
Abstract 
 

Visual tracking is a challenging problem, as an object 
may change its appearance due to pose variations, 
illumination changes, and occlusions. Many algorithms 
have been proposed to update the target model using the 
large volume of available information during tracking, but 
at the cost of high computational complexity. To address 
this problem, we present a tracking approach that 
incrementally learns a low-dimensional covariance tensor 
representation, efficiently adapting online to appearance 
changes for each mode of the target with only ���� 
computational complexity. Moreover, a weighting scheme 
is adopted to ensure less modeling power is expended 
fitting older observations. Both of these features contribute 
measurably to improving overall tracking performance. 
Tracking is then led by the Bayesian inference framework 
in which a particle filter is used to propagate sample 
distributions over time. With the help of integral images, 
our tracker achieves real-time performance. Extensive 
experiments demonstrate the effectiveness of the proposed 
tracking algorithm for the targets undergoing appearance 
variations. 

1. Introduction 
Visual tracking is a challenging problem, which can be 

attributed to the difficulty in handling the appearance 
variability of a target. In general, appearance variations can 
be divided into two types: intrinsic and extrinsic. Pose 
variation and shape deformation can be viewed as the 
intrinsic appearance variations, whereas the extrinsic 
variations include illumination changes, camera viewpoint, 
and occlusions. Consequently, it is imperative for a robust 
tracking algorithm to model such appearance variations. 

In recent years, much work has been done in visual 
tracking to model the appearance variations of a target. 
Hager and Belhumeur [1] extended the gradient-based 
optical flow method using parametric models to handle the 
appearance variations caused by illumination changes. 
Black et al. [2] encoded the appearance changes into a 
mixture model to estimate image motion. In [3] a more 
elaborate mixture model with an online EM algorithm is 
proposed to explicitly model appearance changes during 

tracking. Yu et al. [4] proposed a spatial-appearance model 
which captures non-rigid appearance variations and 
recovers all motion parameters efficiently. In [5] a 
generalized geometric transform is used to handle the 
deformation, articulation, and occlusion of appearance. 
Zhou et al. [6] embedded appearance adaptive models into 
a particle filter to achieve a robust visual tracking. 

Generative models, which are used to learn the 
appearance of an object, have been exploited to handle the 
variability of a target. The object model is often updated 
online to adapt to appearance changes. Black et al. [7] 
presented a subspace learning based tracking algorithm 
with view-based appearance models. In [8], Ross et al. 
proposed a generalized visual tracking framework based on 
the incremental image-as-vector subspace learning 
methods with a sample mean update.  

Supervised discriminative methods for classification 
have also been exploited to handle appearance changes, 
where a classifier is trained and updated online to 
distinguish the object from the background. SVT [9] 
integrates an offline trained SVM classifier into an 
optic-flow-based tracker. In [10], the most discriminative 
RGB color combination is learned online to build a 
confidence map in each frame. In [11], an ensemble of 
online learned weak classifiers is used to label a pixel as 
belonging to either the object or the background. To 
accommodate object appearance changes, the ensemble is 
updated at every frame by using new weak classifiers to 
replace part of old ones that do not perform well. To encode 
the object appearance variations, Yu et al. [12] proposed to 
use co-training to combine generative and discriminative 
models to learn an appearance model on-the-fly. 

For visual tracking with a changing appearance, it is 
likely that recent observations will be more indicative of its 
appearance than more distant ones. One way to balance old 
and new observations is to allow newer images to have a 
larger influence on the estimation of the current appearance 
model than the older ones. To do this, a forgetting factor is 
incorporated in the incremental eigenbasis updates in [13]. 
Further, Ross et al. [8] provided an analysis of its effect on 
the resulting eigenbasis. Skocaj and Leonardis [14] 
presented an incremental method, which sequentially 
updates the principal subspace considering weighted 
influence of individual images as well as individual pixels 
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Figure 1. The architecture of the tracking framework. 

an image. 
However, the appearance models adopted in the above 

mentioned tracking approaches are usually sensitive to the 
variations in illumination, view, and pose. This is because 
they lack a competent object description criterion that 
captures both statistical and spatial properties of object 
appearance. Recently, Tuzel et al. [15] proposed a 
covariance region descriptor to characterize the object 
appearance, which is capable of capturing the correlations 
among extracted features inside an object region and is 
robust to the variations in illumination, view, and pose. 
Since a nonsingular covariance matrix is a symmetric 
positive definite matrix lying on a connected Riemannian 
manifold, statistics for covariance matrices of image 
features may be computed through Riemannian geometry. 
One existing algorithm for statistics on a Riemannian 
manifold is based on the affine-invariant Riemannian 
metric, under which the Riemannian mean has no closed 
form and is computed by an iterative numerical procedure 
[16]. In the recently proposed covariance tracking approach 
[17], the Riemannian mean under the affine-invariant 
metric is used to update the target model. Nevertheless, the 
computational cost for the Riemannian mean grows rapidly 
as time progresses and is very time-consuming for the 
long-term tracking. Based on the Log-Euclidean 
Riemannian metric [18], Li et al. [19] presented an online 
subspace learning algorithm which models the appearance 
changes by incrementally learning an eigenspace 
representation for each mode of the target through 
adaptively updating the sample mean and eigenbasis. For 
the covariance computation, their approach could not take 
advantage of integral images. As a result, their approach is 
also very time-consuming and cannot be directly used to 
real applications.  

Adopting the covariance descriptor as appearance 
model, we propose a novel tracking approach via 
incremental covariance tensor learning. In contrast to the 
covariance tracking algorithm [17], with the tensor analysis, 
we simplify the complex model update process on 
Riemannian manifold by computing weighted sample 

covariance which can be updated incrementally during the 
object tracking process.  Thus our appearance model can 
update more efficiently. This is the main contribution of our 
work. Further, our method uses a particle filter [20] for 
motion parameter estimation rather than the exhaustive 
search-based method [17] which is very time-consuming 
and often distracted by outliers. Moreover, integral image 
data structure [15] is adopted to accelerate the tracker.  

2. The Framework for Visual Tracking 

2.1. Overview of the framework 
The tracking framework includes two stages: (a) 

incremental covariance tensor learning; and (b) Bayesian 
inference for visual tracking. In the first stage, a low 
dimensional covariance model is learned online. The model 
uses the proposed Incremental Covariance Tensor Learning 
algorithm (called ICTL) to find the compact covariance 
representation in the eight modes. In the second stage, the 
object state is obtained by maximum a posterior (MAP) 
estimation within the Bayesian state inference framework 
in which a particle filter is applied to propagate sample 
distributions over time. After MAP estimation, we just use 
the covariance matrices of image features associated with 
the estimated target state to update the compact covariance 
tensor model for each mode. These two stages are executed 
repeatedly as time progresses. Moreover, with the use of 
tensors of integral images, our tracker achieves real-time 
performance. The architecture of the framework is shown 
in Fig. 1. 

2.2. Object representation 
In our tracking framework, an object is represented by 

eight covariance matrices of the image features inside the 
object region, as shown in Fig. 2. These eight covariance 
matrices correspond to the eight modes of the object 
appearance, respectively. Without loss of generality, we 
only discuss one mode in the following. 
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Figure 2. Illustration of object representation, the flattening of � 
and two different formulations for  ��	 . The input Jogging 
sequence is shown in the upper part of (a) while the 4th-order 
object feature tensor � is displayed in the middle one of (a). The 
result of flattening � is exhibited in the lower part of (a). The 
object appearance tensor 
 with mode division is shown in the 
upper part of (b) while the covariance tensor for one mode is 
displayed in the middle one of (b). The lower part of (b) displays 
two different formulations for ��	. 

As time progresses, all the object appearances form an 
object appearance tensor 
 � �� � �������������	 , and 
d-dimensional feature vector is extracted for each element 
of �  forming a 4th-order object feature tensor � �
�������	 . Flattening � , we can obtain the matrix 
comprising its mode-3 vector (i.e., each column is a d- 
dimensional feature vector): 
� � ������������� ������������� � ������������ ������ ��	����! 
where �����  denotes a d-dimensional feature vector at 
location (x,y) at time t. Reforming x and y into one index i, 
� can be represented neatly by 

� � ����� ����" ����# ��	�"! � ��� ��� ��	� 
where $ � % � & , �� � ����� ����# ����"! � �����'�� . 
The column covariance of  ��(can be represented as:  

�� � �
")�* ����# + ,�!"��� ����# + ,�!	                (1) 

where ,� is the column mean of  ��. This covariance can be 
viewed as an informative region descriptor for an object 
[15]. All the covariance matrices up to time T, ��� ��������������	, constitute a covariance tensor - � �����	. 
We need to track the changes of - and have to update the 
compact representation of - as new data arrive. 

2.2.1 Covariance tensor representation on Riemannian 
manifold 

A straightforward compact representation of -  is the 
mean of  ��� � �������������	 . Porikli et al. [17] calculated 
the mean of several covariance matrices through 
Riemannian geometry. The metric they used is the 
affine-invariant Riemannian metric. The distance between 
two covariance matrices X and Y under this Riemannian 
metric is computed by ./01 23)45 ' 6 ' 3)457..  An equal 
form [22] is 

 8�3� 6� � 9* /&�:;�3� 6��;��                    (2) 

where �:;�3� 6�� are the generalized eigenvalues of X and 
Y. Under this metric, an iterative numerical procedure [16] 
is applied to compute the Riemannian mean. The 
computational cost for this Riemannian mean grows 
linearly as time progresses. Under the Log-Euclidean 
Riemannian metric [18], the distance between two points X 
and Y is calculated by </01�6� + /01�3�<. Based on this 
metric, Li et al. [19] presented an online subspace learning 
algorithm. The covariance computation of their approach 
could not take advantage of integral images.  

In the following, we propose a novel compact 
representation of - , which can be updated efficiently 
without computing Riemannian mean. The computational 
complexity is ���� , which means that the computation 
time of the compact tensor representation remains the same 
even if T becomes very large.  

2.3. Incremental Covariance Tensor Learning  
From a generative perspective,  ,� and �� are generated 

from �� and the covariance tensor - is generated from the 
feature tensor � . Therefore, the compact tensor 
representation can be obtained directly from(�. We can get 
the representation by computing the column covariance of  
�: 

��	 � �
"'	)�* * ����# + ,= 	!����# + ,=	!	"���	���        (3) 

where ,=	  is the column mean of  � . Although this 
formulation is arguably straightforward, it is 
computationally expensive and needs a large amount of 
memory to store all the previous observations. Here, we 
propose a novel formulation that could be computed 
efficiently with only ��>�� arithmetic operations.  

We can treat this as a sample covariance estimation 
problem by considering each column ���# of � as a sample. 
As time progresses, the sample set � grows and our aim is 
to incrementally update the sample covariance. In order to 
moderate the balance between old and new observations, 
each sample ���#is associated with a weight, allowing newer 
samples to have a larger influence on the estimation of the 
current covariance tensor representation than the older ones. 
As a result, this problem can be reformulated as estimating 
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the weighted sample covariance of �. Further, under this 
formulation, it is not necessary to normalize the object 
appearance to the same size as [19]. In the following, we 
use $� to denote the size of the object region at time t. 

One of the critical issues for our formulation is the 
design of the sample weight. Four issues are taken into 
account to design the sample weight: 1) The weight of each 
sample should be varying over time T; 2) The samples from 
current time T should have the highest weight; 3) The 
weight should not affect the fast covariance computation 
using integral images; 4) The covariance tensor 
representation could be obtained incrementally. Therefore, 
when the current time is T, the sample weight at time t is set 
as ?	)� , where ? � @A��B� C � @�� DB . With this weight 
setting, the samples at the same time share the same weight 
and the weighted sample covariance of �  can be 
incrementally updated. 

To obtain an efficient algorithm to update the 
covariance tensor representation, we put forward the 
following definition and theorem. 

 
Definition 1 Denote the weighted samples up to current 
time T as �E	 � F���#� ?	���#G������	H#�����"I , where ?	���#  is 
the weight of sample ���#. Let the number of samples in �E	 
be $J	  and the sum of weights in �E	  be ?K	 , namely 
$J	 � * $�	���  and ?K	 � * * ?	���#"I#��	��� . 
Note. The sample weight ?	���#  is varying over time T. 
Definition 2 Let ��, ,� be the weighted covariance and the 
weighted sample mean at time t, respectively. Denote the 
weighted covariance and the weighted sample mean of �E	 
as ��	 and ,=	, respectively. The formulation of ��	 and ,=	 
are as follows: 

��	 � �
�)LMN5 * * LN�I�O

LKN ����# + ,=	!����# + ,=	!	"I#��	���     (4) 

Where 

?M	� � * * 2LN�I�OLKN 7
�"I#��	���   

,=	 � �
LKN * * ?	���#���#"I#��	���                     (5) 

Let weights of all samples at time t be equal, the 
formulation of ��, ,� are as follows: 

�� � �
"I)�* ����# + ,�!����# + ,�!	"I#��          (6) 

,� � �
"I * ���#"I#��                               (7) 

Theorem 1. Given �	 , ,	 , ��	)� , (,= 	)� , (?K	)� ,?M	)�� , if 
?	���# � ?	)�,(? � @A��B, it can be shown that: 
��	 � �

LKN'��)LMN5! P? ' ?K	)� ' �� + ?M	)�� ���	)� Q
�$	 + ���	 Q L'LKNR4'"N

LKN �,	 + ,=	)���,	 + ,=	)��	S       (8) 

where ?K	 � ? ' ?K	)� Q $	 , (,= 	 � L'LKNR4
LKN ,=	)� Q "N

LKN ,	 , 

?M	� � 2?KD+�T'LMNR45 +$D+�7'?TQ$D
�?'?KD+�Q$D�T . The initial condition is 

��� � ��, ,=� � ,�, ?K� � $�, ?M�� � �
"4. 

The proof of this theorem appears in the Appendix.   
 

If we let w be equal to 1, which means all samples are 
treated equally, we can obtain the sample covariance of � 
from Eq. (8): 
�UD � �

$JD+� P�$JD+� + ���JD+� Q �$D + ���D Q
(((((((((($D$JD+�$JD �,D + ,UD+�!�,D + ,UD+�!DS                                   (9) 

When w is set to 0, �UD(is equal to �D, which means only 
information at the current time is used to represent the 
covariance tensor. 

Expanding �JD+�  in Theorem 1 iteratively, we can 
reformulate �JD as follows: 
�JD � * ?C���CDC�� Q * ?C�,�,C + ,UC+�!�,C + ,UC+�!DDC�T   (10) 

It is interesting to see that our formulation is a mixture 
model which is a weighted sum of all the covariance up to 
time T with a regularization term, and the weight of each 
kernel covariance is adapted dynamically.  

Consequently, the proposed incremental covariance 
tensor learning algorithm is shown in Table 1. 

Table 1. The incremental covariance tensor learning algorithm. 

Given �	, ,	, $	, ��	)�, ,=	)�,(?K	)�,($	)� ,?M	)�� , as well 
as ?	���# � ?	)�, ? � @A��B, compute ��	: 
1. Update the sum of sample weights up to time T: 

?K	 � ? ' ?K	)� Q $	. 
2. Update the squared sum of normalized sample weights 

up to time T: ?M	� � �LKNR45'LMNR45 )"NR4!'L5V"N
�L'LKNR4V"N�5 . 

3. Update the weighted mean of all the samples up to time 
T: ,=	 � L'LKNR4

LKN ,= 	)� Q "N
LKN ,	. 

4. Finally, update the weighted covariance of all the 
samples up to time T: 
 ��	 � �

LKN'��)LMN5! P? ' ?K	)� ' �� + ?M	)�� ���	)� Q
�$	 + ���	 Q L'LKNR4'"N

LKN �,	 + ,=	)���,	 + ,=	)��	S.  
The initial condition is ��� � �� , ,=� � ,� , ?K� � $� , 
?M�� � �

"4.  

2.4. Bayesian inference for visual tracking 

In the Bayesian perspective, object tracking can be 
viewed as a state estimation problem. The purpose of 
tracking is to estimate (W�X�YZ�[�� , which stands for the 
distribution of target state X� given all observations Z�[� up 
to time t. In our case, the state refers to an object’s 2D 
location and scale. 

The density propagation of W�X�YZ�[��  can be 
formulated by the well-known two-step recursion: 
Prediction: W�X�YZ�[�)�� � \W�X�YX�)��W�X�)�YZ�[�)�� >X�)� 
Update:(W�X�YZ�[�� ] W�Z�YX��(W�X�YZ�[�)��                     (11) 
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The posterior (W�X�YZ�[�� is approximated by a set of 
weighted samples. The recursive inference is implemented 
with resampling and importance sampling processes. The 
state dynamics W�X�YX�)��  is assumed to be Gaussian 
distribution as ^�X�H X�)�� _� , where _  is a diagonal 
covariance matrix whose diagonal elements are `���  ̀�� à�, 
respectively. The observation model W�Z�YX��(is the crucial 
part for finding the ideal posterior distribution. It reflects 
the similarity between a candidate sample and the learned 
compact covariance tensor representation. The target 
appearance model is represented by eight modes 
F�JD�bG#�������c. Each mode �#�X�� of the candidate sample 
X� is compared to the corresponding model by Eq. (2).  
Thus W�Z�YX�� can be formulated as: 

W�Z�YX�� ] dXWF+: ' * e# ' 8�f��	�#� �#�X��gc#�� G      (12) 
where e# is the weight for the ith mode (* e#c#�� =1 and 
e# �0.125 in the experiments). After MAP estimation, we 
just use the covariance matrices of image features 
associated with the estimated target state to update the 
compact covariance tensor model for each mode. 

2.5. Fast covariance computation 
By our definition for the object state, each particle 

corresponds to an up-right rectangle. Therefore, it is 
possible to improve the computational complexity of 
covariance computation using integral histogram 
techniques [21]. After constructing tensors of integral 
images corresponding to each feature dimension and 
multiplication of any two feature dimensions, the 
covariance matrix of any arbitrary rectangular region can 
be computed independent of the region size. Refer to [15] 
for more details. 

3. Experiments 
During the visual tracking, the object region is divided 

into eight modes. For each pixel, a 7-dimesional feature 
vector is extracted: 

2X� Z� ��X� Z�� h�X� Z�� i�X� Z�� j��X� Z�� j �X� Z�7       
where (x, y) is the pixel location, R, G, B are the RGB color 
values and j� , j  are the intensity derivatives. 
Consequently, the covariance descriptor of a color image 
region is a 7×7 symmetric matrix. Further, the compact 
covariance tensor representation is learned online every 
frame. For the particle filtering in the visual tracking, the 
number of particles is set to be 100. The three diagonal 
elements �`��� ` �� à�!of the covariance matrix _  for the 
state dynamics are assigned as �k�� k�� AlAT��. : in Eq. (12) 
and w in Eq. (8)  is set to 0.1 and 0.95, respectively. The 
approach was implemented using C++ and performed on a 
PC with an Intel Pentium E2140 CPU (1.6-GHz). Without 
code optimization, our algorithm can achieve around 20 fps 
for image sequences with resolution 320�240. 

3.1. Speed comparison for model update 

From Eq. (8), it is clear that the update for  ��	  is 
independent of T and needs only ��>��  arithmetic 
operations, while the computational complexity of the 
Riemannian mean used in [17] is ��D>m� . In our 
experiment setting, when T=50 and d=7, the computational 
time for both algorithms are 0.1 ms and 10 ms respectively. 

The computation times for model update are given in 
Fig. 3 in log-linear scale. As visible, our method has clearly 
���� time complexity and it is significantly faster than the 
approach used in [17]. 

 
Figure 3. Speed comparison for model update. 

3.2. Experimental results 
We first test our algorithm using the sequence, Jogging, 

studied in [17]. Figure 4 shows the empirical results using 
our proposed method. Note that our method is able to track 
the target undergoing gradual scale changes (#45, #223). 
Further, our method is able to track the target with severe 
full occlusion (#71, #78), which lasts around 20 frames. 
Compared with the results reported in [17], our method is 
able to efficiently learn a compact representation while 
tracking the target without using Riemannian means. 
Moreover, our tracker is more stable when the target is 
under occlusion. The multi-mode representation and 
Bayesian formulation contribute to this outperformance. 

The second image sequence, shown in Fig. 5, contains a 
woman moving in different occlusion, scale, and lighting 
conditions. Once initialized in the first frame, our algorithm 
is able to track the target object as it experiences long-term 
partial occlusion (#69), large scale variation (#499, #542), 
and lighting variation (#69, #284). Notice that some parts 
of the target are occluded, and thus it inevitably contains 
some background information in its appearance model. The 
multi-mode representation enables the tracker to work 
stably and estimate the target location correctly. 
Nevertheless, our tracker eventually fails to recover the true 
scale after frame 499 as a result of a combination of drastic 
scale change. Note that [23], which is the first paper to  
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Figure 4: Jogging: The tracking results over representative frames under full occlusion. 

Figure 5: Woman: The tracking results over representative frames under partial occlusions, illumination variations and sudden scale 
changes. 

Figure 6: Couple: The tracking results over representative frames under hand-held camera. 

Figure 7. Crossing: The tracking results over representative frames where the target has indistinctive color and texture. 

 
Figure 8. Subway: The tracking results over representative frames where the target has indistinctive color and texture

study this sequence, did not report the tracking results after 
frame 456.  

Figure 6 shows the tracking results using a challenging 
sequence, captured from a hand-held camera, in which a 
couple is walking and the appearance of the couple is 
changing over time. Notice that there is also a large scale 
variation in the target relative to the camera (#1, #139). 
Even with the significant camera motion and low frame rate, 
our algorithm is able to track the target throughout the 
sequence. Furthermore, the compact tensor representation 
is constructed from scratch and is updated to reflect the 
appearance variation of the target.  

Figure 7 shows the results of tracking a pedestrian, as he 
is crossing the street and halfway through the sequence, he 
is standing in front of a car that has the same color as he 
does. Although the target has the similar color feature as the 

background, our tracker is able to track the target well, 
which can be attributed to the descriptive power of the 
covariance feature. Notice that the non-convex target is 
localized within a rectangular window, and thus it 
inevitably contains some background pixels in its 
appearance representation. From frame 62, the target 
rectangular window contains some light pixels. The 
weighted incremental model update adapts the target model 
to this background changes. The results show that our 
algorithm faithfully models the appearance of an arbitrary 
object in the presence of noisy background pixels. Our 
algorithm is also able to track objects in clutter 
environment, such as the sequence of a human walking in 
the subway, shown in Fig. 8. Despite many similar objects 
in the scenario, and indistinctive texture feature to 
background, our algorithm is able to track the human well. 
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3.3. Qualitative comparison 
As a qualitative benchmark, we ran two state-of-the-art 

algorithms, the covariance tracker [17] and Mean Shift [24] 
tracker, on all the sequences. The results are demonstrated 
in Fig. 9. As can be seen in the figure (and corresponding 
videos), our method provides the best performance. The 
covariance tracker simply exhaustively searches in the 
whole image for the region that best matches the model 
descriptor. This maximal likelihood estimation is very 
time-consuming and easily runs into problems by the 
background clutter, as demonstrated in Fig. 9. In the 
sequence Couple, our tracker loses the target in some 
frames. This is due to the significant camera motion and 
low frame rate (which makes the motions between frames 
more significant, as when tracking fast-moving objects). 
With the use of a particle filter, our tracker is able to 
recover from temporary drifts. In our experiments, we 
found that the covariance tracker [17] is sensitive to the 
initialization of target. This may be the reason that the 
results of sequence Jogging and Subway are not consistent 
with those shown in [17]. 

On the other hand, the Mean Shift tracker performs 
poorly, experiencing significant drift off the target objects. 
This is due to local optimization of the Mean Shift tracker. 
It cannot recover the target after the occlusions. 

 
Figure 9. A comparison of our tracker (indicated with a white box) 
with the Covariance tracker [17] (shown in red rectangle) and the 
Mean Shift [24] (depicted by a blue box) on all the test video 
sequences. 

3.4. Qualitative analysis of ICTL 
We use the sequence Crossing to test the effectiveness 

of the proposed ICTL. Three trackers are exploited for this 
qualitative analysis: Tracker-A uses the proposed approach 
with default parameter setting; Tracker-B uses the sample 

covariance for model update, namely, the parameter w in 
equation (8) is set to 1; Tracker-C is a tracker without 
model update. The results are illustrated in Fig. 10. As can 
be seen in the figure, all these three trackers work well 
before frame 52. When the target window includes more 
background clutter (white pixels), the Tracker-C drifts first 
and loses the target after frame 77. The Tracker-B drifts 
from frame 76 and lost the target in frame 79. While our 
proposed Tracker-A is able to track the target throughout 
the sequence. This outperformance can be attributed to the 
weighting scheme adopted in the proposed ICTL.  

 
Figure 10. The effectiveness test of ICTL using three trackers: 
Tracker-A( indicated with a white box), Tracker-B (shown in red 
rectangle) and Tracker-C (depicted by a blue box). 

3.5. Discussion 
In summary, the experimental results show that our 

approach is robust and insensitive to occlusions, pose 
variations, and background clutter. The proposed ICTL 
constructs a compact covariance tensor representation to 
capture varying object appearance in eight modes, where 
the spatial structure of object appearance is incorporated 
into the multi-mode representation. Even if the information 
of some modes is partially lost or drastically varies, ICTL is 
capable of recovering the information using the cues of the 
information from other local modes. Consequently, ICTL is 
an effective appearance model update algorithm which 
performs well in modeling appearance changes of an object 
in many complex scenarios. Further, the proposed 
appearance learning algorithm has only ���� 
computational complexity and with the use of integral 
images, our tracker achieves real-time performance. 

4. Conclusion 
In this paper, we present a real-time visual tracking 

approach with incremental covariance model update. In the 
proposed method, the covariance matrix of image features 
has been used to represent object appearance. Further, an 
incremental covariance tensor learning algorithm has been 
proposed to reflect the appearance changes of an object. 
Moreover, our method uses a particle filter for motion 
parameter estimation, and with the use of integral images 
our tracker achieves real-time performance. Compared with 
the state-of-art covariance tracking method [17], the 
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proposed algorithm is faster and more robust to occlusions 
and object pose variations. Experimental results 
demonstrate that the proposed method is promising. 
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6. Appendix 
To make the proof of Theorem 1 concise, we give some 

lemmas first. The proof of all the lemmas appears in the 
supplement. 
Lemma 1. If ?	���# � ?	)�,(? � @A��B, we have 

 ?K	 � ? ' ?K	)� Q $	, and ?M	� � �LKNR45'LMNR45 )"NR4!'L5V"N
�L'LKNR4V"N�5 . 

Lemma 2. * * ?	���#����# + ,= 	!"I#��	��� � A and 
* * ?	���#����# + ,= 	!	"I#��	��� � A. 
Lemma 3.If weights of all the samples at time T are equal, 
* ��	�# + ,=	!��	�# + ,=	!	"N#��  
� �$	 + ���	 Q $	�,	 + ,=	��,	 + ,=	�	 
Lemma 4. If ?	���# � ?	)�,(? � @A��B, we have 
 ,=	 � L'LKNR4

LKN ,= 	)� Q "N
LKN ,	, 

,=	)� + ,=	 � "N
LKN �,	 + ,=	)��, 

,	 + ,=	 � L'LKNR4
LKN �,	 + ,=	)��. 

Lemma 5. If ?	���# � ?	)�,(? � @A��B, we have 
* * ?	���#����# + ,= 	!����# + ,=	!	"I#��	)����  
� (? ' ?K	)� ' �� + ?K	)��!��	)� 
(((((Q? ' ?K	)��,=	)� + ,=	��,= 	)� + ,=	�	 
Proof of Theorem 1: 
��	 � �

�)LMN5 * * LN�I�O
LKN ����# + ,=	!����# + ,=	!	"I#��	���   

thus 
 ?K	 ' �� + ?M	����	 
� * * ?	���#����# + ,= 	!����# + ,= 	!	"I#��	���   
� * * ?	���#����# + ,=	!����# + ,=	!	"I#��	)����   
((((Q* ��	�# + ,= 	!��	�# + ,=	!	"N#��  (Using lemma 3 and 5) 
� ? ' ?K	)� ' �� + ?M	)�� ���	)� 
((((Q? ' ?K	)��,=	)� + ,=	��,=	)� + ,=	�	 (Using lemma 4) 
((((Q�$	 + ���	 Q $	�,	 + ,=	��,	 + ,=	�	 
� ? ' ?K	)� ' �� + ?M	)�� ���	)� Q �$	 + ���	 

((((Q? ' ?K	)� 2"NLKN7
� �,	 + ,=	)���,	 + ,=	)��	  

((((Q$	 2L'LKNR4LKN 7� �,	 + ,=	)���,	 + ,=	)��	(Using lemma1) 

� ? ' ?K	)� ' �� + ?M	)�� ���	)� Q �$	 + ���	 
((((Q L'LKNR4'"N

LKN �,	 + ,=	)���,	 + ,=	)��	                            n 
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