
IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 14, NO. 4, JULY 2006 1145

Prosody Conversion From Neutral Speech
to Emotional Speech
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Abstract—Emotion is an important element in expressive speech
synthesis. Unlike traditional discrete emotion simulations, this
paper attempts to synthesize emotional speech by using “strong,”
“medium,” and “weak” classifications. This paper tests different
models, a linear modification model (LMM), a Gaussian mixture
model (GMM), and a classification and regression tree (CART)
model. The linear modification model makes direct modification
of sentence F0 contours and syllabic durations from acoustic
distributions of emotional speech, such as, F0 topline, F0 baseline,
durations, and intensities. Further analysis shows that emotional
speech is also related to stress and linguistic information. Unlike
the linear modification method, the GMM and CART models try
to map the subtle prosody distributions between neutral and emo-
tional speech. While the GMM just uses the features, the CART
model integrates linguistic features into the mapping. A pitch
target model which is optimized to describe Mandarin F0 con-
tours is also introduced. For all conversion methods, a deviation
of perceived expressiveness (DPE) measure is created to evaluate
the expressiveness of the output speech. The results show that
the LMM gives the worst results among the three methods. The
GMM method is more suitable for a small training set, while the
CART method gives the better emotional speech output if trained
with a large context-balanced corpus. The methods discussed in
this paper indicate ways to generate emotional speech in speech
synthesis. The objective and subjective evaluation processes are
also analyzed. These results support the use of a neutral semantic
content text in databases for emotional speech synthesis.

Index Terms—Emotional speech, prosody analysis, speech
synthesis.

I. INTRODUCTION

RECENTLY, more and more efforts have been made in the
research for expressive speech synthesis, among which

emotion is a very important element [18], [19]. Some prosody
features, such as pitch variables (F0 level, range, contour, and
jitter), and speaking rate have already been analyzed [22], [23].
There are also some implementations in emotional speech syn-
thesis. For instance, Mozziconacci [7] added emotion control
parameters on the basis of tune methods, resulting in higher
performance. Cahn [8], by means of a visual acoustic param-
eters editor, achieved the output of emotional speech via direct
manual manipulation. Recently, some efforts have been made

Manuscript received November 20, 2005; revised March 27, 2006. This work
was supported in part by the National Natural Science Foundation of China
under Grant (60575032). The associate editor coordinating the review of this
manuscript and approving it for publication was Dr. Thierry Dutoit.

J. Tao and Y. Kang are with the National Laboratory of Pattern Recognition,
Institute of Automation, Chinese Academy of Sciences, Beijing 100080, China
(e-mail: jhtao@nlpr.ia.ac.cn; ygkang@nlpr.ia.ac.cn).

A. Li is with the Institute of Linguistics, Chinese Academy of Social Sciences,
Beijing 100732, China (e-mail: liaj@cass.org.cn).

Digital Object Identifier 10.1109/TASL.2006.876113

using a large corpus. A typical system was produced by Camp-
bell [9], who created an expressive speech synthesis from a
corpus gathered over five years and gave impressive synthesis
results. Schroeder [10] and Eide [11] generated an expressive
text-to-speech (TTS) engine which can be directed, via an ex-
tended speech synthesis markup language, to use a variety of
expressive styles from about 10 h of “neutral” sentences. Fur-
thermore, rules translating certain expressive elements to ToBI
markup have been manually derived. Chuang [12] and Tao [4]
used emotional keywords and emotion trigger words to generate
an emotional TTS system. The final emotion state is determined
based on the emotion outputs from text-content module.

The previous work was mostly focused on the simulation of
discrete basic emotions. The rules and unit selection methods
formed the basic previous research. Actually, such discrete emo-
tional expression is just a simplification which we seldom en-
counter in normal life. On the other hand, emotional states can
be thought of as zones along an emotional vector [2]. The vector
might be a cline of emotions shading into one another, with ex-
tremes at either end. In the vector approach, expression would
be a reflection of the intensity in a particular zone. With this
idea, unlike the traditional methods, we allow the labeler to
label the emotional training and testing corpus with four de-
grees, “strong,” “normal,” “weak,” and “unlike” among emo-
tions—“happiness,” “sadness,” “fear,” and “anger.” So-called
“neutral” speech is used as the reference source for conversion,
and was not labeled with degrees.

With this method, this paper tests different prosody conver-
sion methods which aim at the transformation of the prosodic
parameters, e.g., F0, duration, and intensity of the given utter-
ance, to generate emotional speech. A linear modification model
(LMM), a Gaussian mixture model (GMM) method and a clas-
sification and regression tree (CART) method were tried. The
LMM makes direct modification of F0 contours (F0 top, F0
bottom, and F0 mean), syllabic durations, and intensities from
the acoustic distribution analysis results. Twelve patterns (four
emotions with three degrees, “strong,” “medium,” and “weak”)
were deduced from the training set of the corpus. In order to
evaluate the expressiveness of the emotional speech output, this
paper introduces a perception correlation calculation method.
The evaluation results show that the LMM method does not pro-
duce very good output. Further analysis shows that the expres-
sion of emotion does not just influence these general prosody
features, but also affects the sentence-stress and more subtle
prosodic features. The GMM and CART models are then ap-
plied to solve the problem. The GMM method attempts to map
the prosody features distribution from a “neutral” state to the
various emotions, while the CART model links linguistic fea-
tures to the prosody conversion.
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Unlike LMM, the GMM and CART models cannot directly
use F0 contours, so a pitch target model has been introduced.
The model is based on the assumption that “observed F0 con-
tours are not linguistic units per se. Rather, they are the surface
realizations of linguistically functional units such as tones or
pitch accents.” [5] In the model, variations in surface F0 con-
tours result not only from the underlying pitch units but also
from the articulatory constraints that determine how these units
can be implemented. It is, therefore, extremely suitable for F0
pattern training and simulation in Mandarin speech.

The final analysis results show that the direct LMM method
gives us the worst results among the three methods. The GMM
method is more suitable for a small training set, while the CART
method provides the best emotional speech output if it is trained
with a large-coverage corpus. Though the conversion method
has been widely used for the research on voice conversion, the
methods discussed in this paper provide a new way to produce
emotional speech synthesis; however, there is still lots of work
to be done for real expressive speech synthesis.

This paper is composed of seven major parts. Section II intro-
duces the corpus with emotion labeling. The acoustic features of
the emotions were also analyzed. In Section III, this paper de-
scribes a linear modification model which uses prosody patterns
from the acoustic mapping results directly. A perception corre-
lation calculation method is also introduced for the evaluation of
expressiveness in the synthesized emotions. Further analysis on
emotion and stress reveals that emotions are closely related to
subtle prosody distributions. Section IV describes the GMM and
CART models which are used to convert the prosody features
from “neutral” to emotional speech. The pitch target model is
also introduced in this section. Some analysis on methods com-
paring context influences for emotional speech is provided for
the model analysis. In Section V, this paper provides more dis-
cussion on comparison of the three methods and other acoustic
factors which might influence emotional prosody conversion.
Section VI provides a conclusion for this paper.

II. CORPUS AND ANALYSIS

A. Corpus Preparation

To create the model, a corpus which contains 1500 sentences
was produced by searching the appropriate data from 10 years’
Reader’s Digests via a Greedy Algorithm [3]. The following
factors form the focus of our investigation:

1) identity of the current syllable;
2) identity of the current tone;
3) identity of the final in the previous syllable;
4) identity of the previous tone;
5) identity of the initial in the following syllable;
6) identity of the following tone;
7) number of preceding syllables in the word;
8) number of following syllables in the word;
9) number of preceding syllables in the phrase;
10) number of following syllables in the phrase;
11) number of preceding syllables in the utterance;
12) number of following syllables in the utterance.
Factor 1) has 417 values that correspond to the 417 syllable

types in Chinese. Factors 2), 4), and 6) have each five values that
correspond to the four full tones and the neutral tone (0). Factor

3) contains 20 values (initial types) and factor 5) contains 41
values (final types). Factors 7)–10) have three values each, 0,
1, and 2, where 0 means that the segment lies at the boundary,
1 means that it is one syllable away, and 2 means that it is 2
or more syllables away from the boundary. Factors 11) and 12)
have two values each, 0 and 1, where 0 means that the segment
lies at the boundary and 1 means that it is 1 syllable or more
away from the boundary.

During the text selection phase, phrasing was coded solely on
the basis of punctuation. After the text was selected and the data-
base recorded, phrasing was recoded to correspond to pauses.
Each utterance in our database contains at least two phrases.
There were 3649 phrases and 14 453 syllables in total, so on av-
erage each utterance contained two phrases.

After the corpus was designed, each sentence was recorded
in five emotions, “neutral,” “happiness,” “sadness,” “fear,”
“anger,” by a professional actress in a professional recording
studio with a large membrane microphone. A laryngograph
signal was also recorded in parallel to obtain accurate pitch
information. Two persons assisted in the recording. One ac-
companied the speaker to provide hints on how to speak. One
was outside the recording space for technical control. The
speaker was asked to simulate the emotions based on her own
experience. The accompanying person made the final judg-
ment. Recording was not stopped until satisfactory results were
obtained. After the recording, all the utterances were segmen-
tally and prosodically annotated with break index and stress
index information [14]. The F0 values were also processed and
manually checked.

B. Labeling and Analysis

We presented the sentences in a randomized order to a group
of 15 subjects, graduate students of engineering who were
asked to participate in the experiment. Each sentence was
played back to the subjects two times with a 3-s interval. The
subjects were asked to annotate the perceived emotion with
four levels, “strong” (degree 3), “medium” (degree 2), “weak”
(degree 1), and “unlike” (degree 0).

Different listeners perceived different aspects of emotion
realized by the speech and it was difficult to reach a consensus.
One useful representation of the labeling results is the mean
emotion degree over all subjects. The mean degrees were
rounded off into integer values, and thus corresponded to the
four degrees, i.e., “strong,” “medium,” “weak,” and “unlike.”

Out of the 1000 sentences in the corpus, 700 were used for
analysis or training and the remaining 300 were used for testing.
Table I shows the means and standard deviations of prosody
parameters of the training sentences at different emotion levels.

In the table, indicates the standard deviation, the other
values indicate the means of F0 mean , F0 topline

, F0 baseline , syllabic duration ,
and intensity . The table partly confirms the previous re-
search [18] that “happiness” and “anger” yield a high F0, while
“sadness” generates lower F0 than “neutral,” and “fear” is quite
close to “sadness.” The overlap of F0 mean and F0 topline in
different emotions is less than that of F0 baseline. It seems that
the F0 mean and topline provide better “resolving power” for
perception than the F0 baseline.
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TABLE I
DISTRIBUTION OF PROSODIC PARAMETERS IN DIFFERENT EMOTIONS

It is a complicated task to convert “neutral” speech into
emotional speech because the emotional speech differs from
the “neutral” speech in various aspects, including intonation,
speaking rate and intensities, etc. From the very small standard
deviation of mean syllabic duration and intensity, we find
speaking rate and intensity to be well distributed in the different
emotions. The method of linear ratio modification was used for
these parameters. The subsequent discussion will be focused
on the conversion of F0 contours among the emotions.

It has also been pointed out that F0 jitter is an important
parameter for emotional speech [13]. For F0 jitter, normally,
a quadratic curve is fitted to the acoustic measurement with a
moving window covering five successive F0 values. The curve
is then subtracted from the acoustic measurements. F0 Jitter
was calculated as the mean pitch period-to-period variation in
the residual F0 values. Table II shows the results from “strong”
emotions.

With the results, we can see that “happiness” has the highest
F0 jitter while “sadness” contains the minimum F0 jitter dis-
tribution. During speech synthesis, F0 jitter is realized by a
random variation in the length of the pitch periods with an am-
plitude in accordance to the parameters value. This random vari-
ation is controlled by a white noise signal filtered by a one pole

TABLE II
AVERAGE RESULTS OF F0 JITTER OF “STRONG” EMOTIONS

TABLE III
TRANSFORM SCALES OF PROSODIC PARAMETERS

FROM “NEUTRAL” TO “STRONG” EMOTIONS

lowpass filter. The F0 jitter is applied in all of the following con-
version methods and will not be specifically mentioned again.

III. LINEAR MODIFICATION MODEL

A. Linear Modification

Among all prosody conversion methods, linear modification
(LMM) seems to be the most intuitive. We select prosody mod-
ification patterns directly from the prosody features distribution
among emotions

Here, indicates the input prosodic parameters: F0 topline, F0
baseline, F0 mean, syllabic duration and intensity. denotes
their outputs among different emotions. is the transform scale
of the parallel prosodic parameters between “neutral” and emo-
tions as calculated from the training set of the corpus. denotes
the emotional state, i.e., “fear,” “sadness,” “anger,” and “happi-
ness,” indexes the emotion level, i.e., “strong,” “medium,” and
“weak.” Table III shows the transform scales for the simulation
of “strong” emotions. “ ” means “increasing by” and “-” means
“decreasing by” with respect to the parameters of the “neutral”
state. A group of transform scales form a transform pattern of
emotion simulation. There are 12 patterns four emotions with
three degrees, “strong,” “medium,” and “weak”) in total.

B. Deviation of Perceived Expressiveness (DPE)

To evaluate the conversion method, 300 sentences from the
test set of the corpus are used. All of the transform patterns
are applied to convert the “neutral” speech into emotional
speech via a synthesizer which used STRAIGHT [15] as the
acoustic processing model. The results are compared to the
corresponding natural recording.

Traditionally, an ABX test is commonly used for performance
evaluation of voice conversion methods [16]. In an ABX test, the
listener is required to judge whether the unknown speech sample
X sounds closer to the reference sample A or B. For the evalu-
ation of expressiveness in emotional speech, an ABX test is not
easy to use because an emotion state cannot be easily defined,
especially with the distinction among “strong,” “medium,” and
“weak” degrees. The forced one-to-one match is also unsuitable.
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TABLE IV
EXPRESSIVENESS DEVIATION BASED ON LMM METHOD

To evaluate emotional simulation results, we, therefore, pro-
posed a deviation of perceived expressiveness (DPE) method.

The DPE experiment involves the same group of 15 subjects
who took part in the emotion labeling process. The subjects are
asked to annotate 3600 synthesized utterances (300 test sen-
tences with four emotions at three levels) by using the same
method as described in Section II.

The error rate of a certain emotion simulation is measured by

(1)

where, denotes the emotion state, i.e., “fear,” “sadness,”
“anger,” and “happiness,” indexes the emotion level, i.e.,
“strong,” “medium,” and “weak.” represents the mean level
labeled for the synthesized emotion, is the mean level
labeled for the original speech. Table IV shows the results from
DPE test.

Here, denotes the mean errors of emotion level . From
the tables, it is noted that “strong” emotions can hardly be syn-
thesized with the LMM method, except for “happiness.” Most
of the synthesized emotions were perceived to be less expres-
sive than the original natural ones. Some of them were even
perceived as the “neutral,” such as “weak fear,” “weak happi-
ness,” though the prosody parameters have been modified sub-
stantially. This probably indicates that simple modification of
prosodic parameters with a group of constant transform scales
is not adequate to reflect the effect of emotion. Many detailed
prosody features inside the utterance might have been lost.

C. Emotion and Stress

Previous research has found that there exists a strong rela-
tionship between emotions and stresses [32]. Stress refers to
the most prominent element perceived in an utterance rather
than literal “semantic focus” which is used to express speaker’s
attitudes.

In our corpus, most of the intonations of “neutral” utterances
have a decreasing tendency from the start to the end. The sen-
tence stresses normally appear at the beginning. To understand

Fig. 1. Perceived stress pattern.

more about various locations of stresses among emotions, we
carried out additional perceptual experiments on the corpus.

Three subjects were asked to annotate sentence stress on the
most prominent syllable (or prosodic word) after they listened
to the utterances played in random order. The results were rated
by checking the stressed words. Three points was given to a syl-
lable (or word) if it is perceived by all of the three listeners to
bear the sentence stress; two points was given when only two
listeners had that consensus. Zero points means that none of the
listeners perceived the same stress. For example, in one of the
“fear” utterances, the word “yin2 hang2” (bank) was perceived
as having sentence stress by listeners 1 and 3, but listener 2 as-
signed the most prominent stress to another word, so the score of
this “fear” utterance was evaluated as two points. Based on the
perceptual results, the sentence stress is assigned to a prosodic
word which gets two or three points.

Fig. 1 shows the perceived stress patterns among five “strong”
emotions. “I” means the sentence stress is located in the first
word of the utterance, while “F” means the final word, and “M”
means any middle words. We found that the stress is shifting
in the sentence among different emotions. In our corpus, the
shifting amplitude is pertinent to the emotional states, from big
to small: “anger” “sadness” “fear” “happiness.”

Though stresses might be shifted among emotions, the stress
distribution varies with different content, different situation and
different person. Sometimes, the stress in “happiness” keeps the
stress pattern as in the “neutral” states. Also, when a sentence
stress is sentence-medial, the corresponding stress in other emo-
tions might be shifted to the sentence-final words. This trans-
form is so complicated that the LMM is unable to model it.

IV. PROSODY CONVERSION METHOD

To solve the problem mentioned previously, some other map-
ping methods (GMM and CART) were considered. The under-
lying meaning of the mapping is to establish a relation between
two sets of multidimensional vectors, which correspond to the
source speech and the converted speech respectively. To use a
more complex conversion model, it is difficult to deal with the
raw F0 contour. A suitable parametric model for describing con-
tours is needed.
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Fig. 2. Pitch target model [5].

A. F0 Model

Mandarin is a typical tonal language, in which a syllable with
different tone types can represent different morphemes. There
are four tone types referred to be “high,” “rising,” “low,” and
“falling” [5]. They are mainly manifested by the F0 contours.
There have been numerous studies on the tones and intonation of
Mandarin. Several quantitative representations have been pro-
posed to describe continuous F0 contours, such as the Fujisaki
model [6], The Soft Template Mark-Up Language (STEM-ML)
model [17] and the pitch target model [5].

The Fujisaki model is a command-response model for F0
contours. It uses two types of commands: the impulse-shaped
phrase commands giving rise to the phrase-level component for
global intonation, and the pedestal-shaped accent commands
giving rise to accent components for local undulation due to
word accent. The STEM-ML proposed by Bell Labs is a tag-
ging system, in which F0 contours are described by mark-up
tags, including both stress tags for local tone shapes and step
and slope tags for global phrase curves. Both models have the
ability of representing F0 contours in Mandarin. Their common
problem is that it is difficult to establish the relation among the
model commands (or tags) of different utterances.

In the pitch target model, variations in surface F0 contours
result not only from the underlying pitch units (syllables for
Mandarin), but also from the articulatory constraints. Pitch tar-
gets are defined as the smallest operable units associated with
linguistically functional pitch units, and these targets may be
static (e.g., a register specification, [high] or [low]) or dynamic
(e.g., a movement specification, [rise] or [fall]). Among these
models, the features of the pitch target model are quite suitable
for prosody conversion.

Fig. 2 gives a schematic illustration of hypothetical pitch tar-
gets (dashed lines) and their surface realization (solid curved
line). The three vertical lines represent the boundaries of the
two consecutive pitch target-carrying units. The level dashed
line on the right of the figure represents a static pitch target
[low]. The oblique dashed line on the left represents a dynamic
pitch target [rise]. In both cases, the targets are asymptotically
approximated.

The implementation rules are based on possible articulatory
constraints on the production of surface F0 contours. The pro-
duction of surface F0 contours is a process of continuous ap-
proximations of the targets throughout tone-carrying syllables.
When the syllable boundary is reached, it starts the new approx-
imation for the next syllable with the new pitch target.

Fig. 3. Scatter plots of four pitch target parameters in “neutral” to “strong
happiness” conversion.

Let the syllable boundary be . The pitch target model
uses the following equations [20]:

(2)

(3)

where is the underlying pitch target, and is the surface
F0 contour. The parameters and are the slope and intercept of
the underlying pitch target, respectively. These two parameters
describe an intended intonational goal of the speaker, which can
be very different from the surface F0 contour. The coefficient
is a parameter measuring the distance between the F0 contour
and the underlying pitch target at . describes how fast
the underlying pitch target is approached. The greater the value
of is, the faster the speed. A pitch target model of one syllable
can be represented by a set of parameters .

As described in [20], can be estimated by non-
linear regression process with expected-value parameters at ini-
tial and middle points of each syllable’s F0 contour. The Leven-
berg–Marquardt algorithm [20] is used for estimation as a non-
linear regression process.

Fig. 3 shows the scatter plots of the mapping from “neutral”
to “strong happiness” for the four model parameters. The cor-
relation coefficient of between “neutral” to “strong
happiness” is (0.3592, 0.5282, 0.3564, 0.0676). It can be ob-
served that , , and exhibit more correlation between source
speech and target speech than .

B. GMM-Based Prosody Conversion

GMMs have proved to be very useful in the research of
voice conversion [21]. They work particularly well in spectrum
smoothing, which assumes the probability distribution of the
observed parameters to take the following form:

(4)
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Fig. 4. Framework of GMM-based emotional prosody conversion.

where is the number of Gaussian components, is the
normalized positive scalar weight, and denotes
a -dimensional normal distribution with mean vector and
covariance matrix , and can be described as

(5)

The parameters are estimated with the expectation-
maximization (EM) algorithm [24].

The conversion function can be found using regression

(6)

where is the conditional probability of a GMM class by
given

(7)

Here

denotes a normal distribution with mean
vector and covariance matrix .

The parameters of the conversion function are determined by
the joint density of source and target features [5]. In Kain’s work
[16], it was shown that the joint density performs better than the
source density. It can lead to a more judicious allocation of mix-
ture components and avoids certain numerical problems [16].
For each pitch target parameter , and , source and target

Fig. 5. Framework of CART-based emotional prosody conversion.

parameters are assumed to be Gaussian distributed, and then the
combination of source (marked as ) and target (marked as )
vectors is used to estimate the
GMM parameters.

Fig. 4 shows the framework of the GMM based prosody
conversion.

A GMM was trained for the conversion from “neutral” to each
of the four emotions at three levels. This method facilitates con-
tinuous and smooth conversion without discontinuities with in-
cremental learning, but it is a pure numerical algorithm; in other
words, the GMM mapping method fails to incorporate any lin-
guistic information.

C. CART-Based Model

CARTs have been successfully used in prosody prediction,
such as duration, prosody phrase boundaries, etc. They effi-
ciently integrate the contextual information into prediction [29].
In our research, the framework of the CART based prosody con-
version is shown in Fig. 5.

In this model, the input parameters of the CART contain the
following:

• tone identity (including current, previous and following
tones, with five categories);

• initial identity (including current and following syllables’
initial types, with 8 categories);

• final identity (including current and previous syllables’
final types, with four categories);

• position in sentence;
• part of speech (including current, previous and following

words, with 30 categories).
The output parameters are the differences of pitch target

parameters , and between “neutral” and emotional
parameters.

Wagon toolkit,1 with full CART function was used in our
work. Similar to the GMM method in training procedure, source
and target pitch contours from parallel corpus are aligned ac-
cording to labeled syllable boundaries, and then pitch target pa-
rameters are extracted from each syllable’s pitch contour, fi-

1[Online] Available: http://festvox.org/docs/speech_tools-1.2.0/x3475.htm
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Fig. 6. Example of F0 conversion using the pitch target model in “neutral” to
“strong happiness” conversion.

nally mapping functions of parameters , and are es-
timated using the CART regression. Again, there were totally
12 CART models trained with different “neutral” and emotion
mappings. For conversion, the pitch target parameters estimated
from source pitch contours are transformed by the mapping
functions obtained in the training procedure, and then the con-
verted pitch target parameters generate new pitch contours as-
sociated with the target characteristics.

D. Accuracy Analysis

An example of prosody conversion is given in Fig. 6, in which
the “neutral” pitch contours are converted into the “strong hap-
piness” with the GMM method and the CART method.

To get more statistical information of conversion results, four
emotional conversions (marked as “neutral—strong happiness,”
“neutral—strong anger,” “neutral—strong sadness,” and “neu-
tral—strong fear”) were conducted in the experiment. To com-
pare the GMM and CART mapping methods, root mean square
errors are shown in Table V.

From the table, the performance of the GMM method has
better results than that of the CART method. However, the
conventional GMM-based conversion tends to generate overly
smoothed prosody.

E. Combined With Spectral Conversion

Though it is commonly believed that the prosody features are
very important for emotional speech classification, the modifi-
cation of prosody features alone might not be sufficient to gen-
erate an expected emotion. An emotional speech utterance dif-
fers from a neutral one not only in prosodic features but also
in spectral features. Parameters describing laryngeal processes
on voice quality were also taken into account [25], [26]. It has
been pointed out that strong feelings often literally distort the
physical vocal tract [27]. For example, “anger” often involves a
physical tension which can be felt throughout the body and cer-
tainly has an effect on the tenseness of the speech organs, which
in turn creates a distinct acoustic effect. Similarly, “happiness”

TABLE V
MAPPING ERRORS OF GMM AND CART METHOD

might involve a less total physical change, often just a smile
which is “talked through.” Spectral conversion is necessary to
implement an emotional conversion especially from “neutral” to
“negative” emotions. There are a lot of mapping methods avail-
able, such as codebook mapping [29], [30], linear multivariate
regression (LMR) [36], neural networks [31], GMMs [33], [34],
and hidden Markov models (HMMs) [35]. Among these map-
ping methods, codebook mapping and GMM methods are two
representative and popular mapping algorithms.

In our paper, we integrate GMM and codebook mapping [37].
This method encodes the basic spectral envelope using GMM
and converts spectral details using an offset codebook mapping
method. By this means, the problems of smoothing and discon-
tinuity can be counteracted. We finally use STRAIGHT to syn-
thesize the speech.

F. Expressiveness Analysis by Combining Prosody Conversion
and Spectral Conversion

With the integration of prosody conversion and spectral con-
version, more results of DPE tests are shown in Tables VI and
VII.

Table V–VII seem to confirm that the GMM mapping method
is better than the CART method, though the DPE tests did not
show much difference. The results are not consistent with the
previous analysis that the prosody patterns of emotions are
closely related to content and linguistic features. A possible
reason might be that the training data in the experiment was
not enough to cover most linguistic information when using
the CART method. The GMM method is applied purely on
prosody features, The CART method may obtain better result
with a larger training corpus, which still needs to be confirmed
in our future research.

V. DISCUSSION

Though plenty of analysis has been performed on the acoustic
distributions among emotions, these emotions have not actually
been clearly defined via perception. Even for the same emo-
tion there are still various expression methods. One speaker
may increase F0 jitter for “happiness,” rather than increasing the
overall pitch level. The locations of sentence stress in “anger”
utterances can also vary according to differences in content and
linguistic emphasis. In most case, it is located in the word which
the speaker wants to emphasize. These various methods of emo-
tional expression increase our difficulties in emotion simula-
tions, since the acoustic features can be widely distributed.
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TABLE VI
EXPRESSIVENESS DEVIATION BASED ON GMM-BASED PROSODY CONVERSION

TABLE VII
EXPRESSIVENESS DEVIATION FROM CART-BASED PROSODY CONVERSION

Context information from linguistic features is very impor-
tant for emotion expression. Sometimes it is not necessary
to change any prosodic parameters to express the emotion,
if some functional emotional keyword was inserted into the
utterance [4]. Such as, “I’m really angry about what you did”
sufficiently shows the “anger” emotion by use of the functional
word “angry” alone. Besides, emotion may mislead the listener
into perceiving a different sentence act if the context is not
provided. Sometimes, the listeners may perceive some “happy”
voices with a raising end intonation as an echo question, as
shown in Fig. 7. Here, the high boundary tone (with a final
stressed pattern) is used to express a “happy” emotion. Since
the high boundary tone is one of the major features of an inter-
rogative sentence, it is not strange for the listener to recognize
an emotional statement as a question, without context.

In this paper, we tried to integrate some of these linguistic
features to predict the emotional prosody, but the results were
still far from our expectations. Emotional functional words were
analyzed in our previous work for emotion control [4], but were
not considered in this paper because we did not collect a large-
enough training set for the CART model. Otherwise, we can
consider the functional emotional keywords as a kind of special
part of speech.

We have combined the prosody conversion and spectral con-
version for emotion simulation. The work does enhance the

Fig. 7. F0 contours of a “happy” statement (upper curve) and its neutral
counterpart (lower dashed curve). The utterance is “xi1 an1 bo1 yin1 qi1 san1
qi1 fei1 ji1.” The happy statement is perceived as an echo question because
both the contour and the register of the final syllable “ji1,” bearing a high-level
tone HH, are raised.

expressiveness of emotions, especially for “happiness.” When
Ladd described the relations between paralanguage and into-
nation [27], he described the relations between paralinguistic
and linguistic features and pointed out that lexical tone was
also affected by paralinguistic expression. In fact, intonational
and tonal ambiguities are caused by the stress patterns in ex-
pressing certain strong emotions or attitudes. The influences on
stress patterns, tones, and intonations from paralinguistic fea-
tures should also be considered in future work, otherwise, the
utterance will not be able express emotions or attitudes as nat-
urally as possible.

In this paper, we also proposed a DPE method to evaluate
the conversion results. Unlike traditional ABX test which is
normally used for voice conversion evaluation, but is hardly
to be used for a uncertain judgment, DPE method uses dif-
ferent degrees for the perception, such as “strong,” “medium,”
and “weak.” The degrees give more flexible comparing among
the emotions. In addition, DPE method adopted the advantage
of MOS test, with the mean scores of the degrees from many
listeners.

VI. CONCLUSION

This paper has described a perception experiment that was
designed to make soft classification of emotional speech with
different degrees of “strong,” “medium,” and “weak” expres-
sion. The classification results help us to achieve more subtle
acoustic patterns when synthesizing emotional speech with var-
ious types of expressiveness.

When generating expressive speech synthesis, we are easily
tempted to fall into the practice of using the acoustic patterns
driven by the speech with emotion state with a linear modifica-
tion approach. However, without a more detailed distribution of
these acoustic patterns, it is hard for us to synthesize more ex-
pressive or less expressive speech. To solve this problem, this
paper proposed using a GMM method and compared it with a
similarly functioning CART method. Unlike the linear modi-
fication method, both the GMM and CART models efficiently
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map the subtle prosody distributions between neutral and emo-
tional speech. While GMM just uses the acoustic features, the
CART model allows us to integrate linguistic features into the
mapping. A pitch target model which was designed to describe
Mandarin F0 contours was also introduced. For all conversion
methods, a DPE method was employed to evaluate the expres-
siveness of the resulting output speech. The results show that
the linear modification model provides the worst results among
the three methods. The GMM method is much more suitable for
a small training set, while the CART method gives us the better
emotional speech output if trained in a large context balanced
corpus.
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