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ACTA NEUROPSYCHIATRICA

Increased white matter integrity of posterior
cingulate gyrus in the evolution
of post-traumatic stress disorder

Zhang L, Li W, Shu N, Zheng H, Zhang Z, Zhang Y, He Z, Hou C, Li Z,
Liu J, Wang L, Duan L, Jiang T, Li L. Increased white matter integrity of
posterior cingulate gyrus in the evolution of post-traumatic stress disorder.

Objective: Functional imaging studies of post-traumatic stress disorder
(PTSD) have shown an increased activation of posterior cingulate gyrus
(PCG) of the brain. The aim of this study was to explore white matter
integrity of PCG in PTSD subjects.
Methods: White matter integrity, as determined from fractional anisotropy
(FA) value using diffusion tensor imaging, was assessed for PCG in
subjects with and without PTSD from a severe mine accident. All subjects
were also measured by the PTSD Checklist Civilian Version (PCL-C), the
State-Trait Anxiety Inventory (STAI), the logical memory subtest and the
visual reproduction subtest of the Wechsler Memory Scale-Revised in
China. Sixteen PTSD subjects (8 subjects in each group) in the
longitudinal study and 13 PTSD subjects as well as 14 non-PTSD controls
in the cross-sectional case–control study were respectively recruited.
Results: In the longitudinal study, subjects with PTSD showed increased
FA values in left PCG during the follow-up scan. In the cross-sectional
study, FA values in bilateral PCG in PTSD subjects were higher than
controls. Within the PTSD group (n = 13), FA values in the left PCG
correlated positively with logical memory and negatively with PCL-C
intrusion and STAI-trait (STAI-t) subscores. FA values in right PCG
correlated negatively with STAI-t and STAI-state subscores.
Conclusion: These findings suggest that alterations of white matter
integrity in PCG link to mnemonic and affective processing in PTSD over
the long-term follow-up period.
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Introduction

Post-traumatic stress disorder (PTSD) is charac-
terised by specific symptoms, including intrusive
thoughts, hyperarousal and avoidance, numbing, poor
concentration and difficulty in explicitly recalling
aspects of traumatic event. Several brain imag-
ing studies have reported various structural and
functional abnormalities of brain in subjects with
PTSD (1–5). Most consistent findings are activation
failure in medial prefrontal cortex, hippocampus and
enhanced activation in amygdala in PTSD (6–11).

Additionally, studies in PTSD have shown that pos-
terior cingulate gyrus (PCG) functionally related to
aforementioned regions (12) is implicated in a neural
circuit of stress (13).

It is thought that PCG, which consists of
Brodmann areas 23, 29, 30 and 31, plays a critical
role in memory, visuospatial orientation, moni-
toring eye movements and formation and reten-
tion of conditioned fear response (14,15). Notably,
PCG has reciprocal connections with prefrontal cor-
tex, anterior cingulate gyrus (ACG) and limbic
system (16), from which PCG transmits information
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to posterior neocortical association areas (14,15).
Lesions in PCG in animals resulted in an impair-
ment of spatial learning and memory function, there-
fore rats failed to perform the place navigation
task (17,18). Similarly, Katayama et al. (19) have
reported that PCG infarction in a woman leads to
a failure in memorising a new route which likely
results from a loss of directional memory over wide
areas. Additionally, from an animal model of PTSD
it appears that there is a significant degree of cortex
specificity in memory impairment following under-
water trauma (20).

Researches using diffusion tensor imaging (DTI)
to explore dysfunction of white matter networks
about PCG in PTSD were rare. DTI is a devel-
oped magnetic resonance imaging (MRI) technique
that can provide information about white matter
microstructural integrity in vivo (21,22). Fractional
anisotropy (FA) value derived from DTI is mea-
sured by magnitude and direction of water diffu-
sion (23). Previous DTI studies concerning PTSD
have found abnormalities of white matter integrity
in ACG and PCG. Abe et al. (24) reported increased
FA values in left ACG, which correlated positively
with symptom severity in victims with PTSD. How-
ever, Kim et al. (25) found that FA values in left
ACG were lower in PTSD subjects than in healthy
controls and they correlated negatively with severity.
Kim et al. (26) also showed decreased FA values in
multiple subregions of left cingulum bundle, espe-
cially in its anterior portion. There was only one
published DTI study revealing lower FA values in
right PCG in subjects with PTSD rather than in those
without PTSD (27). Differences in types of trauma,
illness duration, asymmetrical parameters in imaging
processing and analysis, comorbid psychiatric dis-
orders, including major depressive disorder, alcohol
dependence and generalised anxiety disorder, could
account for discrepant findings.

On 8 June 2005, a severe coal mine accident
occurred in Zijiang Coal Mine in Hunan Province,
China. Twenty-two miners lost their lives and the
other 112 miners were rescued after more than 10 h
of the ordeal in the darkness (7). The epidemiologi-
cal data were obtained, and the survivors diagnosed
with and without PTSD were scanned by neuroimag-
ing techniques at 2, 10 and 24 months post-trauma,
respectively. These techniques consisted of func-
tional MRI (fMRI), three dimensions and DTI. Our
group (7) has recently examined the neural correlates
of PTSD using trauma-related imagery adapted to
fMRI. In that study, subjects with acute PTSD at
2 months post-trauma exhibited increased activation
in left PCG and decreased activation in bilateral mid-
dle frontal gyri when presented with trauma-relevant
pictures versus neutral pictures. The PTSD group

also showed decreased activation in right frontal
gyrus while performing memory performance. The
recent findings suggested neurophysiological alter-
ations and memory performance deficit in acute
PTSD.

This study presents the results of a longitudinal
study of white matter integrity in PTSD and data
were obtained at 10 and 24 months post-trauma.
We hypothesised that PTSD subjects would exhibit
increased white matter integrity in PCG, consistent
with increased activation in PCG in PTSD reported in
prior functional neuroimaging studies (1,6,28–31).
We have not found any prior research assessing lon-
gitudinal changes in PTSD using DTI. Survivors in
this life-threatening coal mining accident experienced
simultaneously and had high homogeneity in demo-
graphic background, which offered a distinct advan-
tage in reducing the impact of confounding factors.

Materials and methods

Subjects

PTSD and matched control subjects were chosen
from survivors of the coal mine accident and assessed
according to the Structured Clinical Interview for
Diagnostic and Statistical Manual of Mental Disor-
ders, Fourth Edition (DSM-IV). Eighteen individuals
who met the DSM-IV criteria of current PTSD were
recruited into the study at 10 months post-trauma.
At 24 months post-trauma, three original PTSD sub-
jects dropped out of the study and the other seven
people did not meet the PTSD diagnostic criteria.
Thus the remaining 8 original PTSD subjects, along
with 5 new people who met the criteria of current
PTSD and 14 controls exposed to the same acci-
dent were recruited at 24 months post-trauma. Exclu-
sion criteria for both groups included any history of
head injury, any significant medical or neurological
conditions, comorbid psychiatric disorders, substance
abuse or dependence and mental retardation. Dur-
ing the study’s 14-month follow-up period, subjects
were excluded from the study if they experienced
another traumatic event. All subjects were males
and dextral, free of medication and without exces-
sive head movement. Informed consent was written
after the procedures had been fully explained. This
study was approved by the Ethics Committee of the
Second Xiangya Hospital of Central South Univer-
sity, China.

Instruments

Severity of illness was assessed by the PTSD Check-
list Civilian Version (PCL-C), which is a 17 question,
self-report measure used to evaluate PTSD symptoms
from the DSM-IV criteria (32). Three subscores from
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PCL-C were calculated corresponding to three PTSD
symptom clusters: intrusion, avoidance and hyper-
arousal. Anxiety symptoms were assessed by the
State-Trait Anxiety Inventory (STAI) (33). Depres-
sive symptoms were assessed by the Beck Depression
Inventory (BDI) (34). This self-report inventory con-
sists of 20 items to assess state anxiety and another
20 items to assess trait anxiety. The logical memory
subtest and the visual reproduction subtest of Wech-
sler Memory Scale-Revised in China were used to
evaluate the short-term memory of survivors (7).

Data acquisition and processing

DTI was performed using a standard head coil on
a 1.5T-Tesla General Electric scanner (Twin-speed,
Milwaukee, WI, USA). Cushions were placed around
the subjects’ head to minimise head movement.
Each volume consisted of 30 contiguous axial slices.
Single-shot echo planar imaging with alignment of
the anterior commissure–posterior commissure plane
was undertaken, using the following parameters:
repetition time = 12 000 ms, echo time = 107 ms,
acquisition matrix = 128 × 128, field of view =
24 × 24, excitation number = 5, slice thickness =
4 mm and no gap. The diffusion sensitising gradients
were applied along 13 non-collinear directions (b =
1000 s/mm2), together with an acquisition without
diffusion weighting (b = 0 s/mm2) (35).

Three pairs of eigenvalues (λ1, λ2, λ3) and
eigen vectors were derived by diagonalisation of the
diffusion tensor matrix. Subsequently, the FA value
was calculated on a voxel-by-voxel basis according
to the equation in Basser’s study (36).

The method of imaging processing was similar to
that described previously (35,37). Parametric images
of FA and b = 0 were calculated with the DTI-
Studio version 2.40 (H. Jiang, S. Mori; Department
of Radiology, Johns Hopkins University, Baltimore,
MD, USA) and transformed from Digital Imaging
and Communications in Medicine (DICOM) format
to analyse format for further processing using
statistical parametric mapping (SPM2; Wellcome
Department of Imaging Neuroscience, London, UK),
implementing on Matlab 6.5 (MathWorks, Sherbon,
MA, USA). For each subject, the b0 image was
normalised to the standard Montreal Neurological
Institute (MNI) space using SPM2, and then the
transformation matrix was applied to the FA map
in order to normalise the map to the standard
MNI space. All the images were resampled with a
voxel size of 2 × 2 × 2 mm3. The normalised FA
maps were smoothed with an 8-mm full-width at
half-maximum isotropic Gaussian kernel to decrease
spatial noise, and a mean image (FA template) was
created.

ROI analysis

As extensive alterations were observed in PCG in
PTSD subjects, this region was brought into our
central attention. Region of interest (ROI) analysis
was performed to identify the FA value of the region.
The colour-coded FA maps of DTI were used to
outline different white matter fibre systems (38). In
Colour Map-0, the axial line was located in the
genus–splenium of the corpus callosum in the middle
sagittal plane. The coronal line was taken from the
medial surface of splenium of corpus callosum to
the lateral surface in the middle sagittal plane and
every movement of coronal line represents 2 mm
from the medial surface. Different coronal plane
follows every movement of coronal line in the
middle sagittal plane. Two ROIs were located in
bilateral PCG from each coronal plane. The FA
value was obtained from Colour Map-0. Then, the
mean FA values of bilateral PCG in different coronal
planes (eight coronal planes for each individual) were
calculated.

All measurements were performed by one rater
(L. Z.) without the knowledge of subjects’ identity.
The intrarater reliability was established by rating
five subjects randomly sampled from the whole
subject group; the interrater reliability was also
established by independent ratings of five subjects
by two skilled raters who were familiar with brain
anatomy (L. Z. and Yin Yan). Before the intraclass
correlation coefficients (ICCs) were calculated, raters
practised on another set of brains. The ICCs were
0.8969 for the left PCG and 0.9722 for the right PCG.

Statistical analysis

Intergroup [PTSD subjects at 10 months post-trauma
(n = 8) vs. PTSD subjects at 24 months post-trauma;
PTSD subjects at 24 months post-trauma (n =
13) vs. controls (n = 14)] differences in mean FA
values were examined with paired t-test and two
sample t-test, respectively. They were performed
in a voxel-by-voxel manner. A statistical threshold
of p < 0.005 (height threshold, uncorrected) (39)
as well as an extent threshold of cluster size >50
voxels (400 mm3) were considered to be statistically
significant.

Paired t-test and independent t-test were also used
in demographic and clinical assessment. Pearson
correlation analysis was utilised to evaluate the
correlations between mean FA values of each ROI
and clinical variables, which involved subscores
of PCL-C and STAI, logical memory and visual
reproduction scores. A level of p < 0.05 (two tailed)
was considered statistically significant. SPSS 13.0
(SPSS Inc, Chicago, IL, USA) for Windows was used
for the computations.
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Results

General information

Results relating to the PTSD groups (10 months
post-trauma vs. 24 months post-trauma) in the lon-
gitudinal study were shown in Table 1. Significant
differences were evident between two groups in
PCL-C, STAI, BDI, logical memory and visual repro-
duction scores, and PCL-C intrusion, hyperarousal,
STAI-state (STAI-s) and STAI-t subscores. There
were no significant differences in PCL-C avoidance
subscores between two groups. Results relating to the
PTSD and control groups (24 months post-trauma)
in the cross-sectional case–control study were pre-
sented in Table 2. As shown in the table, there were
no significant differences in age, educational level,
working depth underground, STAI-s subscores, logi-
cal memory and visual reproduction scores between
the two groups. Significant differences were evi-
dent in PCL-C, STAI, BDI scores, PCL-C intrusion,
avoidance, hyperarousal and STAI-t subscores.

Group comparison

In the longitudinal study, compared with the 10
months post-trauma, PTSD subjects at 24 months
post-trauma showed significant increased FA values
in the left PCG (Fig. 1) and decreased FA values
in the right transverse temporal gyrus, bilateral
temporal sub-gyri, left superior temporal gyrus, right
prefrontal gyrus, right superior frontal gyrus, right
medial frontal gyrus, right middle frontal gyrus,
right frontal sub-gyrus and left cuneus (Table 3). In
the cross-sectional study, compared with the control
group, areas with higher FA values in the PTSD

Table 1. General information of the PTSD groups in the longitudinal study

PTSD group
(10 months

post-trauma,
n = 8)

PTSD group
(24 months

post-trauma,
n = 8)

Mean SD Mean SD t p

PCL-C 64.25 6.16 57.00 8.50 2.742 0.029∗

PCL-C intrusion 19.88 2.36 16.75 1.67 3.751 0.007∗∗

PCL-C avoidance 20.63 3.78 20.88 5.08 −0.182 0.861
PCL-C hyperarousal 21.88 2.42 19.38 2.97 2.887 0.023∗

STAI 87.75 14.07 106.00 9.32 3.059 0.009∗∗

STAI-s 43.63 8.72 53.25 8.33 2.258 0.040∗

STAI-t 44.13 7.38 52.75 5.78 2.604 0.021∗

BDI 46.38 3.34 28.13 7.06 7.412 0.000∗∗

Logical memory 3.88 1.73 12.25 5.15 4.363 0.002∗∗

Visual reproduction 2.88 4.55 8.38 4.24 2.501 0.025∗

BDI, Beck Depression Inventory; PCL-C, PTSD Checklist Civilian Version; PTSD, post-
traumatic stress disorder; STAI, State-Trait Anxiety Inventory; STAI-s, STAI-state;
STAI-t, STAI-trait.
∗p < 0.05, ∗∗p < 0.01.

Table 2. General information of the PTSD and control groups in the cross-sectional
study

PTSD group
(n = 13)

Control group
(n = 14)

Mean SD Mean SD t p

Age (years) 37.54 3.69 40.86 5.20 −1.898 0.069
Educational level

(years)
7.85 2.51 9.07 1.82 −1.460 0.157

Working depth
underground (m)

−350.58 42.08 −330.43 46.77 −1.147 0.263

PCL-C 55.07 12.95 38.64 11.73 3.460 0.002∗∗

PCL-C intrusion 16.77 3.39 11.29 4.07 3.788 0.001∗∗

PCL-C avoidance 20.54 6.40 13.57 4.16 3.378 0.002∗∗

PCL-C hyperarousal 17.76 4.18 13.78 4.82 2.284 0.031∗

STAI 108.23 9.47 97.21 11.83 2.657 0.014∗

STAI-s 52.07 5.78 48.42 6.82 1.493 0.148
STAI-t 56.15 4.86 48.78 6.23 3.407 0.002∗∗

BDI 32.15 8.00 21.07 12.61 2.702 0.012∗

Logical memory 10.92 5.11 10.43 3.72 0.290 0.78
Visual reproduction 8.92 3.71 8.21 3.24 0.530 0.601

BDI, Beck Depression Inventory; PCL-C, PTSD Checklist Civilian Version; PTSD, post-
traumatic stress disorder; STAI, State-Trait Anxiety Inventory; STAI-s, STAI-state;
STAI-t, STAI-trait.
∗p < 0.05, ∗∗p < 0.01.

group were identified with bilateral PCG (Fig. 2),
right precuneus, right parietal sub-gyrus, left middle
temporal gyrus (Table 4). Regions with lower FA
values in the PTSD group were not found.

Correlation

In the cross-sectional study, FA values of the left
PCG in PTSD (n = 13) correlated positively with
the logical memory scores (r = 0.61, t = 2.55, p =

Fig. 1. Increased FA in left PCG (the orange show) in PTSD
at 24 months compared to 10 months post-trauma in the
longitudinal study. The colour bar represents the T score. FA,
fractional anisotropy; PCG, posterior cingulate gyrus; PTSD,
post-traumatic stress disorder.
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Table 3. Significant difference about FA value in PTSD subjects in the longitudinal
study

MNI coordinates

Region L/R Voxel Z score x y z

Greater increase
Posterior cingulate gyrus L 99 3.53 −12 −44 4
Greater reduction
Transverse temporal gyrus R 533 4.55 40 −30 10
Temporal sub-gyrus R 533 4.24 34 −32 16

L 886 3.80 −46 −12 −22
Superior temporal gyrus L 131 3.67 −40 −36 6
Prefrontal gyrus R 310 3.18 56 8 10
Superior frontal gyrus R 736 3.50 34 52 20
Medial frontal gyrus R 10 638 4.23 10 62 22
Middle frontal gyrus R 310 3.27 45 4 42
Frontal sub-gyrus R 310 3.71 46 4 22
Cuneus L 169 3.77 −12 −78 10

FA, fractional anisotropy; L, left side; MNI, Montreal Neurological Institute; R, right
side.
Region displayed are for p < 0.005, cluster size >50 voxels.

0.027) and negatively with PCL-C intrusion (r =
−0.586, t = −2.398, p = 0.035) as well as STAI-t
subscores (r = −0.605, t = −2.518, p = 0.029). FA
values of the right PCG correlated negatively with
STAI-s (r = −0.580, t = −2.362, p = 0.038) and
STAI-t subscores (r = −0.630, t = −2.691, p =
0.021) (Fig. 3). FA values of bilateral PCG showed
no significant correlations with any other clinical
variables in PTSD. No correlations were observed
in controls.

In the longitudinal study, FA values of the left
PCG in the PTSD group (n = 8) at 10 months
post-trauma correlated positively with the STAI-s
subscores only (r = 0.773, R2 = 0.5978, t = 2.986,
p = 0.024). Meanwhile, FA values of the left PCG
in the PTSD group (n = 8) at 24 months post-trauma
correlated negatively with PCL-C intrusion sub-

Table 4. Significant difference about FA value between the PTSD and control groups
in the cross-sectional study

MNI coordinates

Region L/R Voxel Z score x y z

PTSD group > control group
Posterior cingulate gyrus R 114 2.84 12 −56 28

L 66 3.33 −8 −44 30
Precuneus R 114 3.40 8 −60 40
Parietal sub-gyrus R 88 3.73 40 −38 36
Middle temporal gyrus L 69 4.27 −56 −54 −2
PTSD group < control group
None – – – – – –

FA, fractional anisotropy; L, left side; MNI, Montreal Neurological Institute; PTSD,
post-traumatic stress disorder; R, right side.
Region displayed are for p < 0.005, cluster size >50 voxels.

scores only (r = −0.749, R2 = 0.56, t = −2.765,
p = 0.033).

Discussion

Using DTI approach, we found increased FA values
in the left PCG over a 14-month follow-up period
in PTSD subjects. To our knowledge, this is the
first longitudinal study describing morphological
changes of white matter over time through the whole
brain of PTSD. Although there is little previous
information concerning white matter connection of
PCG in PTSD, some follow-up studies showed
glucose hypometabolism (40,41) and greater grey
matter loss in PCG (42) in patients with amnestic
mild cognitive impairment relative to controls. These
results suggest that PCG has dynamic structural and
metabolic alterations in the course of diseases.

We also observed white matter abnormalities in
bilateral PCG in the cross-sectional case–control
study. Similar to our findings, one prior study (43)

Fig. 2. Higher FA in right PCG (a) and left PCG (b) (the orange show) in the PTSD group compared to the control group in
cross-sectional study. FA, fractional anisotropy; PCG, posterior cingulate gyrus; PTSD, post-traumatic stress disorder.
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Fig. 3. Correlations between FA values of left PCG in PTSD and (a) logical memory score (r = 0.61, t = 2.55, p = 0.027),
(b) PCL-C intrusion subscores (r = −0.586, t = −2.398, p = 0.035, data from two of the victims were overlapping), (c) STAI-t
subscores (r = −0.605, t = −2.518, p = 0.029; correlations between FA values of right PCG in PTSD), (d) STAI-s subscores
(r = −0.580, t = −2.362, p = 0.038) and (e) STAI-t subscores (r = −0.630, t = −2.691, p = 0.021). FA, fractional anisotropy;
PCG, posterior cingulate gyrus; PCL-C, PTSD Checklist Civilian Version; PTSD, post-traumatic stress disorder; STAI, State-Trait
Anxiety Inventory; STAI-s, STAI-state; STAI-t, STAI-trait.

reported that subjects with panic disorder (PD) exhib-
ited increased white matter FA values in the right
PCG. Our result is also congruent with the findings of
functional neuroimaging studies, reporting increased
regional cerebral blood flow (rCBF) in bilateral PCG
in subjects with PTSD relative to controls (6,28,29).
In addition, a structural neuroimaging study exhib-
ited grey matter density increasing significantly in
the right PCG in rape victims with PTSD compared
with healthy controls (44). We therefore propose that
dysfunction in PCG may contribute to the mechanism
of neuropathology in PTSD.

Another major finding was that increased FA
values in the left PCG in PTSD correlated negatively
with intrusive symptom, which often manifested as
a rapid succession of intrusive memory (45). This
pattern of correlation is consistent with functional
evidence that increased activation in PCG is involved
in intrusive or traumatic memory processing in
subjects with PTSD (30,31,46–51). These studies
rely on trauma-related scripts, sounds and pictures
that can elicit intrusive or traumatic memory in
PTSD (52,53). Furthermore, elevated FA values of
PCG in PTSD subjects with improvement of intrusive
symptom in the longitudinal study suggested that it
may be a protective strategy for PCG to prevent the
deterioration of intrusive recollection in PTSD.

More interestingly, our follow-up study showed
that anxiety symptoms including state anxiety and
trait anxiety increased in severity of PTSD. These
findings supported the high rates of comorbid anxi-
ety disorders or symptoms in full PTSD (54,55) or

sub-threshold PTSD (56). Our results also showed
that increased white matter integrity in the left
PCG in PTSD correlated negatively with trait anxi-
ety. The same phenomenon happened between right
PCG and trait anxiety as well as state anxiety.
Unfortunately, our results were inconsistent with
the study that increased FA values in right PCG
in PD patients correlated positively with sever-
ity of anxiety symptoms (43). Another study also
showed that right PCG correlated positively with
trait anxiety (57) in healthy subjects during fear
processing. In addition, Bench et al. (58) used a
positron emission tomography (PET) approach to
have found state anxiety associated with increased
rCBF in PCG in depressive patients. Furthermore,
from PET scans significant reductions in serotonin
1A receptor which played a crucial role in the patho-
physiology of affected disorders were observed in
PCG in individuals with anxiety disorders (59–61).
Many factors involving different types of mental ill-
nesses and methods of imaging data processing as
well as analysis could result in these inconsistent
consequences. Taken together, however, these find-
ings support hypothesis that PCG is implicated in
affective regulation (62–65), which would contribute
to the pathogenesis of anxiety spectrum disorders
including PTSD and so on. We speculated that it
might become an important target of early interven-
tion for PTSD.

The limitations of this study are the small sample
size and the risk of a type I error (uncorrected).
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Moreover, there was no control group at 10-
month post-trauma. In addition, the findings of this
study showed that quite many other brain regions
(especially in frontal lobe and temporal lobe) might
undergo specific change in PTSD, which would be
discussed elsewhere due to limitation of space.

In spite of these limitations, using the voxel-based
method with a relatively strict restriction of p <

0.005 and cluster size >50 voxels, we presented
evidence for possible alterations of FA value in PTSD
subjects, which suggests that white matter pathology
may occur late in the course of illness.

In conclusion, these findings suggest that alter-
ations of white matter integrity in PCG link to
mnemonic and affective processing in individuals
with PTSD over a long-term follow-up period. The
results reveal that PTSD is associated with struc-
tural plastic changes to brain white matter in the
evolution of illness. Further studies can use DTI to
explore whether such changes are progressive over
the course of PTSD and the relationship between the
abnormalities and symptom severity, memory tests.
We also would like to explore changes of white mat-
ter integrity in people with lifetime PTSD but not
currently in the evolution of this illness.
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