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Abstract

The locally linear embedding (LLE) is considered an effective algorithm for dimensionality reduction. In this short note, some of its
key properties are studied. In particular, we show that: (1) there always exists a linear mapping from the high-dimensional space to the
low-dimensional space such that all the constraint conditions in the LLE can be satisfied. The implication of the existence of such a linear
mapping is that the LLE cannot guarantee a one-to-one mapping from the high-dimensional space to the low-dimensional space for a given
data set; (2) if the LLE is required to globally preserve distance, it must be a PCA mapping; (3) for a given high-dimensional data set,
there always exists a local distance-preserving LLE. The above results can bring some new insights into a better understanding of the LLE.
© 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction In this note, we will show that

The locally linear embedding (LLE) is considered one of e There always exists a linear mapping from the z-space to
effective algorithms for dimensionality reduction [1]. It has the y-space such that all the constraint conditions in the
been used to solve various problems in pattern recognition LLE can be satisfied.
[2-5]. However, to our knowledge, the LLE has the follow- o If the LLE is required to (globally) preserve distance, it
ing two problems to solve: must be a principal component analysis (PCA) mapping.

e For any given high-dimensional data set, there always ex-

e If two data points {z;,z;} in the high-dimensional space ists a local distance-preserving LLE.

are different, their corresponding data points {y;,y;} in a
lower-dimensional space must be different.

o If {z;1,2;2,...,2y} are the k-neighborhood of z;, then
{yi1,yi2, ..., Yix} must be the k-neighborhood of y;.

In the note, we suppose the reader is familiar with the
algorithms such as the LLE, the PCA, etc. In addition, we
suppose the reader is familiar with fundamentals of matrix
analysis. Besides, in this note, neither simulations nor

) ) o . experiments are reported, the correctness of results lie in
Since the LLE does not involve any metric, in addition,

.. . . . . our proofs.
taking into account our following discussions, we think the
above two problems cannot completely be solved without
additional constraints being further imposed. 2. A linear mapping from the z-space to the y-space

The following proposition shows that there always exists
— a linear mapping from the high-dimensional z-space to the
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Proposition 1. Let {z,zy,...,2,} C R" be a high-
dimensional data set, Lnxm = (21,22, ..., Zy], if weight
matrix W, xm satisfies

1, Wopm =0, ()
Zn><me><m = 0n><ms ! (2)

then Vdér(:rank(inxm)), there exists always a lin-
ear mapping Agxn and a lower-dimensional data set

(Y1, ¥2, -, ¥m} C R such that Yaxm = AdxnZnsm, and
Y xm satisfies all the constraint conditions in the LLE:
YasmWmxm = 0axm, 3)
Yaxmlm =04, “)
Yaxm Y gm = Lixds )
where

L= 1,.... D" Yaum =1[y1,¥2, > Yuul,

A

m
1
Zysxm =121 — 20,2y — 2o, ..., Zy — L], 2= E zj.
j=1

Proof. Let Cpxm = ZY,, Znsm. Since Zysmly, = 0, the
1-vector 1,, is the eigenvector of the matrix C,, x,, for eigen-
value 0. Because rank(Z,xm) =r, Zyxm could be decom-

posed by the SVD decomposition as
anm =Un><rzr><rVr><m’ (6)

where U, «, is a column-orthogonal matrix, V,y, a row-
orthogonal matrix, and X, a diagonal matrix with positive

diagonal elements. Let V,y,, = [V, V2, ..., Vu]. Since
ZosnWonsem = 121,22, ., 20 Wonm
— 20,20, - .., 20]Wmxm
=0,5m,
by Eq. (6) we have
VismWimsm = 0rxm. (N

Since V;x, is a row-orthogonal matrix, and in addition each
of its row vectors is orthogonal to the null space of matrix
C,.xm, we have

ermV,Txm = Ir><r7 (8)
Vismln =0, ©)
Let Ayxn = (Zrxr) " (Upy,)T, then from Eq. (6), we have

A

Vr><m ZAr><nZn><m~ (10)

UIn the LLE, the equality ZyxmWaxm = Ouxm is implied. Other-
wise, minimizing HYdememlle is meaningless. This is because if
the equality does not hold, the obtained Y, from the minimization is
not the best one in terms of local linearity preserving.

Vd <r, let Py, be arow-orthogonal matrix, which defines a
linear mapping from r-dimensional space to d-dimensional
space, for example, let Pyy, = [Lyxd, 0dx(—a)l, then

Yixm =PaxrVixm = (derArxn)anm

and Y «,, satisfies the conditions (3)—(5). [

Remarks. 1. Since our mapping is a linear one, from a
given data set {z|, Z, ..., Z,} C R", we can always obtain
its corresponding set {y1,y2,...,¥Ym} C R4 (d<r), but a
one-to-one correspondence cannot be guaranteed between
the two sets. In other words, by the linear mapping, we can
only guarantee that in the r-dimensional space, if two data
points {z;, z;} are different, their corresponding {y;,y;} C
R" must be different, not in the d(< r)-dimensional space.

2. Since the constraint conditions on set {y, y2, ..., Ym}
obtained by this proposition are identical to those in the
LLE, our linear mapping must be included in the LLE. By
this reasoning, we think the two problems outlined at the
beginning of this comment cannot be solved without further
conditions being imposed.

3. The relationship between our linear mapping and
the LLE

In Remark 2 of the above section, we indicate that our
linear mapping must be included in the LLE. In this sec-
tion, some specifics of the relationship between the linear
mapping and the LLE will be provided.

Proposition 2. Let N;(W,,xm) be the left null space
of Wyism. If the dimension of Nj(Wyxm), denoted as
dim Ny (Wi xm), is of (r + 1), then the LLE must be our
linear mapping.

A
Proof. Since the row-orthogonal matrix |: e T]
(1/4/m)1,,

satisfies

[ Vi } Wsm =0 (11)
(1/\/%) l;rn mxm = Y(r+1)xm>
by dim N; (W, «») =r -+ 1, each one of the row vectors of

lower-dimensional data matrix Y4x,;,; obtained by the LLE
must be a linear combination of the row vectors of matrix

Vixm:
.
v=Y pivi. i=12...d
j=1

Hence,
der =Pd><rVr><mv (12)

where Py, = [pij], which defines a linear mapping
from the r-dimensional space to d-dimensional space.
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: T
Since Yaxm Yy,

=I4x4, by Eq. (12) we have

T T T T
derder :dervrxmv der :demdem :Idxd~

rxm

Then, P, must be a row-orthogonal matrix. By Proposition
1, the LLE must be our linear mapping. [J

If dim N;(W,,xm) = k + 1 (k>r), then the lower-
dimensional data matrix Ygx;, obtained by the LLE will
depend not only on the row vectors of matrix Vg, but
other vectors also in the null space N;j(W,,xn), hence the
LLE will not necessarily be a linear mapping. The follow-
ing proposition gives the relationship between our linear
mapping and the LLE in this case.

Proposition 3. If dim N;(W,,,«») =k + 1 (k > r), then the
lower-dimensional data points {y1, y2, ..., Ym} obtained by
the LLE must satisfy

Vixm
dem =Pd><k B (13)
Q(k—r)><m

where Q—ryxm is a row-orthogonal matrix satisfying

Zixm QU sm = Onx k—r)- (14)

Proof. Since

VVXHI W _ 0
(l/ﬁ) 131 mxm — Y(r+1)xm
and

dim Ny (Wyxm) =k + 1,

we can always find out a row-orthogonal matrix Q—,)xm
such that
ermQF(l;cfr)xm = 0rx(k—r)
and
VI‘ xXm

Q(kfr)xm Wm><m = 0(k+1)><m-

(1/4/m) 1],

Hence, the lower-dimensional data points {y1, y2, . . .
R“ obtained by the LLE must satisfy

Ver
Yaxm =Paxk ,
Q(k—r)xm

,¥Ym} C

where Pg., is a row-orthogonal matrix. Since V,xn,
Q(Tk_,)Xm =0, —r), by Eq. (6) we have

anmQ};c—r)xm :Onx(k—r)~ O

4. The distance-preserving LLE

In order to obtain a lower-dimensional data set {yi, y2,

. ¥Ym} C R? from a high-dimensional data set {zi, zo,
.-+ Zy} C R", the constraint YyxmYY = Ijxa, which is
not related to the high-dimensional data, is a main constraint
in the LLE. By Proposition 1, this constraint cannot guar-
antee the one-to-one correspondence and k-neighborhood
relationship between the two data sets. In this section, we
will use the constraint Ygmedxm = C,,xm instead of

Yix ngx m = Laxa. We have the following proposition:

Proposition 4. If the lower-dimensional data set {yi,ya,
.y ¥Ym} C R? obtained by the LLE satisfies Egs. (3), (4)
and

Y3><mYd><m =mema (15)

then the LLE must be a PCA mapping.

Before giving a proof for this proposition, we need at first
to prove the following lemma:

Lemma. Let dim N;(W,,,5m) =k + 1 (k>r) and Qixm =

erm . . .

then Ygxm is a lower-dimensional data
Qu—ryxm

matrix satisfying the constraints (3) and (4) if and only

if there exists a linear mapping Agxy from k-dimensional
space to d-dimensional space such that

Yasm = AaxkQixm- (16)
. . Qk><m
Proof. (=) Since the row-orthogonal matrix
(1/ym) 15,
satisfies
|: Qkxm ] 0
mxm — Y(k+1)xm
(1//m)1},

and dim N (mem)~= k + 1, by the constraint (3), there
must exist a matrix Agx k+1) such that

Qkxm i| (17)
(1/v/m) 15,1

Then, from the constraint (4), we have

Yaxm = Adxk+1) [

1 -
_demlm = Adx(k—H) |:

NG (1/?/1(;;1;} (%1,”)

~ 0
ZAdX(k+l) |: l i| =0d

Thus, Adx(k+1) must be of the following form:

Adxter1y = [Aaxk, 04l

2 When k =r, the matrix Q(k—r)xm Will disappear in this expression.



1802 F.C. Wu, Z.Y. Hu / Pattern Recognition 39 (2006) 17991804

Therefore, substituting it into Eq. (17) gives

Yaixm = Adkukxm-

Qx
(<) Since the row-orthogonal matrix [ o - ] t
isfies (1/\/%) b
Qkxm
(1) gy 11 W = Qe
m

by Eq. (16), the matrix Y« satisfies the constraints (3)
and (4). O

By the lemma and the discussions in Section 2, the ma-
trix Y, satisfies the constraints (3)—(5) if and only if the
matrix Agxx in Eq. (16) is a row-orthogonal matrix.

Next, we will prove Proposition 4.

Proof of Proposition 4. Let dim N;(W,,,xm)=k+1 (k>7r),
and Y x,, be a lower-dimensional data matrix satisfying the
constraints (3) and (4), then by the lemma, we have

Yaxm = AaxkQixm-

Therefore, by Egs. (6) and (15), we have

Qf ATk Adsck Quscm = Conscn = Loy Lnsem
=VranZhr Vs

From the row orthogonality of Qyx,,, we have

y2

' Xr

Al Adxk = [ } : (18)
Ok —r)x (k—r)
Hence,d =r = rank(anm),3 and
Auxk =RaxalZaxd, Orxk—a)l; (19)
where R4 is an orthogonal matrix.
By Egs. (16), (19) and (6), we have

anm = Undegdedxm~ (20)
Then, we can obtain
Yaum = RaxaUpygZnxm- 1)

This is just a PCA of Zxpm. 0

According to Eq. (20), the LLE satisfying the constraint
(15) must preserve distance, i.e. Vz;, z; and their correspond-
ing y;, y;, the following equality holds:

Ja—2)T@ -2 =/t — y) i — ).

3I YT Yasxm=Cmxm. then d=rank(Zyxm). i.e. the dimension-

ality of z can only be reduced to rank(in xm)-

This is because
@ —2)) (2 — 2j) = &% —2))" @ — 2)

=((yi — ¥))"RuxaUr, )

X (UnxaRy,q(¥i = ¥)))

=@ —y) i —y).
Hence, the constraint (15) ensures that there is a one-to-one
correspondence and the k-neighborhood keeps unchanged
between the two data sets. On the other hand, if the LLE

preserves distance, then it must satisfy the constraint (15),
and thus we have the following corollary.

Corollary. The (global) distance-preserving LLE must be a
PCA mapping.

5. The local distance-preserving LLE

According to the discussions in Section 4, the (global)
distance-preserving LLE must be a PCA mapping. In this
section, we have an investigation on the local distance-
preserving LLE.

Definition. Let {z;,,z;,, ..
z;, and

2 T
d; = (ziy — z;) (z; — Z;),

., Z;,} be the s-neighborhood of

I=1,2,...,s, i=12,....,m. (22)

If the lower-dimensional data set {yi,y2,...,ym} C R?
obtained by the LLE satisfies the constraints (3) and (4), and
additionally

(yi, — Yi)T(yi, —yi) = dl?],
l:l,Z,...,s, i:1,2,.,,,m’ (23)
then the LLE is called the local distance-preserving LLE.

Proposition 5. For any given high-dimensional data set
{(z;,2i,,...,2;}, we can always find out a matrix Agxg,
such that Y gxm = AdxkQrxm is a lower-dimensional data
matrix satisfying the local distance-preserving constraint.

Proof. By the lemma in Section 3, if a matrix Y, satisfies
the constraints (3) and (4), then we have

dem =Ad><ka><m» (24)

where the matrix A« is unknown. Therefore, we only need
to determine the matrix Ay« by the constraint (23).

Let Quxm = [q1,92, ..., qnl, then, y; = Agxrqi, i =
1,2,...,m. By (23), we have

A AL Al =d;
[=1.2.... .5 i=12. ... .m, (25)

@) ()

where q;, =q;, —q;i =g, ", q,", -~-,61,£”)]T-
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Let
Xk =AY Agsk = [xi/]
kxk = Agyprdxk = [Xijl
Xk(k+1)/2 = [X11, X125+ s X1k X225, X235 e ooy X2hes + - o
T
X(k—1)k»> Xkk]

(~(11))2 qull)qéll) 26}{11)6;1511)

~(i2)\2 (lz) (12) (12) (12)
(g77)" 2q; 2q,
@) _
Bsx[k(k+1)/2] =
‘”(lv) 2 (lv) (lY) (lv) (lv
(g, 2q 2q,
b =[d}. d%, ... d2]".
Then, the constraint (25) can be rewritten as
@) i .
lex[k(k+1)/21Xk(k+l)/2 = bS): i=12...,m
Hence, we have
Busx [k (k+1)/21Xk (k+1)/2 = P, (26)
where
(H
Bsx[k(k+l)/2] bgl)
(2) (2)
Bsx[k(k+l)/2] bs
Bosxkk+1)/21 = s by =
B b
sx[k(k+1)/2] :

Since the local distance-preserving constraint is weaker
than the above-mentioned (global) distance-preserving con-
straint, Eq. (26) must have solution. Here we use the least
squares solution:

_pt 4
Xe(k+1)/2 = By 1y/21Pms - 27

Let X7, ; be the symmetric matrix from the k(k + 1)/2-
dimensional vector Xi(x41)/2, then

AgxkAka = XZxk' (28)

Assume XZX « has rank 7, then it can be factorized by the
SVD decomposition as

Xltxk = szt(z;kxt)z(U:xt)T' (29)
Hence, by (28) we have

Adxk =R Xf (UL )T, (30)

4B is the Moore—Penrose inverse of matrix B.

Xk—1)(k—1)>

("’(”))2 zq((ll(l)l)~]£ll) (6"1‘1511))2
("’(12) )2 Zq((ll(z)l)qliu) (61512))2
( (lr) )2 2q((]l(r) l)élilv) (('Z“lglx))Z

where R;; is an orthogonal matrix. Substituting Eq. (30)
into Eq. (24) gives

Yiom =Rt 25, (U ) " Qi O

6. Conclusions

The LLE is considered an effective algorithm for dimen-
sionality reduction. In this paper, we obtained the some of
its key properties: (1) for a given high-dimensional data set,
there always exists a linear mapping such that all the con-
straint conditions in the LLE can be satisfied. The implica-
tion of the existence of such a linear mapping is that the
LLE cannot guarantee a one-to-one mapping from the high-
dimensional space to the low-dimensional space; (2) if the
LLE is required to globally preserve distance, it must be a
PCA mapping; (3) for a given high-dimensional data set,
there always exists a local distance-preserving LLE. The re-
sults in this paper can bring some new insights into a better
understanding of the LLE.
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