5]. This results in 3970 document vectors in
a 8014-dimensional space. Finally, the documents were normalized
into TFIDF representation.

In this dataset, 20 percent of the data are selected as the trans-
ductive set and the remaining data are as the unseen set. In the
transductive set, 5, 20 or 50 samples per class are randomly selected
as the labeled set and the others are as the unlabeled set.

In the application of text categorization, the cosine similarity is
usually applied to measure the similarity between two documents
[38]. Thus for the semi-supervised algorithms SDA, SODA and KSODA,
the weight of edge between xi and xj in the neighborhood graph are
computed by

Aij =
xTi xj

‖xi‖‖xj‖
. (43)

The average results over 20 random splits with the best parameters
(dimension m) of each algorithm are reported in Table 2. Fig. 6 show
the average accuracy of the unlabeled and unseen set over 20 random
splits under different dimensions.

In this dataset, the semi-supervised methods also demonstrate
significant improvement over the supervised counterparts, and the
proposed semi-supervised method (SODA) further outperforms the

2 Available at http://people.csail.mit.edu/jrennie/20Newsgroups/.

http://people.csail.mit.edu/jrennie/20Newsgroups/
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semi-supervised discriminant analysis significantly. Similarly, the
two orthogonal supervised methods also outperform LDA, and the
trace ratio based orthogonal method (ODA) further outperforms
the ratio trace based orthogonal method (OLDA).

5.3. Performance analysis on the parameters

For ODA and SODA, we introduced a regularization parameter �
in problems (16) and problem (32). For semi-supervised algorithms
SDA and SODA, the neighborhood number k and the variance � are
introduced to construct graph. In this subsection, we present exper-
iments to look into the influence of these parameters. The experi-
mental setting is the same as the previous experiments.

5.3.1. Performance analysis on parameter �
In this experiment, we analyze the performance of ODA, SDA and

SODA on the regularization parameter �. The projected dimension
is set to c − 1, where c is the number of classes. The parameter s in
Eq. (42) is set to 10−3/8 (applied on UMIST, COIL20 and USPS), and
the other parameters are set to the same as the experiments in
Section 5.2. The parameter � is changed from 0 to infinite. When �
is infinite, SDA becomes a supervised method. In this case, both ODA
and SDA are in fact to solve the following problem:

WODA = arg max
WTW=I

tr(WTSbW), (44)

which is equivalent to the orthogonal centroid method proposed
in [39]. When � is infinite, SODA is in fact to solve the following
problem:

WSODA = arg max
WTW=I

tr(WT S̃bW), (45)

which can be seen as a semi-supervised extension to the orthogonal
centroid method [39].

In the datasets UMIST, COIL20, USPS and 20NEWS, the labeled
data number per class is 4, 4, 20, 20, respectively. In the 20 runs, the
average accuracies of the unlabeled and unseen set under different
� are shown in Fig. 7.

From the results we can see that the value of � have significant
influence on classification performance. Therefore, how to effectively
and efficiently select the value of � is a very important issue. An
interesting observation is that in the text dataset 20NEWS, all of the
three methods ODA, SDA and SODA perform near to the optimum
when � → ∞. The observation indicates that the orthogonal centroid
method and the semi-supervised orthogonal centroid method are
suitable to the application on text data, which is consistent with the
experiments in [18,39].

Another observation is that the performance is almost monotonic
with respect to the parameter �, which provides us with a clue
to select a suitable parameter �. As the performance of SODA is
significantly deteriorated on the USPS dataset when � is set to 0.1�0
(�0 is calculated as in Section 5.2), we set � to be �0 for SODA on
the USPS in the subsequent experiments.

5.3.2. Performance analysis on the neighbor number k
In this experiment, we analyze the performance of SDA and SODA

on the neighbor number k. The projected dimension is set to c−1, the
parameter s in Eq. (42) is set to 10−3/8 (applied on UMIST, COIL20
and USPS), and the other parameters are set to the same as the
experiments in Section 5.2.

In the datasets UMIST, COIL20, USPS and 20NEWS, the labeled
data number per class is 4, 4, 20, 20, respectively. In the 20 runs, the
average accuracies of the unlabeled and unseen set under different
parameter k are shown in Fig. 8. The experimental results show that
the neighbor number k is not very sensitive to performance. We can
set k to be a relatively small value in application.
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Fig. 9. Accuracy vs. variance �. �0 is the value when s = 1
8 in Eq. (42). (a) UMIST. (b) COIL20. (c) USPS.

0.4 0.5 0.6 0.7 0.8 0.9 1

0.8

0.85

0.9

0.95

Training number/Total number

A
cc

ur
ac

y

SDA
SODA

0.4 0.5 0.6 0.7 0.8 0.9 1

0.75

0.8

0.85

0.9

Training number/Total number

A
cc

ur
ac

y

SDA
SODA

0.1 0.15 0.2 0.25 0.3 0.35 0.4

0.78

0.8

0.82

0.84

0.86

0.88

Training number/Total number

A
cc

ur
ac

y

SDA
SODA

0.1 0.15 0.2 0.25 0.3 0.35 0.4

0.75

0.8

0.85

Training number/Total number

A
cc

ur
ac

y

SDA
SODA

Fig. 10. Accuracy vs. the number of training data (including the labeled data and the unlabeled data). The dashed line indicates the fitting line for the points. (a) UMIST.
(b) COIL20. (c) USPS. (d) 20NEWS.

5.3.3. Performance analysis on variance �
In this experiment, we analyze the performance of SDA and SODA

on the variance � in Eq. (24). The projected dimension is set to c−1,
and the other parameters are set to the same as the experiments in
Section 5.2. The variance � is changed from 0 to infinite.

The datasets UMIST, COIL20, and USPS are used in this experi-
ment, and the labeled data number per class is 4, 4 and 20, respec-
tively. In the 20 runs, the average accuracies of the unlabeled and
unseen set under different variance � are shown in Fig. 9.

The experimental results show that the value of � has significant
influence on classification performance. Therefore, how to effectively
and efficiently select the value of � is also an important issue.

An interesting observation is that the performance of SODA tends
to monotonically decrease with respect to the parameter � when
the value of � is not too small, which gives us a guideline to search
a suitable value of �. Empirically, we can search the � in the range
between 0.2�0 and 0.6�0 in application, where �0 is the value when

s = 1/k in Eq. (42), k is the number of neighbors to construct the
neighborhood graph.

5.4. Performance analysis on the number of unlabeled data

Based on the motivation that unlabeled data may be useful to
improve the performance, an effective semi-supervisedmay improve
the performance when the number of the available unlabeled data
increases. In this subsection, we present experiments to verify the
performances of SDA and SODA on increasing number of unlabeled
data.

In this experiments, the projected dimension is set to c − 1, the
parameter s in Eq. (42) is set to 10−3/8 (applied on UMIST, COIL20
and USPS), and the other parameters are set to the same as the
experiments in Section 5.2. For UMIST, COIL20, USPS and 20NEWS,
the labeled data number per class is 4, 4, 20, 20, respectively. The
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number of training data (including the labeled data and the unlabeled
data) is changed from 0.4n to n for UMIST and COIL20, and from 0.1n
to 0.4n for USPS and 20NEWS, where n is the total number of data
in the dataset.

In the 20 runs, the average accuracies of the unlabeled and unseen
set under different number of unlabeled data are shown in Fig. 10.
We also show the fitting line for the points in the figure. In the four
datasets UMIST, COIL20, USPS and 20NEWS, the slope of the fitting
line for SODA is 0.1011, 0.0690, −0.0125, 0.1823, respectively, while
the slope of the fitting line for SDA is 0.0141, 0.0187,−0.0152, 0.0471,
respectively.

On the datasets UMIST, COIL20 and 20NEWS, the performance of
SODA is significantly improved when the number of the available
unlabeled data increases, and the improvement speed is much faster
than that of SDA. The experimental result indicates that the proposed
SODA can explore the unlabeled data more effective than SDA to
learn a better subspace, which confirms the analysis in the previous
sections.

On the dataset USPS, both SODA and SDA do not improve the
performance when the number of the available unlabeled data in-
creases. The experimental result indicates that the unlabeled data in
USPS may not be very helpful to improve the performance when a
linear algorithm is applied.

6. Conclusion

In this paper, we re-analyzed the trace ratio problem, and de-
veloped a faster algorithm than a recently proposed one to solve
the orthogonal constrained trace ratio problem. Based on this prob-
lem, we proposed a novel semi-supervised orthogonal discriminant
analysis via label propagation. The algorithm propagate the label
information from the labeled data to the unlabeled data through a
specially designed label propagation, and thus the distribution of the
unlabeled data are effectively explored to learn a better subspace.
Extensive experiments are presented to verify the effectiveness of
our algorithms, and the experimental results demonstrate much
improvement over the state-of-the-art algorithms.
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Appendix A. Proof of Theorem 1

Before proving the theorem, we first prove the following lemma:

Lemma 1. If �1��2, then tr(WT
�1
SwWk1 )� tr(WT

�2
SwWk2 ).

Proof. Note thatW� =arg maxWTW=I tr(W
T (Sb−�Sw)W), so we have

the following two inequalities:

tr(WT
�1
SbWk1 ) − �1 tr(WT

�1
SwWk1 )

� tr(WT
�2
SbWk2 ) − �1 tr(WT

�2
SwWk2 ), (A.1)

tr(WT
�2
SbWk2 ) − �2 tr(WT

�2
SwWk2 )

� tr(WT
�1
SbWk1 ) − �2 tr(WT

�1
SwWk1 ). (A.2)

Summing the above two inequalities on the two sides, we have

(�2 − �1)tr(WT
�1
SwWk1 )� (�2 − �1)tr(WT

�2
SwWk2 ). (A.3)

Then if �1��2, we have tr(WT
�1
SwWk1 )� tr(WT

�2
SwWk2 ). �

Now we begin to prove the Theorem 1.

Proof. Suppose �1��2��∗, according to inequality (A.2), we have

tr(WT
�1
SbWk1 )

� tr(WT
�2
SbWk2 ) − �2 tr(WT

�2
SwWk2 ) + �2 tr(WT

�1
SwWk1 )

⇒
tr(WT

�1
SbWk1 )

tr(WT
�1
SwWk1 )

�
tr(WT

�2
SbWk2 ) − �2 tr(WT

�2
SwWk2 )

tr(WT
�1
SwWk1 )

+ �2

⇒
tr(WT

�1
SbWk1 )

tr(WT
�1
SwWk1 )

�
tr(WT

�2
SbWk2 ) − �2 tr(WT

�2
SwWk2 )

tr(WT
�2
SwWk2 )

+ �2

⇒
tr(WT

�1
SbWk1 )

tr(WT
�1
SwWk1 )

�
tr(WT

�2
SbWk2 )

tr(WT
�2
SwWk2 )

,

where the last but one inequality follows according to Lemma 1
and a fact that tr(WT

�2
SbWk2 ) − �2 tr(WT

�2
SwWk2 )�0 when �2��∗

[40]. Therefore, if �1��2��∗, then f (�1)� f (�2). Thus function f (�)
is monotonically increasing when ���∗.

On the other hand, suppose �∗
��1��2, according to inequality

(A.1) and Lemma 1, we have

tr(WT
�1
SbWk1 ) − tr(WT

�2
SbWk2 )

��1(tr(WT
�1
SwWk1 ) − tr(WT

�2
SwWk2 ))

⇒ tr(WT
�1
SbWk1 ) − tr(WT

�2
SbWk2 )

��∗(tr(WT
�1
SwWk1 ) − tr(WT

�2
SwWk2 ))

⇒ tr(WT
�1
SbWk1 ) − tr(WT

�2
SbWk2 )

�
tr(WT

�1
SbWk1 )

tr(WT
�1
SwWk1 )

(tr(WT
�1
SwWk1 ) − tr(WT

�2
SwWk2 ))

⇒
tr(WT

�1
SbWk1 )

tr(WT
�1
SwWk1 )

�
tr(WT

�2
SbWk2 )

tr(WT
�2
SwWk2 )

.

Therefore, if �∗
��1��2, then f (�1)� f (�2). Thus function f (�) is

monotonically decreasing when ���∗. �
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