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Abstract

The varying object appearance and unlabeled data from
new frames are always the challenging problem in object
tracking. Recently machine learning methods are widely
applied to tracking, and some online and semi-supervised
algorithms are developed to handle these difficulties. In
this paper, we consider tracking as a classification prob-
lem and present a novel tracking method based on boost-
ing in a co-training framework. The proposed tracker can
be online updated and boosted with multi-view weak hy-
pothesis. The most important contribution of this paper is
that we find a boosting error upper bound in a co-training
framework to guide the novel tracker construction. In the-
ory, the proposed tracking method is proved to minimize
this error bound. In experiments, the accuracy rate of fore-
ground/background classification and the tracking results
are both served as evaluation metrics. Experimental results
show good performance of proposed novel tracker on chal-
lenging sequences.

1. Introduction

Visual tracking is an interesting but challenging prob-
lem in computer vision. Traditional methods [3] [9] treat
tracking as a matching problem through building visual ap-
pearance models for the object. In recent years, a promis-
ing trend in tracking literature is treating object tracking as
a classification problem using machine learning approach.
Instead of constructing a complex model to describe the ob-
ject, these classification methods seek a decision boundary
that can best separate the object and the background. In this
way, some challenging problems in tracking, such as back-
ground clutter and object dynamics, are naturally solved.

In [11], a classifier for distinguishing objects from back-
ground is online built and adaptively updated based on in-
cremental LDA. However, LDA is a well know baseline
classification learning method thus limits the performance

improving of the tracker. In [1], a support vector tracker is
constructed using support vector machine as the classifier.
The off-line learning in this work decreases the tracker’s
adaptivity to complex object appearance change and back-
ground clutter. Ensemble tracking [2] using multiple fea-
tures to distinguish object and background has superiority
over the above methods. However, its classification just on
pixels is easy to lost many structure information of the ob-
ject appearance and lead to weakening the final tracker. On-
line boosting tracker [8] extracts region patches instead of
pixels as samples. The seminal work is proposed by Oza
et al. in [13]. Grabner et al. improve this idea through
solving the feature selection task and utilize it to handle
tracking problem. The powerful function of multiple fea-
tures selection and weak classifiers ensemble in Grabner’s
online boosting lead to a more robust tracker.

The main problem of above methods is the self-training
process which use the classification results to update the
classifier itself. In self-training, classification mistakes rein-
force themselves and the algorithm is not robust to outliers.
To handle this problem, co-training [4] is a better option. It
is a popular semi-supervised learning method and achieves
success in many applications [5] [16]. Co-Tracking [15] on-
line learns two independent SVM trackers in a co-training
framework and improves each individual classifier using the
information from other features. However, feature indepen-
dence limits co-tracking to select more features to further
improve the tracker performance.

To solve these problems, we present a novel tracker by
using boosting learning in a co-training framework, which
is online, multiple features based and semi-supervised.
Some related works also combine boosting and co-training
to construct learning approach, such as the method in [10].
However, co-training just on the final strong hypothesis as
this method does is only a superficial combination of boost-
ing and co-training, and how to design the combination
strategy remains a problem deserving research. In this pa-
per, a derived boosting error bound in a co-training frame-
work is served as the theoretical guidance for the combi-
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nation strategy. The proposed tracking method uses co-
training to online learn each weak hypothesis in boosting
instead of just the final strong hypothesis, and is proved to
be minimizing the derived error bound in theory.

In the experiments, some challenging tracking sequences
are captured. The accuracy rate of foreground/background
classification and the tracking results are both served as
evaluation metrics. Off-line boosting tracker, online boost-
ing tracker [8] and co-tracker [15] are all involved in com-
parison with our method in the experiments. The experi-
mental results show that our method outperforms the other
three methods w.r.t the above metrics.

2. Related work

Boosting and co-training are two key components of our
approach. Related works have proved that the minimization
of training error upper bound is guaranteed in their frame-
works. In this section, we briefly introduce some works
about the error bound analysis for adaboost and co-training.

2.1. Error upper bound of adaboost

The classifier of adaboost is an ensemble of several weak
hypothesis:

H(z) = Zil athi(x) (1

where the H (x) is the ensemble strong hypothesis and its
classification result is sign(H (z)). the hi(z) is the tth
weak hypothesis to be learned and the « is the correspond-
ing voting weight.

In [14], Schapire and Singer show that the training error
of adaboost is upper bounded by

1 n
. Zexp(—yiH(xi)) = H Zy (2)
i=1 t

where the z; is the ith sample in training and the y; is the
corresponding class label. The n is the training sample
number and the Z; is a normalization factor which is the
weight sum of all the samples after the ¢tth weak hypothesis
training. Through minimizing Z; in each weak hypothesis
learning, adaboost decreases the whole error upper bound
of itself. The Z; can be expressed by:

Zy =Y Di(i) exp(—yiashi(z;)) 3)

i=1
where the D (i) is the normalized weight of the ith sample
in the tth weak hypothesis training.
2.2. Error upper bound of co-training

The theoretical analysis of co-training error bound first
appear in [7] and then a research on the essence of co-
training using graphical model is done in [4]. Based on

the previous work, an Bayesian co-training error bound is
derived in [16].

Our analysis is mainly based on the work in [7]. It
proves that PAC-style guarantees that if (a) sample size
are large, (b) the different views are conditionally indepen-
dent given the class label, and (c) the classification deci-
sions based on multiple views largely agree with each other,
then with high probability the misclassification rate is upper
bounded by the rate of disagreement between the classifiers
based on each view. This property is exactly mentioned in
[16]. On the assumption that there is no abstained samples
to each view, the above error bound can be approximately
expressed as follows:

Py #1ly=1)< P(h; #1lhay=1) &)

where the [ € {—1,+1}isalabel andy € {—1,+1} is the
real label. The j € {1,2} is the index of the view and the
h; is the classifier based on the jth view.

3. The proposed tracking method

In this section, we propose a novel tracking method
based on boosting learning in a co-training framework to
treat tracking as an online semi-supervised ensemble learn-
ing problem. The proposed tracker is initialized with some
labeled frames based on off-line boosting algorithm, and
then updates in each new frame using new predicted results
as unlabeled data. To treat unlabeled data in the update pro-
cess, two independent views are adopted to describe each
sample in a co-training framework. Such multi-view en-
semble tracker can be expressed as below:

F(z) =" o jh j(z) )

t =1

where the z is the sample patch in frames. The h; ; is the
tth weak hypothesis in the jth view, and the ay ; is the cor-
responding voting weight. The F'(x) can be considered as
a confidence value for each sample patch, and is used to
construct a confidence map in each frame. To get the cur-
rent object position, tracking window initialized by previous
tracking result is shifted to the best possible position of the
confidence map.

To construct such a tracker described in Eq. (5), online
hypothesis update, weak hypothesis design and samples ex-
traction are three key factors.

3.1. Online hypothesis update

The proposed online hypothesis update approach is an
online semi-supervised ensemble learning algorithm. The
overall principle of this algorithm is depicted in Figure 1
and in Algorithm 1.
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Figure 1. The proposed online semi-supervised learning frame-
work

As shown in Figure 1, we select each weak hypothesis in
two independent feature pools which represent independent
sample views in a co-training framework. In Figure 1 and
Algorithm 1, the hfi ; is the pth weak hypothesis in the jth
pool selected by the tth selector and the h; ; is the final se-
lected weak hypothesis of the jth pool using the ¢th selector.
The K is the iteration times of co-training in each selector
and the hy ;1 is the correponding selected weak hypothesis
in the kth co-training iteration. The /\f; ;.1 and the )‘f, i
are respectively the weighted correct rate and wrong rate of
the pth weak hypothesis in the jth pool selected by the tth
selector. The A; is the weight of new sample in the jth pool.
The o ; denotes the voting weight of the tth selected weak
hypothesis from the jth pool. The u; is the label of the ith
sample. For the labeled sample, the w; is the real label. For
the unlabeled sample, the u; is the pseudo-label noted by
independent views.

The proposed algorithm is an improvement on the online
boosting described in [8]. Compared to the online boost-
ing, the main characteristics of our method lie in four as-
pects: 1) input new sample is considered as unlabeled; 2)
both parallel online boosting are performed simultaneously
using weak hypothesis h;; and h; o from different feature
pools; 3) co-training is performed to select weak hypothe-
sis between feature pools in each selector; 4) the final strong

Algorithm 1 The proposed online semi-supervised ensem-
ble learning approach for tracking hypothesis update

Input: unlabeled example (z, ®)
Input: previous hypothesis th j hu,j for Vi, ¢, p
Initialize: Vj,t,p: \; =1

¢ N
M= > exp(y —uo il ()

i:ﬂfj:ui =1
t ~
A= 2 exp(Y —uioy jhy j(xi))
zﬁf]#ul =1

// for all weak hypothesis
fort=1,....,Tdo R
initialize Vj : hy j o = hej
/I co-training iteration for both views
fork=1,...,Kandj=1,2do
u = sign(he3—jk—1(x)) // set pseudo-label
Vp:hi ;= update(ﬁf’j, (x,u),\;) // update
if b} ;(x) = u then

\P __\P .
Avjr = Mg T A

else
Abj— = Abj— T A
end if
/I select hypothesis h; ;. with the lowest error
AP

Vp:el = bl —
b A AL
er,j = ef, m = argminy(e} ;)
end for

he j = he j i/l output selected hypothesis 7y ;

1—ei

o =3n ) /[ calculate voting weight

€t,5
// update sample weight for V75
if h; ; = u then

)\] = )\] ’ 2(1—16“_7’)
else
No=N g
end if
end for

hypothesis is a linear combination of strong classifiers train-
ing based on each independent view.

3.2. Hypothesis design and samples extraction

The overall principle of samples extraction and weak hy-
pothesis design is depicted in Figure 2.

For the weak hypothesis design, online update is a nec-
essary condition to the weak hypothesis in Algorithm 1. As
described in [8], a large number of hypothesis which meet
this condition can be selected such as Bayesian hypothesis,
Haar Wavelets based hypothesis and so on. In our algorithm
described in Figure 1, all the weak hypothesis in the selector
are divided into two classes to build different feature pools,
and the hypothesis from different pools must be guaranteed
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Figure 2. Process of weak hypothesis design

independent. As most of tracking algorithms, our feature
pools are main based on color and texture features. The
weak hypothesis is designed based on each bin of the his-
togram using Bayesian decision criterion. For the color fea-
tures, many kinds of combination of camera R, G, B pixel
values is used to build color histograms which is proved to
be effective in [6]. For the texture features, several differ-
ent LBP [12] construction in gray image is adopted to build
LBP histograms.

For samples extraction, we assume that the object has
already been tracked in the current frame and therefore have
an initial object region which is a few pixels enlarged to the
real object size. The tracker training uses the patches in the
object region as positive samples and patches in the local
neighborhood as negative samples.

4. Error analysis

In this section, we give the error analysis of the proposed
algorithm described in Algorithm 1 and further prove that it
minimize the error upper bound in theory.

4.1. Error upper bound

Without loss of generality, we give three assumptions
for the following deduction: 1) the training sample is large
scale; 2) the different views are conditionally independent
given the class label; 3) the classification decisions based
on multiple views largely agree with each other.

In the co-training framework, classifiers based on each
independent views are trained at the same time, and then
naturally combined together to give a final hypothesis. In
adaboost, this final hypothesis can be denoted as below:

=>_ Hlx) 6)

where the H;(x) is the strong classifier based on the jth
view described in Eq.(1). In supervised learning, the error
bound of F'(x) is derived as below.

Theorem 1 Assuming the notation of Eq.(2) and Eq.(6), the
Sollowing bound holds on the training error of F(x) in su-
pervised leaning:

J

% [{i: sign(F(x;)) # yi}t] < %Z(

j=1t

=

Z5)
1

where the j is the index of the view.

Proof For the jth view, we have the following normalized
weight of the ¢th sample:

exp(—yiHj(2:))

D (7)) =
0= L 2 "
Moreover, if sign(F(x;)) # y; then y; F(z;) < 0im
plying that exp(—y; F'(x;)) > 1 and [exp(—y; F'(z Z))]? >
1. Thus,
[sign(F(z:) #y)] < lexp(—y:F(2:))]7
J
= lexp(—y; Y Hj(w:))]7
=1

S 3 Z eXp yz

where the [[e] is a bool function. Combining Egs.(7) and
(8) gives the stated bound on training error since

i) (8)

% Z [sign(F(x:) # vi)]
n J
< %z 15 D exp(—yat 2)
1 gn 1 :
== > [j > n (Ht Zt,3)Dr1,5(i)]]

i

>0, 2) zpm
J
H Z1 ;) ©)

17 j=1

<

MH
I

K\’—‘
HM&
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In semi-supervised learning, some samples are labeled
whereas the others are unlabeled, so the bound in Theorem
1 can not be suitable. Assuming that the {x; [ = 1,...,m}
are the labeled samples and the {z; [i = m + 1,...,n} are
the unlabeled samples, we deduce an error upper bound
shown in Theorem 2 for semi-supervised learning in ad-
aboost framework. To simplify the analysis, our research
is restricted to two views, i.e. J = 2 in Theorem 1.

Theorem 2 Assuming the three assumptions shown in the
first paragraph of this subsection come true, the follow-
ing bound holds on the training error of F(x) in semi-
supervised leaning:

L+ sign(F () # i)

<—{ZeXp —yiHy (x +ZeXp —yiHy(x;))

1=1

n T
+ Z exp( Z —sign(he2(z;)) - arahe1(xq))
i=m-+1 t=1

n

T
Z exp( Z sign(he1(x;)) - o 2he2(x;))}
t=1

i=m

Proof Combining the conclusion of Theorem 1 and Eq.(2),
the error bound of F'(x) can be expressed as below:

i sign(F () # i) (10)
<—{Zexp (—yiH1(x:)) +Zexp —yiHa(x))}

i=1
In semi-supervised learning, the {z; |i = 1,...,m} are
the labeled samples and the {x; |[¢ = m 4+ 1,...,n} are the

unlabeled samples. The Eq.(11) can be expressed as fol-
lows:

% [{i = sign(F(z:)) # yi}| (11)

< %{Z exp(—yiHi(z;)) + Zexp(—yin(mi))
=1 i=1

+ Y exp(—yiHi(x:) + Y exp(—yiHa(x))}

i=m-+1 i=m-+1
The {y; [i =m+1,...,n} in Eq.(11) is unknown yet.
Combining the Eqs.(3)(4)(7), the third term on the right side
of Eq.(11) can be transformed as below: ( Z Drpyiq,1(4)

i=m-+1

is denoted as D)

n

i=m+1 t=1

D T113 Pty

t=1 i=1

~
Il
-

Wi+ -exp(—ay1) + Wia,— - exp(oy1)]

é
Eﬂ

o~
Il
i

g
Eﬂ

~
Il
—

where Wt717+ Zi:ht,l(xl):yi Dt71(i) and Wt,L— =

Ziiht,l(%)#?h Dt71 (Z)

In the final expression of Eq.(12), only the W, ; _ is re-
lated with the y;. In the form of W, ; _, it is the weighted
error rate in the ¢th weak hypothesis training, e.i. W ; — =
Phy # Uy =1).

Assuming the three assumptions given in the first para-
graph of this subsection come true, the P(h;; # |y =1)
is upper bounded by P(h;1 # [|h,2 =1) based on the
Eq.(4). Since the Eq.(12) is a increasing function of W; 1 _,
we can use P(h,1 # l|hy 2 =1) to replace W; 1 _ e.
P(hy1 # Uy =1) to get the upper bound of Eq.(12). This
replacement is equal to replace the y; with sign(h; 2(z;)).
Through similar transformation, the upper bound of the
fourth term on the right side of Eq.(11) can be also obtained.
They are expressed as below: (for j = {1,2})

n

> exp(—yiHj(x) (13)
1=m-+1
n T
< Z ex Z sign(hez—j(x;)) - cnhy j(x;))
1=m-+1 t=1

Through combining Eqs.(11) and (13), the Theorem 2 is
proved. W

4.2. Error upper bound minimization

In this subsection, we minimize the error bound pre-
sented in Theorem 2, and use it to guide the strong hypothe-
sis construction. For the Lth weak hypothesis learning, the
weak hypothesis h; ; and corresponding weight a; ; from
t =1tot = L — 1 are already known, and the objective is
to solve Az, j and o ;. This can be described as minimizing
the function below:

B(hL 1 hro,ar1,ar ) (14)

B It

=1 =1

i) exp(—uw;ar jhr,j(2))
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where

_ Yi i=1...m
vi= { sign(hps—j(z;)) t=m+1...n
L—1
Dpj(ili=1...m)= || exp(—yias hu;(xi))
t=1
DL’j(’L'|7; =m+ 17’L)
L—1
= [ exp(=sign(hes—;(w:)) - asihe ()
t=1

To simplify the solving process, an iterative minimiza-
tion which fixes hp 3_; to solve hy, ; is adopted instead of
directly minimizing the Eq.(14). It is similar to the iteration
optimization in the co-training framework. If the hz 3_; is
fixed, minimization of Eq.(14) is transformed to minimize
the function below:

B(hL,j, L) ZDLJ i) exp(—uiarp, jhr j(2:))
15)
It can easily be verified that B(hy, ;j, ar, ;) is minimized
when
1 Wi+
i==1 2 16
R H<WLJ,> (1o
where WL’j’J’, = Zi:h[,’j(xi):'llq; DL7j(i) and WL’jyf =
Z’LhLJ(II);ﬁuI DL;] (Z)
For this setting of a, we have
B(hr;j) =2/ WL+ Wi .- a7

We select iy, j to minimize the B(hy, ;) in Eq.(17). It is
equal to minimize the weight error rate W, ; _.
The weight updates of the samples are shown in Eq.(18).

DL_HJ(Z\z:lm):DLJ(z\z:lm) (18)
-exp(—yiap jhr,;(2:))
Dpyyj(ili=m+1...n)=Dg;(ili= .n)

-exp(— szgn(hL3 ](xL))aL,]h‘L,](xl))

The final strong hypothesis described in Eq.(6) is ob-
tained by linear combination of all the weak hypothesis in

2
each views, i.e. F(z) =) > oy jhy ().
t j=1

The above process for error upper bound minimization
can be concluded in Algorithm 2.

Based on the idea of online boosting in [8], The pro-
posed tracking hypothesis update approach in Algorithm 1
can be easily derived from Algorithm 2. So the Algorithm
1 is naturally proved to also minimize the error bound in
Theorem 2, which is the error upper bound of boosting in a
co-training framework.

Algorithm 2 Strong hypothesis construction with minimum
error bound in Theorem 2
Input: labeled examples {(x;,y;)|i =1,...
unlabeled examples {(z;,®) i =m +1,...
Initialize: Vi, j : Dy (i) = 1/n
/I for all weak hypothesis
fort=1,...,T do
initialize Vj : h; ;j o using only labeled data.
// co-training iteration for both views

,m} and

7n}

fork=1,...,Kandj=1,2do
// set pseudo-labels
Yi i=1...m
U; =

sign(hes—je—1(zi)) i=m+1...n
/ choose hypothesis h; ; ;. with the lowest error
Wij— = > D@
ithe g (Ti)Fwi
end for
he j = he j i/l output selected hypothesis 7y ;

=3 5 In (%) // calculate voting weight

/ update sample weights for Vi, j

DH—L] ( ) _ D ;(0): exp(—ZT: i Jht j(xi))

where Z, ; = 37, Dy ;(i) - exp(—uiau jhe j (7))
end for
// output ﬁnal strong hypothesis

F(x) = E E o jhe, ()

t=1j=1

5. Experiments

In order to verify the proposed method, comparison ex-
periments are performed on Face sequence, Car sequence,
and Cup sequence. Some frames of them are shown in Fig-
ure 4.

In the experiments, tracking results and accuracy rate
of foreground/background classification are both served as
evaluation metrics. The experimental comparison is per-
formed among four approaches: 1) baseline, which only
uses labeled samples to train a off-line Adaboost classifier
without update; 2) online boosting [8], which is initialized
with the labeled data and online updated with unlabeled data
through self-training; 3) boosting co-tracking, which uses
the approach described in [15], while replaces the online
SVM classifier with the online boosting classifier; 4) our
method, which is described in Algorithm 1.

For classification comparison, 100 continuous and chal-
lenge frames in a video are used to generate training and
testing data. Samples from earlier 10 frames are served as
labeled and from other 90 frames are served as unlabeled.

For tracking comparison, all the algorithms begin with
10 manual labeled frames, and the tracking results in each
new frame are used to locate the foreground and back-
ground regions to extract the samples as unlabeled data for
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online updating the trackers.

The approach for extracting samples and features is de-
scribed in section 3. As most of tracking algorithms, we
also adopt color features and texture features to describe the
object.

For the color features, the following combinations [6] are
used to construct color histogram.

C = {w1R+w2G+w3B |w1,w2,w3 S [72, —1,0, 1,2}}

Through pruning redundant coefficient, we are left with 49
combinations. All the color combinations are normalized
into 64(4 x 4 x 4) dimensional histograms and each bin of
these histograms is added into the color feature pool.

For the texture features, 25 kinds of LBP blocks with
different sizes are selected to generate the corresponding
histograms. The LBP histogram are also normalized into
64(4 x 4 x 4) dimensions and each bin of them is added
into the LBP feature pool.

5.1. Comparison of classification

The results of classification comparison in face tracking
sequence and car tracking sequence are shown in Figure 3.

face tracking sequence car tracking sequence

0.9 —4—baseline 0.9 —4—baseline
=& -our method =& =our method
0.85 @boosting co-tracking 0.85 @boosting co-tracking
~# online boosting © ~# -online boosting Py

- ot
- -

)

accuracy rate

0.65

06

0'Sil 5 q 0
combination number of weak hypothesis

combinatign numbgr0 of wea?(%ypothezsci’s
Figure 3. The classification accuracy rate comparison of baseline
(blue), online boosting (green), boosting co-tracking (purple) and
our method (red) in a face tracking sequence (left) and a car track-
ing sequence (right).

As shown in Figure 3, baseline is the worst approach
since its off-line training with no update. Taking account
of classifier online update help online boosting get a bet-
ter performance. However, Online boosting using the clas-
sification results to update the classifier itself is not ro-
bust to outliers. So its performance is worse than boosting
co-tracking which use co-training to replace with the self-
training. Compared to boosting co-tracking, our method
does co-training in each weak hypothesis, and plays a bet-
ter performance in experiments. In conclusion, our method
which is an entitative combination of boosting and co-
training based on the error upper bound minimization is
shown the best performance in classification comparison
experiments.

In the comparison of classification, we also use various
combination number of boosting weak hypothesis to make
a comparison. The results in Figure 3 show that the pro-
posed method gain the most improvement with increasing
of combination. This indicates that our method is a suitable
combination between boosting and co-training.

5.2. Comparison of tracking

Figure 4 shows the results of tracking comparison.

In the face tracking sequence, face rotation, illumina-
tion change in the middle scene and clutter background are
the challenging problem. baseline approach using off-line
boosting without update is unstable after the face rotation
in the earlier frame and loses track in frame #21. Since the
very similar color features in the door, online boosting us-
ing self training fails to track the face in frame #86. After
142 frames tracking, only our method keeps correct.

In the car tracking sequence, complex illumination con-
ditions are created by the shadow in the scene and a strong
sunshine reflection happened in frame #46 is also a big chal-
lenge. baseline approach loses the car on the border be-
tween the illumination and the shadow in frame #12. When
the strong sunshine reflection happened in frame #46, all
the algorithms are affected and get incorrect labeled sam-
ples to train. For this reason, online boosting fails to track
the car in the following frames. In the last frames, boost-
ing co-tracking can reluctantly keep tracking whereas our
method plays a better performance.

In the cup tracking sequence, the cup tracking is done
in a dark room with faint light. illumination change leads
to a tracking lose of baseline approach in frame #16. In
frame #76, the cup rotation affect the performance of all
the tracking algorithm. Only our method still keeps tacking
after 92 frames.

The above experiments show a good tracking perfor-
mance of our method compared to baseline approach, on-
line boosting and boosting co-tracking.

6. Conclusions

In this paper we pose tracking as a online semi-
supervised learning problem and present a robust tracker
using online boosting and co-training framework. For guid-
ing the design of our algorithm, we find an error upper
bound for Adaboost in semi-supervised learning based on
a co-training framework and prove it in theory. Our method
is based on minimizing this error upper bound. Off-line
boosting tracker, online-boosting tracker and boosting co-
tracker are compared to our tracker. The solid theory sup-
port and convincible experimental results show that the pro-
posed tracker is promising.
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Figure 4. Tracking performance comparison of baseline approach (cyan rectangles), online boosting (purple rectangles), boosting co-
tracking (red rectangles) and our method (yellow rectangles). The top row shows the comparison results on frames 1, 21, 86 and 142 from
a face tracking sequence. The middle row shows the comparison results on frames 1, 12, 46 and 57 from a car tracking sequence. The
bottom row shows the comparison results on frames 1, 16, 76 and 92 from a cup tracking sequence.
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