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ABSTRACT

Extracting man-made objects in satellite images which are

generated from the meter to sub-meter resolution plays an

important role in remote satellite image analysis. However,

spectral characteristics of urban land objects are so similar.

So the classification accuracies are far from satisfactory by

using only spectral information. As a result, researchers turn

to incorporate geometrical information into satellite image

classification. In this paper, we introduce a new local feature,

namely local self-similarity(LSS) which captures internal

geometric layouts of local self-similarities, into high spatial

resolution images classification application. Our method cap-

tures self-similarity of color, edges, repetitive patterns and

complex textures in a single unified way. With the help of

Bag-of-Visual Words and SVMs, the proposed method per-

forms well. Experimental results on Quickbird-image data

set show that the proposed local self-similarity representation

yields better classification performance than the low-level

features, such as the spectral and texture features.

Index Terms— Classification, High resolution imagery,

Local self-similarity

1. INTRODUCTION

The very high spatial resolution(VHR) remote sensing im-

ages provide valuable spatial and textural information for land

cover classification. Improvements in spatial resolution of

optical sensors opened a wide range of opportunities for re-

mote sensing image analysis. With the fine resolution, there

is an increased interest in the detection and identification of

a variety of man-made structures such as roads and build-

ings. However, the difficulty of using VHR imagery such

as IKONOS [1] and QuickBird [2] is that the classification

accuracy for such purposes is far from satisfactory [3]. The

classes such as road, parking lots, and open areas are hard to

separated using only spectral information cause of their sim-

ilar spectral characteristics. As a result, researchers turn to

incorporate geometrical information into image classification.

For automated land cover classification, it can be accom-

plished using either pixel-based or object-based approaches.

Pixel-based methods classify each pixel individually, whereas

object-based methods first group pixels in a meaningful way

by image segmentation. Compared with the pixel-based

methods, the object-based approach provides a straight way

to incorporate geometrical information. However, it is a

difficulty task to get well segmentations.

Many low-level object features have been applied for

object-based remote sensing image analysis [4], such as

spectral, texture, and structure features. In [5] [6], texture

is regarded as a very useful feature of spatial structure in-

formation in high resolution images analysis. In addition

to spectral and texture features, structural information ex-

tracted by mathematical morphological operations is used

for detection as well [3] [7] [8].However, it is still an open

problem on extract and represent useful structure information

for classification.

In this paper, we demonstrate a new local feature, called

local self-similarity(LSS, [9]), which integrated with the con-

textual and shape information [10]. We demonstrate the use-

fulness of LSS in urban-area land cover classification in VHR

remote sensing images.Instead of measuring features such as

gradients or color of a pixel, LSS measures the difference be-

tween the pixel and its neighbors. The LSS descriptor cap-

tures the internal geometric layout of local regions and can be

compared across images which appear substantially different

at the pixel level.

In this paper, we combine LSS with an object-based

classification approach, which provides a straightforward

method to incorporate geometrical information. The ex-

perimental results show that it performs well.The proposed

framework has been tested for high spatial resolution images

from QuickBird. The paper is structured as follows. Section

2 explains the local self-similarity feature and exhibits the

process of extracting the LSS feature descriptor. Section 3

shows the classification process where Section 3.1 is for ex-

tracting local region and LSS descriptor, Section 3.2 is for

visual-vocabulary construction and histogram computing and

Section is 3.3 for classification using semi-supervised SVMs.

Section 4 presents the experimental results which including

the comparison between classification using other different
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feature. Finally, conclusions are outlined in Section 5.

2. THE LOCAL SELF-SIMILARITY FEATURE

In this part, we briefly describe local self-similarity and

how to use it for remote image analysis. LSS captures self-

similarity of color, edges, repetitive patterns and complex

textures in a single unified way. A textured region in one im-

age can be clustered with a uniformly colored region as long

as they have a similar spatial layout. These self-similarity

descriptors are estimated on a dense grid of points in image,

at multiple scales.

The process of extracting the LSS descriptor is exhibited

as follows. We first associate a local self-similarity descriptor

dp with every pixel p. This is done by correlating the image

patch centered at p with a larger surrounding image region

(e.g., of radius 40 pixels), resulting in a local internal correla-

tion surface. We use the term local to denote a small portion

of the image as opposed to the entire image. The correlation

surface is then transformed into a binned log-polar represen-

tation. It is computed as follows:

(1)Determine the N ×N correlation surface ζp of the ω×
ω patch tp with the surrounding N ×N region Rp. Both Rp

and tp are centered on p. ζp(x) is the correlation of tp with a

patch tx centered on x:

ζp(x) = exp

(
−SSD(tp, tx)

δ

)
(1)

(2)Discretize the correlation surface ζp on a log-polar grid

and store the maximal value of ζp within each grid bin:

dp(p, d) = max
x∈BIN(p,d)

{ζp(x)} (2)

Fig. 1. The process of extracting the LSS descriptor.

Figure 1 shows the procedure of extracting the LSS de-

scriptors. From Figure1, LSS feature is a local feature which

can be extended the to a wide range of larger areas. The use

of patches (at different scales) as the basic unit for measur-

ing internal self-similarities captures more meaningful image

patterns than individual pixels, especially for the object clas-

sification and detection. This can be done without any explicit

segmentation or edge detection, thus can handle regions with-

out clear boundaries such as some vegetation region. The log-

polar representation accounts for local affine deformations in

the self-similarities.

3. CLASSIFICATION USING LSS

In this section, we give the the main classification process.

We combine the bag-of-visual-word(BOV, [11]) and semi-

supervised support vector machines(SVMs) in our proposed

approach.

Given an object from the sample data set, patch detec-

tion and description are used to form a set of feature vectors

from an object. In the training phase, the k-means method

is applied to train k classes whose center is named as visual

word. In the testing phase, a single visual word is built to rep-

resent all implausible patches which are not close enough to

warrant representation by any relevant visual words. Based

on the visual words, the histogram is generated by counting

their occurrence numbers. Here, such histogram is defined

as a BOV representation. Thus, this representation is fed for

classification using semi-supervised SVMs.

3.1. Local Region Detection and LSS Descriptors

We use two different ways to extract local regions.

Evenly regular grid: Evenly regular grids are extracted

at different scales, where each grid is spaced at 11× 11 pixels

for a given object. The size of interest points in the patch is

randomly sampled between the scale of 10 to 30 pixels.

DoG detector: A set of local regions (patches) which are

stable and affine invariant over different scales are extracted

using the DoG detector [12]. And in each local region we can

get salient points as interest points using DoG detector.

Thus, the conspicuous points are located, and their neigh-

borhoods are regarded as the detected patches for further de-

scription. Traditionally, the BOV approach models the distri-

bution of low-level local features such as the scale-invariant

feature transformation (SIFT) [12], which computes the ori-

entation and gradient of the keypoints in gray-level informa-

tion. Here we extract LSS descriptor instead of SIFT descrip-

tor in the conspicuous points. We discuss the comparison re-

sults in the experiments.

3.2. Visual-Vocabulary Construction and Histogram
Computing

Owing to its simplicity, k-means is exploited in this work for

visual-word encoding. During the local region detection and

description, the test image is separated into a set of patches,

each of which is described by a set of feature vectors. Hence,

k clustering classes are learned from the data set, and their
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centers are defined as the visual words. Note that the visual-

vocabulary construction is an unsupervised method without

any references to the class label of each patch, which make

the generation of visual words label free. Here, k-means algo-

rithm is implemented by an expectation-maximization (EM)

scheme. However, there are two problems during this pro-

cess. First, the k-means algorithm converges only to the local

optima. Various initial settings would lead to different solu-

tions. Therefore, the k-means algorithm should be repeated

with random initial values, and the approximate optimal solu-

tion is obtained by averaging over the results of each run. Sec-

ond, the parameter k (the number of cluster center) could not

be computed automatically. In this paper, we choose k = 100.

Based on the clustering algorithm, a visual vocabulary

is constructed to describe the object contents. Thus, each

descriptor is assigned to the closest visual word by using

the Euclidean distance, and a patch can be represented as a

histogram by counting the occurrence numbers of the visual

words.

3.3. Classification by SVMs

Here, every object is described by a set of patches,each patch

is described by a histogram computed and we randomly sam-

ple patches in different objects to form a training data set.

Then the semi-supervised SVMs are employed for the classi-

fication.

SVM is among the most used kernel learning algorithms.

It performs robust nonlinear classification of samples using

the kernel trick. The idea is to find a separating hyperplane

in some feature space induced by the kernel function while

all the computations are done in the original space. A good

introduction to SVM for pattern recognition can be found in

[13].

Despite the good performance of some types of ker-

nels(e.g., RBF kernel), it is obvious that both the unlabeled

information (data structure) and the geometrical relationship

between labeled and unlabeled samples are obviated. Includ-

ing the unlabeled information in the regression method may

improve the results, which is the focus of semi-supervised

learning(SSL). A simple yet effective way to estimate the

marginal data distribution and then include this information

into any kernel method consists of deforming the structure of

the kernel matrix according to the unlabeled data structure.

The deformation can be designed either with cluster kernels

computed from the solution offered by clustering algorithms

or by deforming a valid kernel with graph-based methods that

account for the geometrical relations between labeled and

unlabeled. In this letter, we choose the first strategy.

The selected semi-supervised SVM [14] cluster the full

patches to build a bagged kernel and then modify the base

kernel. A bagged kernel is a kernel function encoding the sim-

ilarity between unlabeled samples. Such a kernel can be de-

fined by counting the occurrences of two patches in the same

cluster over several runs of an unsupervised algorithm. The

algorithm is defined in the following steps.

(1) Compute the base SVM kernel KSVM (e.g., using the

RBF kernel).

(2) Run t times the k-means algorithm with different ini-

tializations but with the same number of clusters k. This re-

sults in p = 1, ..., t cluster assignments cp(xi) for each sam-

ple xi.

(3) Build a bagged kernel Kbag based upon the fraction of

times that xi and xj are assigned to the same cluster

Kbag(xi, xj) =
1

t

t∑
p=1

[cp(xi) = cp(xj)] (3)

where operator [cp(xi) = cp(xj)] returns 1 if samples xi and

xj belong to the same cluster according to the pth realization

of the clustering cp(·) and 0 otherwise.

(4) Take the sum or the product between the original and

bagged kernels

K(xi, xj)←− Kbag(xi, xj) +KSVM (xi, xj) (4)

K(xi, xj)←− Kbag(xi, xj) ·KSVM (xi, xj) (5)

(5) Train an SVM with the modified kernel K(xi, xj).

4. EXPERIMENTAL RESULTS

The results are presented on the satellite images by Quickbird

with 0.6-m resolution. Four classes are considered, which are

roads, resident area(RA), crop and wood.

(a)Experiment area. (b)Reference map.

(c)Classification result.

Fig. 2. Experiment result.
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The classification results are presented in Figure2. From

these data, we can see that our proposed methods can achieve

reasonable well accuracy on objects classification. The effi-

ciency of our methods can be accepted since our experimental

are performed on desktop PC with high speed.

Table 1. Classification accuracies using different features.
Accuracy LSS GLCM SIFT Spectral feature

Overall Accuracy 88.63% 86.43% 82.08% 80.17%
Average Accuracy 92.12% 90.72% 89.11% 85.26%
Kappa Coefficient 83.06% 80.37% 77.49% 74.61%

We also compare our methods with Gray-Level Co-

occurrence Matrices(GLCM, [11]), Scale Invariant Feature

Transform (SIFT) and Spectral features. The results are given

in Table 1. Among all different features, LSS performed best.

So LSS feature can provide better structure information for

satellite image analysis.

5. CONCLUSION

To conclude, a new shape feature LSS for urban area land

cover classification in remote sensing images is presented

and tested. We combine LSS with BOV and semi-supervised

SVMs. The whole process achieved good performance in

satellite image analysis. In the future, we plan to further

explore semi-supervised learning methods in satellite image

analysis. Hence, the information of unlabeled data can be

extracted and used. Meanwhile, traditional spectral features

will be incorporated in our system.
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