Distributed Detection of Network Intrusions Based
on a Parametric Model

Yan-guo Wang, Xi Li, and Weiming Hu
National Laboratory of Pattern Recognition
Institute of Automation, Chinese Academy of Sciences
Beijing, China
{ygwang,lixi,wmhu} @nlpr.ia.ac.cn

Abstract—With the increasing requirements of fast response
and privacy protection, how to detect network intrusions in
a distributed architecture becomes a hot research area in the
development of modern information security systems. However, it
is a challenge to build such a system, given the difficulties brought
by the mixed-attribute property of network connection data
and the constraints on network communication. In this paper,
we present a framework for distributed detection of network
intrusions based on a parametric model. The parametric model
can explicitly reflect the distributions of different intrusion types
and handle the mixed-attribute data naturally. Based on the
model, we can generate an accurate global intrusion detector
with a very low cost of communication among the distributed
detection sites, and no sharing of original network data is needed.
Experimental results demonstrate the advantages of the proposed
framework in the distributed intrusion detection application.

I. INTRODUCTION

With the great damage caused by network intrusions,
information security becomes more and more important in
the development of network-based information systems, such
as e-business and e-government. Generally, an information
security system contains the following components:

1) Protection: Intrusion preventive measures, such as user
authentication and encryption.

2) Detection: Try to detect security violating behaviors as
soon as they occur.

3) Reaction: Reactions to the security violations detected,
such as automatic alarm of intrusions, or cut the specific
network connections where the attacks are from.

4) Recovery: Repair the damage on the information
system caused by the intrusions.

Intrusion detection is a crucial module of the information
security systems, as the subsequent reaction and recovery
modules can take effect only if the intrusions are correctly
detected in time. Thus more and more attention has been paid
to the development of effective intrusion detection techniques.

A. State of the Art

Statistical methods were first introduced into the develop-
ment of intrusion detection algorithms. Denning [1] proposes a
detection method, where statistical profiles for normal behav-
iors are constructed and applied to detect anomalous behaviors

as intrusions. Li and Manikopoulos [2] extract several repre-
sentative parameters of network flow, and these parameters
are modeled with a hyperbolic distribution. Peng et al. [3]
use a nonparametric cumulative sum algorithm to analyze the
statistics of network data, and further detect anomalies on the
network.

Data mining techniques are also widely used in intrusion
detection. Lee et al. [4] introduce the concepts of association
rules and frequent episodes to describe the characteristics
of normal network activities. The frequent episodes that are
of little importance are dynamically discarded in [5] during
the construction of network behavior models. Otey el al. [6]
propose a general-purpose outlier detection algorithm based on
the mining of frequent itemsets, and the algorithm is extended
to fit the dynamic and streaming data environments.

Recently, many machine learning methods are introduced
into the intrusion detection research. For supervised learning,
Bonifacio et al. [7] use neural networks to distinguish between
intrusions and normal network activities. Later, Hierarchical
Neural Networks [8] and Evolutionary Neural Networks [9] are
applied to the analysis of intrusion patterns. Another algorithm
with great generalization ability, Support Vector Machines
(SVMs), are also exploited in [10], [11].

As for unsupervised learning, Xian et al. [12] combine the
fuzzy K-means with clonal selection algorithm in the detection
of intrusions. An incremental version of K-means algorithm is
used in [13]. Another popular clustering tool, self-organizing
map (SOM), also attracts great attention [14], [15]. Sarasamma
et al. [16] propose a Hierarchical SOM to select features that
are used in different layers of SOM. There are also many other
pieces of work on this research area [17], [18].

B. Challenges for Distributed Intrusion Detection

With the increasing requirements of fast response to in-
trusions and protection of data privacy, it becomes a new
trend in the intrusion detection research to develop intrusion
detection techniques that are implemented in distributed ar-
chitectures [19]. In the distributed environments, the detection
of intrusions is performed on local detection sites, which are
multiple distributed computing nodes near the data sources.
Compared with the traditional centralized detection ways in
which all the network data are sent to a central site to detect
intrusions, the response to intrusions is faster in the distributed

detection architectures, and the original network data from
each distributed data source are no longer shared outside.
However, due to the limitation on the amount of observa-
tion data, it is infeasible to construct an accurate detection
model using only local data, so the detection ability of each
distributed site is greatly restricted. Sharing of local models
is helpful to the improvement of detection performance, but
what information to share and how to share is a challenge
to the distributed intrusion detection systems, since the vol-
ume of communication among the distributed detection sites
should be minimized, and the sharing of original network data
should be avoided for the consideration of privacy protection.
Furthermore, the variety of attributes also brings difficulties to
local information sharing. There are various types of attributes
for network data, including both categorical and continuous
ones, and the ranges of value for different attributes differ
greatly, from [0, 1] to [0,107]. It is a difficult task to extract a
concise sharing model from these mixed-attribute data, which
can effectively improve the detection ability on each distributed
detection site. Recently, Otey et al. [6] use frequent itemsets
to detect mixed-attribute outliers in the distributed mining
environments. Although local information can be shared in the
algorithm, the communication cost is very high. Furthermore,
many original network data need to shared among the dis-
tributed sites, which is not suitable for the specific application.

C. Our Approach

In this paper, a framework for distributed detection of
network intrusions is proposed, which is based on a parametric
model. The parametric model is a hybrid of Adaboost ensemble
[20] and Gaussian Mixture Model (GMM), which results in
a concise sharing model with useful information of each
intrusion type. Based on the parametric sharing models from
the distributed detection sites, a global intrusion detector is
finally constructed in a heuristic approach. The advantages of
our method are as follows:

o In the Adaboost ensemble classifier, the weak classifiers
are constructed on each individual feature dimension,
both for continuous and categorical ones, so that the
difficulties of mixed-attribute data from the variety and
the complicated relationships among these features are
successfully handled.

o The weak classifiers are based on the GMM of each
intrusion type, then a parametric model is generated which
is suitable for sharing, since it gives a good description
of the distribution for each type of intrusions.

o Since only the concise parametric models are shared
among the distributed detection sites, the volume of
communication is very little, which greatly reduces the
network bandwidth occupation and speeds up the re-
sponse to intrusions.

e Due to the great descriptive power of the parametric
model, the final heuristically constructed global detector
reaches a considerable improvement on the detection
ability of each distributed detection site, and no private
network data need to be shared for the detection.

Distributed detection site 1

Network connections

| Data labeling |

Distributed detection site N

Network connections

| Data labeling |

| Feature extraction

| Feature extraction

Weak classifiers Weak classifiers

Adaboost training Adaboost training

Local parametric model 1 Local parametric model N

Global intrusion detector

Fig. 1. Framework of Our System

The rest of paper is organized as follows. Section II gives
an overview of our framework. Section III describes the
methodology of our distributed detection algorithm in detail.
Section IV reports some experimental results which show
the advantages of the proposed method. Then we draw the
conclusion in the last section.

II. SYSTEM OVERVIEW

The framework of our distributed detection method for
network intrusions is illustrated in Fig. 1. There are mainly
six modules for the system.

A. Feature Extraction

For each network connection, three groups of features are
extracted for detecting intrusions [21].

« basic features of individual Transmission Control Protocol
(TCP) connections;

« content features within a connection suggested by domain
knowledge;

o traffic features computed using a two-second time win-
dow.

The above features are commonly used in intrusion detection.
The framework for constructing these features can be found in
[22].

B. Data Labeling

Since supervised learning techniques are applied in the
system, a set of training data need to be labeled before
the training phased. There are many types of intrusions on
the Internet, which differ greatly from each other on the
characteristics of the connection data. Generally, the main
objective of intrusion detection is to make a decision whether

a network connection is an intrusion, while the intrusion’s
specific type is of little concern. However, in order to extract
a description for the distribution of each intrusion type, which
is helpful for the information sharing among the distributed
detection sites, we labeled the intrusion data as “—17, “—2”,
... for different intrusion types, and the normal connection data
are all labeled as “1”.

C. Design of Weak Classifiers

The weak classifiers in our system are the ones on each
individual feature dimension, so that we can handle the mixed-
attribute data of network connections naturally, and make full
use of information on all the features to get better intrusion
models. As a simple and effective tool, GMM is exploited
in the design of weak classifiers to generate an explicit
distribution of each intrusion type.

D. Adaboost Training

Adaboost training is implemented on each distributed de-
tection site using only the local training data, then a set of
ensemble weights are produced at the end of training, which
reflect the importance of each feature for the detecting of
intrusions.

E. Generation of Local Parametric Models

Based on the weak classifiers and ensemble weights ob-
tained from the former two modules, a concise but effective
local parametric model for each distributed detection site is
achieved naturally.

FE. Construction of Global Detector

Finally, after the local parametric models from the dis-
tributed detection sites are shared, we construct a global
intrusion detector, which is then used to detect intrusions on
each distributed site.

III. METHODOLOGY

In this section, we describe the detailed techniques of our
method, followed by some discussions.

A. Weak Classifiers

For each network connection, the feature values extracted
form a vector

;@p); ey

where D is the number of features extracted. Note that in
the D dimensions, there are both continuous and categorical
features, and the ranges of value on these features differ
greatly from each other. Although they contain important
information for the data distribution, the categorical features
are inappropriately modeled or simply discarded by most of
existing algorithms, which restricts the detection ability of the
resulted intrusion detectors. Moreover, due to the demand of
fast response in the security domain, the detection models
with high complexity are not fit for the specific application.
Recently, Otey et al. [6] use frequent itemsets to capture the
complicated dependencies among the mixed-attribute data, but

X = [21, X9, ...

there are a large amount of statistics to be shared about the
frequent itemsets, which means a high communication cost in
the distributed detection systems.

In our previous work [23], the mechanism of ensemble
classifier is applied, and the weak classifiers are constructed on
each individual feature dimension, so that the difficulties from
the variety and complex relationships among these features are
well handled. However, the weak classifiers used in [23] are
decision stumps. Although work well on a single detection
site, ensemble detectors based on decision stumps make it
inconvenient to share information among the distributed sites.

Here we introduce the GMM-based weak classifier on each
individual feature dimension. Suppose the GMM of data class
c on the j-th feature is

05 = s} @

where j € [1,D], ¢ = 1,—1,-2,... is the class label
as described in section II.B, K is the number of Gaussian
components, then the weak classifier on the j-th feature is
constructed as follows:
1 1

hj(x) = arg mCaX{P(X\@;), MP(XK‘);I), MP(XK“);Z), -}

3)
where M is the number of intrusion types appearing on the
local detection site. The involving of parameter M is of great
importance to reduce the false alarm rate for the final ensemble
classifier. Note that the parameters of ©f can be easily obtained
from the training data by K-means clustering or Expectation-
Maximization (EM) learning [24].

B. Adaboost Training

Adaboost [20] is one of the most popular machine learning
algorithms developed in recent years, which has shown great
power in many applications. Let {(x1,¥1),..., Xn,yn)} be
the local training data on a distributed detection site, where N
is the number of training data. Based on the weak classifiers
(3) described above, we present our Adaboost-based training
of local intrusion detectors as below:

1) Initialization:
wgll) =1/N, n=1,..,N.

2) Selection of Weak Classifiers (for t =1,...,T):
Let 5§-t) be the sum of weighted classification error for
the weak classifier i; in the ¢-th iteration

N
e =3 w® - Ifsign(y,) # sign(h;(xa))], @)

n=1

mi={

Choose the weak classifier h*) with the minimum of
weighted classification error

where o
if ~ is true

if ~ is false)

h® = arg II}lli‘n Eg»t). (6)

Suppose £*) is the related weighted classification error
of), then we update the weight of each training data
according to the following rules,

WD) — o0 5 Ty i sign(h(") (x,)) = sign(yx)
" " 25% if sign(h(® (x,)) # sign(yy,)
(N
3) Strong ensemble classifier:
The final strong classifier generated by Adaboost training
is
H(x) = sign(Zsign(h”) (x)) - a!), ®)
where a®) = 1g 1;5()“, which reflects the importance of the
feature dimension related to the weak classifier h(*).

The final strong classifier in Adaboost is a linear weighted
sum of the weak classifiers, and the voting weights are derived
from the weighted classification errors of these weak classi-
fiers, which are learned on the evolving sampling distribution
of the training data set. The evolving weight w%t) plays a
key role in Adaboost. It indicates the importance of the n-th
training sample while generating the ¢-th weak classifier. The
weights of samples that are wrongly classified by the current
weak classifier are increased, and the others are decreased, so
that more attention is paid to the samples that are difficult to
classify while generating the next weak classifier. Theoretical
proof has been given in [20], which implies the convergence
of weighted classification error for the final strong classifier:

N
ngl) - I[H (xy) # sign(y,)] — 0, as T — occ. C))
n=1

C. Local Parametric Models

Subsequent to the above two modules of weak classifier
construction and Adaboost training, a local parametric model
is formed naturally for each distributed detection site:

U= {\Pquld}v (10)

where
U, ={aW|t=1,.,T} a1

is a set of ensemble weights from (8), and
U, = {@ﬂj =1,..,D;e=1,—-1,-2,...} (12)

is a set of GMM parameters from (2).

Compared with the distributed outlier detection algorithm
proposed by Otey et al. [6], where a large amount of
statistics about frequent itemsets need to be shared among
the distributed detection sites, the parametric sharing model
(10)~(12) is not only concise to be suitable for information
sharing, but also capture the distribution of the mixed-attribute
data from each intrusion type very well, which is very useful
to generate an accurate intrusion detection model.

D. Global Intrusion Detector

After being shared among the distributed detection sites,
the local parametric sharing models (10)~(12) should be
combined into a global intrusion detector, which can utilize the
information from all the distributed detection sites to generate
an more accurate detection model. Since the training data on
each distributed site are very limited, which may be adequate
only for some specific intrusion types that appear much on a
distributed site, we construct the global intrusion detector in
the following simple manner:

| —1 if there exists at least one H(x) = —1
Gx) = { 1 else '
(13)

The idea behind (13) is intuitive: if at least one distributed
detector has enough confidence that a connection data x is an
intrusion, then it is very likely that x is actually a network
intrusion. Though it is a little simple, the global detector (13)
works well in the distributed intrusion detection application.

E. Discussions

In the intrusion detection, it usually needs a large amount
of labeled connection data for training. In order to reduce the
human workload of manual labeling, we proposed a hierar-
chical graph-theoretic clustering active learning algorithm in
[25], which can automatically select a small part of highly in-
formative data for human labeling while maintaining favorable
accuracy in intrusion detection.

As a special characteristic of information security domain,
there are many new intrusion types produced on the Internet,
and the ability of detecting the new types of intrusion should
be incorporated into the current detector soon after their
emergence. To this end, the idea of online boosting [26] can
be applied into our system in order to avoid the frequent
retraining processes and adapt quickly to the changing network
environments. The online version of EM learning algorithm
[27] can also be used to further speed up the construction of
GMM in the framework, which has been successfully utilized
in many applications [28], [29].

IV. EXPERIMENTS

The Knowledge Discovery and Data Mining Cup 1999 data
set [21] is used to test our algorithm, which is a widely used
benchmark data set for the evaluation of network intrusion
detection methods. It was developed for the intrusion detec-
tion evaluation program by 1998 Defense Advance Research
Projects Agency, which was prepared and managed by the
Lincoln Laboratory, Massachusetts Institute of Technology.
A network environment was set up to simulate a typical
U.S. Air Force LAN, where a wide variety of intrusions
were simulated as in a real military network. Nine weeks of
TCP/IP connection data were collected, and they were labeled
for testing intrusion detection algorithms. For each network
connection, 41 features are extracted, including 9 categorical
and 32 continuous features. The training data set contains
97278 normal connections and 396743 network intrusions,
and the test data set contains 60593 normal connections and

TABLE I

RESULTS WITH THREE DISTRIBUTED DETECTION SITES

Distributed Detection Rate Detection Rate
Detection Site | using Local Model | using Global Model
Site I 0.2528 0.8914
Site II 0.2737 0.9171
Site III 0.7544 0.7689
TABLE II

RESULTS WITH FOUR DISTRIBUTED DETECTION SITES

Distributed Detection Rate Detection Rate
Detection Site | using Local Model | using Global Model
Site I 0.0074 0.9347
Site II 0.2822 0.7923
Site III 0.9351 0.9760
Site IV 0.2462 0.2500

250436 network intrusions. Note that the test data set is not
from the same distribution as the training data, and it includes
some intrusion types not existing in the training data. This
makes the task more realistic. For more details of the intrusion
data set, please refer to [21].

The proposed system is tested with three, four, and six dis-
tributed detection sites. To simulate a real distributed detection
environment, the training data set is split into three, four, and
six parts in the respective simulation, so that each site only
have a small part of training data, with which an accurate
intrusion detector is impossible to achieve.

In order to show the efectiveness of our parametric sharing
models (10), we first test the performance of the local detector
(8) obtained from the Adaboost training on each distributed
detection site. After the local parametric models (10) are shared
among the distributed detection sites, the GMMs (12) of the
intrusion types from all the distributed sites are combined
with the local ensemble weights (11), which are different
among the distributed detection sites. Then the new detectors
with global information are tested on the same test data set
again. The detection rates of each local detector with three,
four, and six distributed detection sites are listed in Table

TABLE III
RESULTS WITH SIX DISTRIBUTED DETECTION SITES

TABLE IV
DETECTION RATES FOR EACH INTRUSION TYPE

Detection Rate Detection Rate Detection Rate
Intrusion Type | No. 1 of 3 Sites | No. 1 of 4 Sites | No. 2 of 4 Sites
Local/Global Local/Global Local/Global
bufferoverflow 0/0.0455 0/0.5 0.0909/0.2273
loadmodule 0/0.5 0.5/1 0.5/0.5
perl 0/0 0/1 1/0
neptune 171 0.0002/0.7712 0.9934/0.9981
smurf 0/0.9556 0/1 0/0.9570
guesspasswd 0.0985/0.0637 0.0016/0.7410 0.3723/0.26975
pod 0/0.4943 0.1264/1 0.9310/0.9310
teardrop 0.25/0.6667 0/0.75 0.4167/1
portsweep 171 0.7684/0.9718 0.9944/1
ipsweep 0/0.2516 0.9804/1 0.2974/0.8725
land 171 0/0.7778 0.8889/1
ftpwrite 0.3333/0.3333 0/0 0.6667/0.3333
back 0.0483/0.4791 0/0.8534 0/0.5947
imap 0/1 0/0 0/1
satan 0.9265/0.9927 0.2915/0.9571 1/0.9994
phf 0.5/1 0/1 0/1
nmap 0.8214/1 0.0595/1 0.8691/1
multihop 0.0556/0.5 0.0556/0.8333 0.4444/0.4444
warezmaster 0.0013/0.1979 0.0087/0.6348 0.2154/0.2366
warezclient 0/0 0/0 0/0
spy 0/0 0/0 0/0
rootkit 0/0.1538 0/0.4614 0.3846/0.4615
snmpgetattack 0.0005/0.0504 0/ 0.9960 0.7052/0.9932
named 0.4118/0.4118 0.1765/0.7647 0.2941/0.3529
xlock 0/0.2222 0/0.2222 0/0.2222
XSnoop 0/1 0/1 0.25/1
sendmai 0.1176/0.7059 0/0.8824 0.8235/0.8235
saint 0.8356/0.875 0.8940/0.9905 0.85608/0.9402
apache2 0.75315/0.9811 0/0.7557 0.3161/0.9584
udpstorm 0.5/1 0.5/1 0.5/1
xterm 0/0.0769 0.0769/0.8462 0.2308/0.0769
mscan 0.8927/0.9411 0.0446/0.6572 0.6762/0.9487
processtable 0.7405/0.7523 0.0224/0.7457 0.4058/0.9868
ps 0/0.25 0.0625/0.875 0.25/0.5625
httptunnel 0.8544/0.8734 0.1266/0.9494 0.9430/0.9430
worm 0/1 0/1 0/1
mailbomb 0/0.043 0/1 0/0.999
sqlattack 0/1 0.5/1 0/1
snmpguess 0/0.5586 0.0008/0.8803 0.5382/0.8030

Distributed Detection Rate Detection Rate
Detection Site | using Local Model | using Global Model
Site I 0.0312 0.9324
Site 1T 0.0126 0.9945
Site III 0.2496 0.9767
Site IV 0.2457 0.8722
Site V 0.9271 0.9106
Site VI 0.0047 0.7165

I, II, and III respectively. We can see great promotion on
the detection rate of each distributed detection site after the
local parametric models (10) are shared, with an average from
32.48% to 84.10%, although the sharing models have only a
few parameters. The detection rates for each intrusion type
from some of the distributed sites are listed in Tabel IV,
which also shows the increase of detection ability of each local
detection site after the sharing of local parametric models.

The detection rate of the global detector (13) on the test data
set is 93.66%, with a false alarm rate of 1.70%. Compared with
the algorithm in [6] which gives a detection rate of 95% and
a false alarm rate of 0.35%, the detection performance of our
system is still very exciting as a distributed detection method
for intrusions, as the detection results in [6] are obtained
through some data preprocessing procedure. Otey et al. [6]
process the intrusion data into bursts in the data set, and they
mark an intrusion as detected if at leat one instance in a burst
is flagged as an outlier. Furthermore, the high communication
cost and the need of sharing the original network data make
their algorithm inappropriate for the intrusion detection ap-
plication. However, in our proposed system, no private data
are shared among the distributed detection sites, and the only
communication is the concise local parametric models (10),
which have shown great effectiveness in Table I~IV.

V. CONCLUSION

In this paper, we have proposed a framework for distributed
detection of network intrusions based on a parametric model.
The advantages of our framework are as follows. 1) The hybrid
of Adaboost ensemble and GMM-based weak classifiers suc-
cessfully overcomes the difficulties from the mixed-attribute
property of network data. 2) The local parametric model is
not only concise for communication among the distributed
detection sites, but also can explicitly describe the distribution
of the mixed-attribute data of each intrusion type, which is very
suitable for information sharing. 3) The intuitively constructed
global detector achieves a considerable improvement on the
detection performance of each distributed detection site. 4) No
original network data are shared in the framework, so that the
data privacy is well protected.

Our future work will focus on the further improvement
of detection accuracy of our system, and the investigating
of incremental learning mechanism to fit for the dynamic
streaming data environments.

ACKNOWLEDGMENT

This work is supported in part by the National Natural
Science Foundation under Grants 60520120099 and 60672040
and in part by the National 863 High-Tech R&D Program of
China under Grant 2006AA01Z453.

REFERENCES

[1] D. Denning, “An intrusion-detection model,” IEEE Trans. on Software
Engineering, vol. 13, no. 2, pp. 222-232, February 1987.

[2] J. Li and C. Manikopoulos, “Novel statistical network model: The
hyperbolic distribution,” IEE Proc. on Communications, vol. 151, no.
6, pp. 539-548, December 2004.

[3] T. Peng, C. Leckie, and K. Ramamohanarao, “Information sharing
for distributed intrusion detection systems,” Journal of Network and
Computer Applications, vol. 30, issue 3, pp. 877-899, August 2007.

[4] W. Lee, S. J. Stolfo, and K. W. Mok, “A data mining framework for
building intrusion detection models,” In Proc. of IEEE Symposium on
Security and Privacy, pp. 120-132, May 1999.

[5S] M. Qin and K. Hwang, “Frequent episode rules for Internet anomaly
detection,” In Proc. of IEEE Int. Symposium on Network Computing
and Applications, pp. 161-168, 2004.

[6] M. E. Otey, A. Ghoting, and S. Parthasarathy, “Fast distributed outlier
detection in mixed-attribute data sets,” Data mining and knowledge
discovery, vol. 12, no. 2-3, pp. 203-228, May 2006.

[7]

[8]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(7]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Jr. J. M. Bonifacio, A. M. Cansian, A. C. P. L. F. De Carvalho, and E.
S. Moreira, “Neural networks applied in intrusion detection systems,” In
Proc. of IEEE Int. Joint Conf. on Neural Networks, vol. 1, pp. 205-210,
1998.

C. Zhang, J. Jiang, and M. Kamel, “Intrusion detection using hierarchical
neural networks,” Pattern Recognition Letters, vol. 26, no. 6, pp. 779-
791, 2005.

S. J. Han and S. B. Cho, “Evolutionary neural networks for anomaly
detection based on the behavior of a program,” IEEE Trans. on Systems,
Man, and Cybernetics-Part B, vol. 36, no. 3, pp. 559-570, June 2006.
S. Mukkamala, G. Janoski, and A. Sung, “Intrusion detection using
neural networks and support vector machines,” In Proc. of Int. Joint
Conf. on Neural Networks, vol. 2, pp. 1702-1707, 2002.

J. Mill and A. Inoue, “Support vector classifiers and network intrusion
detection,” In Proc. of Int. Conf. on Fuzzy Systems, vol. 1, pp. 407-410,
2004.

J. Xian, F. Lang, and X. Tang, “A novel intrusion detection method
based on clonal selection clustering algorithm,” In Proc. of Int. Conf. on
Machine Learning and Cybernetics, vol. 6, pp. 3905-3910, 2005.

S. Jiang, X. Song, H. Wang, J. Han, and Q. Li, “A clustering-based
method for unsupervised intrusion detections,” Pattern Recognition Let-
ters, vol. 27, no. 7, pp. 802-810, May 2006.

A. J. Hoglund, K. Hatonen, and A. S. Sorvari, “A computer host-based
user anomaly detection system using the self-organizing map,” In Proc.
of Int. Joint Conf. on Neural Networks, vol. 5, pp. 411-416, 2000.

H. G. Kayacik, A. Zincir-Heywood, and M. Heywood, “On the capability
of an SOM based intrusion detection system,” In Proc. of Int. Joint Conf.
on Neural Networks, pp. 1808-1813, 2003.

S. T. Sarasamma, Q. A. Zhu, and J. Huff, “Hierarchical kohonenen net
for anomaly detection in network security,” IEEE Trans. on Systems,
Man, and Cybernetics-Part B, vol. 35, no. 2, pp. 302-312, April 2005.
S. Zanero and S. M. Savaresi, “Unsupervised learning techniques for
an intrusion detection system,” In Proc. of ACM Symposium on Applied
Computing, 2004.

D. Song, M. I. Heywood, and A. N. Zincir-Heywood, “Training genetic
programming on half a million patterns: an example from anomaly
detection,” IEEE Trans. on Evolutionary Computation, vol. 9, no. 3,
pp. 225-239, June 2005.

S. Parthasarathy, A. Ghoting, and M. E. Otey, “A survey of distributed
mining of data streams,” Data streams: models and algorithms, C. C.
Aggarwal, Eds. New York: Springer-Verlag, November 2006.

Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,” Journal of Computer
and System Sciences, vol. 55, no. 1, pp. 119-139, August 1997.

S. Stolfo et al, The third international knowledege discovery
and data mining tools competition [online]. Available:
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html, 1999.

W. Lee and S. J. Stolfo, “A framework for constructing features and
models for intrusion detection systems,” ACM Trans. on Information
and systems security, vol. 3, no. 4, pp. 227-261, November 2000.

W. Hu and W. M. Hu, “Adaboost-based algorithm for network intrusion
detection,” IEEE Trans. on Systems, Man and Cybernetics-Part B, vol.
38, no. 2, pp. 577-583, April 2008.

A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the EM algorithm,” Journal of the Royal
Statistical Society, Series B (Methodological), vol. 39, no. 1, pp. 1-38,
1977.

W. Hu and W. M. Hu, “HIGCALS: a hierarchical graph-theretic clus-
tering active learning system,” In Proc. of IEEE Int. Conf. on Systems,
Man, and Cybernetics, pp. 3895-3900, October 2006.

N. Oza, Online Ensemble Learning, PhD thesis, University of California,
Berkeley, 2001.

R. M. Neal and G. E. Hinton, “A new view of the EM algorithm that
justifies incremental and other variants,” Learning in Graphical Models,
M. 1. Jordan Eds. pp. 355-368, Kluwer Academic Publishers, 1998.

C. Stauffer and W. E. L. Grimson, “Adaptive background mixture models
for real-time tracking,” In Proc. of IEEE Conf. on Computer Vision and
Pattern Recognition, pp. 246-252, June 1999.

Dar-Shyang Lee, “Effective Gaussian mixture learning for video back-
ground subtraction,” [EEE Trans. on Pattern Analysis and Machine
Intelligence, vol. 27, no. 5, pp. 827-832, May 2005.

