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This paper deals with the problem of image reconstruction from incomplete projec-
tions. A novel fuzzy vector objective optimization model is developed by integrating the
fuzzy set theory and vector objective optimization (multi-objective decision-making).
The objective function is expressed as a membership function, and the minimum oper-
ator is taken as a fuzzy operator. Furthermore, a novel iterative method is proposed to
resolve the fuzzy optimization problem. The images reconstructed from simulated noise
projections and real projections obtained from an industrial scanner show that the new
algorithm can provide higher resolution and better smoothness than the images recon-
structed by the transformation method and the conventional iterative method, so it is
more feasible for image reconstruction from incomplete projections.

Keywords: Image reconstruction; fuzzy vector objective optimization; incomplete pro-
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1. Introduction

Image reconstruction from projections is widely used in observation of detailed
structure inside an object and it can be classified into two categories: (1) the
transformation method based on Radon transformation, e.g. Convolution Back
Projection (CBP);1 (2) the iterative method based on algebra, e.g. Algebraic
Reconstruction Techniques (ART).2–5 The transformation method is efficient with
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sufficient and exact projections, whereas the iterative method is more pre-
ferred for image reconstruction using incomplete or/and unevenly distributed
projections.

An optimization method for iterative image reconstruction was first developed
by Kashyap and Mittal,6 in which an appropriate objective function is selected and
an effective algorithm is developed to optimize the function. It is termed single
objective optimization image reconstruction,3,7–11 which focuses on some specifica-
tion in regions being imaged, such as degree of fitting. But it may not account for
other specifications such as smoothness. Thus qualities of the images reconstructed
by the single objective optimization method may not be satisfactory. For incom-
plete projections, the information available for imaging is often not sufficient. And
it is desirable that the relativities among the incomplete projections should be ade-
quately utilized. One of the solutions is that multiple specifications are considered
simultaneously for reconstructing the region of interest (ROI), and these specifica-
tions are equilibrated, so as to obtain desirable reconstruction of the image. This is
the motivation of vector objective optimization for image reconstruction. With the
aid of fast iterative algorithms,12,13 the vector objective optimization method for
image reconstruction, especially for imaging from incomplete projections, has been
well known.14–20

Although the vector objective optimization problem differs from single objec-
tive optimization problem only in the plurality of objective functions, it should
be noted that multiple objectives are often incommensurable and conflict between
each other. In the vector objective optimization, the concept of Pareto optimum
solution or efficient solution, which is superior or inferior with respect to the var-
ious objectives, is introduced instead of the optimality concept of single objective
optimization. Decisions with Pareto optimum solution or efficient solution are, how-
ever, not uniquely determined, and the final decision must be selected from the set
of Pareto optimum solutions or efficient solutions. Thus, a key issue of the vector
objective optimization method is to obtain a compromise or satisfactory solution
of a decision-maker (i.e. best trade-off solution) as the final solution, from either
the Pareto optimum solution or the efficient solution set.

Recently, some researchers studied the vector objective optimization for image
reconstruction and proposed some optimization techniques.14–20 For example, vec-
tor objective functions can be incorporated into a single objective function as a
weighted sum. However, the improvement in image quality and reduction in time
consumption are difficult to achieve mainly due to two reasons. First, it is difficult
to equilibrate multiple objectives. In a regularized or penalized approach, selection
of the weighted coefficient, which greatly influences the quality of the reconstructed
images, is mostly decided subjectively. For one region being imaged from incomplete
projections, different decision-makers have different partialities without regularity.
The second reason is that the vector in the image reconstruction is of high dimension
which demands a great deal of the iterative processing time.
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The fuzzy set theory has been widely used in various areas in recent years and
the fuzzy vector objective optimization is a relatively new technique. Consider-
ing that the noise in projections is stochastic and uncertain information and that
the equilibrium of various objectives in the vector objective optimization can be
formulated into a fuzzy problem, this paper presents a novel algorithm for image
reconstruction using fuzzy vector objective optimization. The membership functions
are used to depict objective functions, and the fuzzy operator is adopted to evalu-
ate the whole satisfactory index of the objectives corresponding to their respective
optimality. Based on these, a mathematical algorithm for the image reconstruction
is developed. The images reconstructed from simulated noise projections and real
projections obtained from an industrial scanner demonstrate that the new method
revealed higher resolution and better smoothness than the images reconstructed
by the transformation method and the conventional iterative method. It is shown
that the proposed method has advantages in image reconstruction using incomplete
projections.

2. Image and Projection Representation

Let x = (x1, x2, . . . , xn)T denotes an n-dimensional reconstructed image vector,
where xj is the density value of the jth pixel in the reconstructed image. Let
yi denotes the ray integral measured with the ith ray, and y = (y1, y2, . . . , ym)T

denotes the projection vector. Let A = (aij)m×n be m × n projections matrix,
where aij is a weight factor representing the contribution of the jth pixel to the ith
ray integral. The image reconstruction from projections can be expressed as

n∑
j=1

aijxj = yi i = 1, 2, . . . , m

Aix = yi i = 1, 2, . . . , m

, (1)

where Ai = (ai1, ai2, . . . , ain), and Aix can be considered as a reprojection of the
ith ray passing through every pixel of the reconstructed image.

Since real projections may contain noise, a noise vector e = (e1, e2, . . . , em)T is
introduced to the projection model. Assume that ei is represented independently of
(0, σ2

i ) Gaussian distribution. The model of image reconstruction from projections
may be expressed as

Aix + ei = yi i = 1, 2, . . . , m. (2)

As a result, the reconstruction problem is formulated as an inverse problem, which
estimates the image vector x from the measured vector y and the geometrical
parameter of projection A.
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3. Model of Vector Objective Optimization for Image
Reconstruction

The model of vector objective optimization for image reconstruction from projec-
tions is formulated as{

min F(x) = (f1(x), f2(x), . . . , fL(x))
s.t. Aix + ei = yi i = 1, 2, . . . , m

, (3)

where fl(x) is an objective function, and L is the total number of objective functions.
There are a number of single objective optimization methods to the solution of
the reconstruction problem, including the norm minimization,7 the least-squares,3

the general quadratic optimum,4 the Bayesian,8,9 the maximum-likelihood,10 the
maximum entropy,11 and the minimum variance.12

For image reconstruction from incomplete projections, a reconstructed image
may be a solution for the following optimization specifications:

(1) Minimal error between real projections and reprojections through recon-
structed image. It makes the reconstructed image vector x to be as close to original
image as possible.

min f1(x) = ||Ax − y||2. (4)

(2) Maximal entropy of the image vector x. It assures that the reconstructed
image has the highest global smoothness.11

min f2(x) =
n∑

j=1

xj ln xj . (5)

(3) Minimal norm of the image vector x. It assures highest local smoothness
and lowest peak level in the reconstructed image,19

min f3(x) =
1
2
(xTA · x), (6)

where A is a covariance matrix which has low-pass filter property.4

There are errors during real projection. They are introduced into the recon-
struction model to be a constraint condition4 as:

h(x) =
1
2

m∑
i=1

(Aix − yi)2

σ2
i

. (7)

The following equation is introduced based on the central limit in probability
theory:

lim
m→∞

1
m

m∑
i=1

(Aix− yi)2

σ2
i

= 1. (8)

In general, m (the total number of ray projection) is large and the order of
magnitude of m is up to 105. Therefore, Eq. (7) can be approximately presented as
follows:

h(x) =
m

2
. (9)
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The constraint h(x) determines the set of feasible image vector x.19 Thus, the
model of vector objective optimization for image reconstruction is obtained:

min f(x) = (f1(x), f2(x), f3(x))

s.t. h(x) =
m

2

. (10)

A common solution to this problem is by using the utility function method.21

The utility function is defined by decision-maker according to the preference infor-
mation to transform the vector objective optimization problem to the single objec-
tive optimization problem.

4. Fuzzy Vector Objective Optimization (FVOO) Algorithm
for Image Reconstruction

Besides the utility function method, other methods, such as objective programming,
interactive decision-making and fuzzy programming, can be employed to obtain a
trade-off solution of decision-making for the vector objective optimization problem.

The FVOO algorithm is developed in this paper for the following reasons: (1)
A large amount of stochastic and uncertain fuzzy information exists during image
reconstruction, such as noise in real projections. (2) It is difficult to optimize various
objective functions simultaneously, which sometimes are mutually conflictive and
noncommensurable. When one objective is optimized, the others degrade. Thus the
equilibrium of various objectives generally is a fuzzy problem. (3) The imprecision
and fuzziness are inherent in human decision-making. In the case of such vagueness,
the vector objective optimization image reconstruction under fuzziness was supe-
rior and preferred. (4) Compared with conventional trade-off methods, the FVOO
method does not need normalized coefficient and weight coefficient.

To develop FVOO, several symbols are introduced first. The membership
function22 of

∼
A is denoted as µ∼

A
. The satisfactory index,23 which the decision-

making x arrives at relative to goal
∼
G, is denoted as µ∼

G
. Other concepts of fuzzy

vector objective optimization can be seen in references.22,23

There are some issues to be considered in the development of FVOO algorithm
for image reconstruction: (1) A proper membership function is selected to transform
the general objective function to a fuzzy goal function. (2) Various fuzzy goals are
integrated into one by using one or more fuzzy operators. (3) A mathematical model
of fuzzy vector objective optimization should be established. (4) A reconstruction
procedure is developed.

In this paper, the fuzzy goal is depicted by linear membership function:

µi(fi(x)) =
fmax
i (x) − fi(x)

fmax
i (x) − fmin

i (x)
, (11)

where fmax
i (x) = maxx∈Xfi(x), fmin

i (x) = minx∈Xfi(x) under the given con-
straints. The expression is straightforward and convenient. The solution is for the
extremum of objective function but it increases computational complexity. The
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maxima and minima of the objective functions are directly given by their esti-
mate. Corresponding to the three objective functions (4)∼(6), their extrema are,
respectively (see Appendix),

fmax
1 =

m

2
, fmin

1 = 0

fmax
2 = 0, fmin

2 = ln
1
n

. (12)

fmax
3 = n × n, fmin

3 = 0

Extremenesses exist in the above function extrema. Extremum intervals of objective
functions in the feasible region are included in the above estimative extremum
intervals. The linear membership function only measures the degree of closeness,
by which the selected solution approaches the ideal solution. Thus, the estimation
does not affect the establishment of the membership functions and solution of the
vector objective optimization under fuzzy method. Then new membership functions
can be written as:

µ1(f1(x)) = 1 − 1
m

m∑
i=1

(Aix − yi)2

µ2(f2(x)) =

(
n∑

j=1

xj ln xj

)/
ln n

µ3(f3(x)) = 1 − xT · S · x + xT · x
2n2

. (13)

A feasible fuzzy operator is selected to integrate several fuzzy specifications
in one predetermined mode. The decision-maker can select and design integration
mode to meet the requirement. The minimum operator24 is selected as follows:

µD(x) = min
x∈X

(µ1(f1(x)), µ2(f2(x)), µ3(f3(x))). (14)

The Zimmermann algorithm model24 was selected for two reasons: high compu-
tational efficiency and low complexity. The objective of this algorithm is to max-
imize the satisfactory index λ within the objective set and the solution x∗ of the
original problem. Its mathematical model is expressed as:



max λ

s.t. λ ≤ 1 − 1
m

m∑
i=1

(Aix − yi)2

λ ≤

 n∑

j=1

xj ln xj



/

ln n

λ ≤ 1 − xT · S · x + xT · x
2n2

h(x) − m

2
= 0

λ ∈ [ 0, 1 ]

. (15)
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To solve Eq. (15), various solutions according to specific applications have been
proposed.26–31 The conventional methods for single objective optimization are not
so feasible because of the following three reasons: (1) Zimmermann algorithm adopts
uncompensated integration operator,22 and increase of the grade of membership in
the fuzzy intersection does not affect the whole grade of membership of the com-
positive fuzzy set. A Fuzzy algorithm based on it does not guarantee to converge
to a satisfactory solution of the original problem. (2) The processing of nonlinear
constraint condition in an optimization problem greatly increases difficulty. Con-
sequently, the advantage of fuzzy vector objective optimization cannot be effec-
tive. (3) The image reconstruction by iterative method is time-consuming as the
image vector is high dimensional, and the conventional optimization algorithm is
incompetent.

We rewrite Eq. (21) as


max λ = min




1 − 1
m

m∑
i=1

(Aix − yi)2,


 n∑

j=1

xj ln xj


/ln n,

1 − xT · S · x + xT · x
2n2




s.t. h(x) − m
2 = 0

. (16)

A summary of the FVOO method for image reconstruction from incomplete
projections is described below:

(i) An initial image vector x0 is introduced by CBP from fan-scan projec-
tions. For incomplete projections, the initial image quality may not be perfect (see
Fig. 2(a)). A termination error scalar 0 < ε << 1 and two max satisfactory indices
λ = 0, λ′ = 0 are chosen. Let k = 0;

(ii) µ1(f1(xk)), µ2(f2(xk)), µ3(f3(xk)) are three different grades of membership.
The minimum among them is selected to assign λ, λ = min(µ1(f1(xk)), µ2(f2(xk)),
µ3(f3(xk)));

(iii) The minimum membership function and the constraint condition are con-
stituted as a new optimization problem:

max λ = µi(fi(x))

s.t. h(x) − m
2 = 0

. (17)

It can be solved by iteration based on Kuhn-Tucker condition.21 The solution is
xk+1;

(iv) µ1(f1(xk+1)), µ2(f2(xk+1)), µ3(f3(xk+1)) are still three various grade of
membership. Let λ′ = min{µ1(f1(xk+1)), µ2(f2(xk+1)), µ3(f3(xk+1))};

(v) If λ′ < λ, let x∗ = xk, output x∗ and stop. Else go to (vi);
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(vi) If λ′ − λ < ε, let x∗ = xk+1, output x∗ and stop. Else go to (vii);
(vii) Let λ = λ′, k = k + 1, go to (iii).
Finally, xk convergences the ideal solution x∗.

5. Experiment Results

The application of FVOO method for image reconstruction have been tested by
using two sets of different projections: (1) simulated projections with noise based on
self-defined Sheep-Logan head model, which different from the normal Sheep-Logan
head model, and contains 11 various shapes and densities ellipses. The elliptical
phantom is contained in a rectangular region divided into 128 × 128 pixels (see
Fig. 1). (2) projections from an industrial scanner.

The incomplete simulated projections generated from a fan scan consist of 180
equispaced projection views from 0◦ to 360◦, with 128 centrosymmetric and equis-
paced rays per projection view. The projections with noise are generated as:

ŷi = yi + ei

ei = N(0, 0.032) · yi

, (18)

where yi is accurate projection and N(0, 0.032) represent a Gaussian probability
distribution with zero mean and a variance (0.03)2. The selection of the mean and
variance is base upon comparison experiments between simulated projections and
real projections.

For comparison, the reconstructed image from the same projections by Convolu-
tion Back Projection with Ram Lak filter (CBP), General Algebraic Reconstruction
Techniques (ART), Vector Objective Optimization (VOO)20 and FVOO are shown
in Fig. 2. The latter three images are obtained after several iterations.

In order to illustrate the solution process of FVOO image reconstruction, the
diagram of iterative satisfactory index λ versus the iteration number is shown in
Fig. 3. It is clear that satisfactory index λ increases with the iteration number,
given an acceptable initial image vector x0. It shows integrative improvement of
various objective functions.

Fig. 1. Original image of self-defined Sheep-Logan head model.
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(a) (b)

(c) (d)

Fig. 2. Images reconstructed by (a) CBP (b) ART (c) VOO and (d) FVOO.

Fig. 3. Satisfactory index λ versus iteration number k in FVOO image reconstruction.
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Table 1. Reconstructed error and time consumption.

Algorithm Iteration number Error Iteration time (s)

CBP − 0.593 1.03
ART 20 0.392 25.44
VOO 13 0.049 21.58
FVOO 7 0.018 49.58

(a) (b)

(c)

Fig. 4. Cross sectional images reconstructed from the real industrial scanner data by using (a)
CBP with Ram-Lak filter (b) VOO (c) FVOO.

The reconstructed error is defined by Eq. (19) in the following:

e =

∑
j
(xj − x̂i)

2

∑
j
(xj)2

, (19)

where xj is normal pixel value and x̂i is reconstructed pixel value, and the compu-
tational time and the iteration number of different algorithms are shown in Table 1.
The computational time of one image reconstruction method is different under dif-
ferent computer configure. So the iteration time in Table 1 is shown for intuitionistic
comparison among four methods.
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(a)

(b)

Fig. 5. Two profiles of the gray value of pixels on y = 54 and x = 64 corresponding to the images

in Figs. 4(a), (b) and (c).
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To further test the performance of the FVOO method, some experimental results
are presented in Fig. 4, which were reconstructed from real industrial scanner data
in fan scan by CBP with Ram-Lak filter, VOO and FVOO methods respectively.
The projections are 180 equispaced projection views in the interval [0, 2π], with 128
centrosymmetric and equispaced rays per projection view.

Furthermore, to intuitively compare the performance of above three methods
in spatial resolution, the pixels on the straight lines y = 54 and x = 64, with
y representing the number of rows and x representing the number of columns of
the pixel matrix of the image, in Figs. 4(a), (b) and (c) are selected, which are
highlighted by the bright lines in Fig. 4. The profiles along each of these bright
lines are plotted in Fig. 5 respectively.

The above results and analysis can demonstrate the advantage of FVOO over
other image reconstruction methods in terms of the reconstruction error, smooth-
ness and gray value resolution, given the same noise and incomplete projections.

6. Conclusion

In this paper, a novel vector objective optimization method FVOO method is pro-
posed for image reconstruction from incomplete projections. The method stresses
multi-features satisfaction in reconstructed images, which is different from single
objective optimization. It introduces membership function as an objective function
or constraint function, and a minimum operator to integrate various membership
functions, thereby establishing a new mathematical model for image reconstruction.
To effectively solve the ‘optimal’ trade-off solution of the reconstruction model, an
iterative min-max algorithm is presented, whose reconstructed image vector con-
verges to the effective resolution. The performance of the FVOO algorithm has been
tested by using simulated projections with noisy and real projections. The results
have shown that this algorithm reduces the reconstructed error, suppresses noise
and removes artifacts, for image reconstruction from incomplete projections.
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Appendix

The solution to the extremum of the objective function, however, increases compu-
tational complexity. Maxima and minima of the objective functions are estimated
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corresponding to Eq. (11):

(i) f1(x) = ||Ax − y||2.
The projections y are normalized before the image reconstruction in order to

control the result. Every vector yi in the projection vector is normalized to [0, 1].
The processing does not influence the image reconstruction, and is easy to recon-
struction. The pixel xj is also normalized between 0 to 1. Consequently Aix and yi

are in the same order of magnitude. Thus we can deduce (Aix − yi)2 ∈ [0, 1], and
f1(x) ∈ [0, m/2]. This can be expressed as

fmax
1 =

m

2
, fmin

1 = 0, (A2)

(ii) f2(x) =
∑n

j=1 xj ln xj .
Based on the maximum discrete entropy theorem in information theory, we

know that the value of −∑n
j=1 xj · ln xj is maximum when xj is rectangular

distribution.32 It follows that fmin
2 (x) = ln 1

n . Due to xj ∈ [0, 1], xj · ln xj ≤ 0
and lim

xj→0

xj→1

xj · ln xj = 0, we can obtain the following equation:

fmax
2 = 0, fmin

2 = ln
1
n

. (A3)

(iii) f3(x) = 1
2 (xTA · x)

A conservative estimation is directly shown as

fmax
3 = n × n, fmin

3 = 0. (A4)
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