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Abstract

The locally linear embedding (LLE) is considered an effective algorithm for dimensionality reduction. In this short note, some of its
key properties are studied. In particular, we show that: (1) there always exists a linear mapping from the high-dimensional space to the
low-dimensional space such that all the constraint conditions in the LLE can be satisfied. The implication of the existence of such a linear
mapping is that the LLE cannot guarantee a one-to-one mapping from the high-dimensional space to the low-dimensional space for a given
data set; (2) if the LLE is required to globally preserve distance, it must be a PCA mapping; (3) for a given high-dimensional data set,
there always exists a local distance-preserving LLE. The above results can bring some new insights into a better understanding of the LLE.
� 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The locally linear embedding (LLE) is considered one of
effective algorithms for dimensionality reduction [1]. It has
been used to solve various problems in pattern recognition
[2–5]. However, to our knowledge, the LLE has the follow-
ing two problems to solve:

• If two data points {zi , zj } in the high-dimensional space
are different, their corresponding data points {yi , yj } in a
lower-dimensional space must be different.

• If {zi1, zi2, . . . , zik} are the k-neighborhood of zi , then
{yi1, yi2, . . . , yik} must be the k-neighborhood of yi .

Since the LLE does not involve any metric, in addition,
taking into account our following discussions, we think the
above two problems cannot completely be solved without
additional constraints being further imposed.
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In this note, we will show that

• There always exists a linear mapping from the z-space to
the y-space such that all the constraint conditions in the
LLE can be satisfied.

• If the LLE is required to (globally) preserve distance, it
must be a principal component analysis (PCA) mapping.

• For any given high-dimensional data set, there always ex-
ists a local distance-preserving LLE.

In the note, we suppose the reader is familiar with the
algorithms such as the LLE, the PCA, etc. In addition, we
suppose the reader is familiar with fundamentals of matrix
analysis. Besides, in this note, neither simulations nor
experiments are reported, the correctness of results lie in
our proofs.

2. A linear mapping from the z-space to the y-space

The following proposition shows that there always exists
a linear mapping from the high-dimensional z-space to the
lower-dimensional y-space such that all the constraint
conditions in the LLE can be satisfied.
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Proposition 1. Let {z1, z2, . . . , zm} ⊂ Rn be a high-
dimensional data set, Zn×m = [z1, z2, . . . , zm], if weight
matrix Wm×m satisfies

1T
mWm×m = 0T

m, (1)

Zn×mWm×m = 0n×m, 1 (2)

then ∀d �r(=rank(Ẑn×m)), there exists always a lin-
ear mapping Ad×n and a lower-dimensional data set
{y1, y2, . . . , ym} ⊂ Rd such that Yd×m = Ad×nẐn×m, and
Yd×m satisfies all the constraint conditions in the LLE:

Yd×mWm×m = 0d×m, (3)

Yd×m1m = 0d , (4)

Yd×mYT
d×m = Id×d , (5)

where

1m = (1, 1, . . . , 1)T, Yd×m = [y1, y2, . . . , ym],

Ẑn×m = [z1 − z0, z2 − z0, . . . , zm − z0], z0 = 1

m

m∑
j=1

zj .

Proof. Let Cm×m = ẐT
n×mẐn×m. Since Ẑn×m1m = 0n, the

1-vector 1m is the eigenvector of the matrix Cm×m for eigen-
value 0. Because rank(Ẑn×m) = r , Ẑn×m could be decom-
posed by the SVD decomposition as

Ẑn×m = Un×r�r×rVr×m, (6)

where Un×r is a column-orthogonal matrix, Vr×m a row-
orthogonal matrix, and �r×r a diagonal matrix with positive
diagonal elements. Let Vr×m = [v1, v2, . . . , vm]. Since

Ẑn×mWm×m = [z1, z2, . . . , zm]Wm×m

− [z0, z0, . . . , z0]Wm×m

= 0n×m,

by Eq. (6) we have

Vr×mWm×m = 0r×m. (7)

Since Vr×m is a row-orthogonal matrix, and in addition each
of its row vectors is orthogonal to the null space of matrix
Cm×m, we have

Vr×mVT
r×m = Ir×r , (8)

Vr×m1m = 0r . (9)

Let Âr×n = (�r×r )
−1(Un×r )

T, then from Eq. (6), we have

Vr×m = Âr×nẐn×m. (10)

1 In the LLE, the equality Zn×mWm×m = 0n×m is implied. Other-
wise, minimizing ‖Yd×mWm×m‖2

F
is meaningless. This is because if

the equality does not hold, the obtained Yd×m from the minimization is
not the best one in terms of local linearity preserving.

∀d �r, let Pd×r be a row-orthogonal matrix, which defines a
linear mapping from r-dimensional space to d-dimensional
space, for example, let Pd×r = [Id×d , 0d×(r−d)], then

Yd×m = Pd×rVr×m = (Pd×r Âr×n)Ẑn×m

and Yd×m satisfies the conditions (3)–(5). �

Remarks. 1. Since our mapping is a linear one, from a
given data set {z1, z2, . . . , zm} ⊂ Rn, we can always obtain
its corresponding set {y1, y2, . . . , ym} ⊂ Rd (d < r), but a
one-to-one correspondence cannot be guaranteed between
the two sets. In other words, by the linear mapping, we can
only guarantee that in the r-dimensional space, if two data
points {zi , zj } are different, their corresponding {yi , yj } ⊂
Rr must be different, not in the d(< r)-dimensional space.

2. Since the constraint conditions on set {y1, y2, . . . , ym}
obtained by this proposition are identical to those in the
LLE, our linear mapping must be included in the LLE. By
this reasoning, we think the two problems outlined at the
beginning of this comment cannot be solved without further
conditions being imposed.

3. The relationship between our linear mapping and
the LLE

In Remark 2 of the above section, we indicate that our
linear mapping must be included in the LLE. In this sec-
tion, some specifics of the relationship between the linear
mapping and the LLE will be provided.

Proposition 2. Let Nl(Wm×m) be the left null space
of Wm×m. If the dimension of Nl(Wm×m), denoted as
dim Nl(Wm×m), is of (r + 1), then the LLE must be our
linear mapping.

Proof. Since the row-orthogonal matrix

[
Vr×m

(1/
√

m)1T
m

]

satisfies[
Vr×m(

1/
√

m
)

1T
m

]
Wm×m = 0(r+1)×m, (11)

by dim Nl(Wm×m) = r + 1, each one of the row vectors of
lower-dimensional data matrix Yd×m obtained by the LLE
must be a linear combination of the row vectors of matrix
Vd×m:

yi =
r∑

j=1

pjivj , i = 1, 2, . . . , d.

Hence,

Yd×r = Pd×rVr×m, (12)

where Pd×r = [pij ], which defines a linear mapping
from the r-dimensional space to d-dimensional space.
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Since Yd×mYT
d×m = Id×d , by Eq. (12) we have

Pd×rPT
d×r = Pd×rVr×mVT

r×mPT
d×r = Yd×mYT

d×m = Id×d .

Then, Pd×r must be a row-orthogonal matrix. By Proposition
1, the LLE must be our linear mapping. �

If dim Nl(Wm×m) = k + 1 (k > r), then the lower-
dimensional data matrix Yd×m obtained by the LLE will
depend not only on the row vectors of matrix Vd×m but
other vectors also in the null space Nl(Wm×m), hence the
LLE will not necessarily be a linear mapping. The follow-
ing proposition gives the relationship between our linear
mapping and the LLE in this case.

Proposition 3. If dim Nl(Wm×m) = k + 1 (k > r), then the
lower-dimensional data points {y1, y2, . . . , ym} obtained by
the LLE must satisfy

Yd×m = Pd×k

[ Vr×m

Q(k−r)×m

]
, (13)

where Q(k−r)×m is a row-orthogonal matrix satisfying

Ẑn×mQT
(k−r)×m = 0n×(k−r). (14)

Proof. Since
[ Vr×m(

1/
√

m
)

1T
m

]
Wm×m = 0(r+1)×m

and

dim Nl(Wm×m) = k + 1,

we can always find out a row-orthogonal matrix Q(k−r)×m

such that

Vr×mQT
(k−r)×m = 0r×(k−r)

and
⎡
⎢⎣

Vr×m

Q(k−r)×m(
1/

√
m

)
1T
m

⎤
⎥⎦ Wm×m = 0(k+1)×m.

Hence, the lower-dimensional data points {y1, y2, . . . , ym} ⊂
Rd obtained by the LLE must satisfy

Yd×m = Pd×k

[ Vr×m

Q(k−r)×m

]
,

where Pd×r is a row-orthogonal matrix. Since Vr×m

QT
(k−r)×m = 0r×(k−r), by Eq. (6) we have

Ẑn×mQT
(k−r)×m = 0n×(k−r). �

4. The distance-preserving LLE

In order to obtain a lower-dimensional data set {y1, y2,

. . . , ym} ⊂ Rd from a high-dimensional data set {z1, z2,

. . . , zm} ⊂ Rn, the constraint Yd×mYT
d×m = Id×d , which is

not related to the high-dimensional data, is a main constraint
in the LLE. By Proposition 1, this constraint cannot guar-
antee the one-to-one correspondence and k-neighborhood
relationship between the two data sets. In this section, we
will use the constraint YT

d×mYd×m = Cm×m instead of
Yd×mYT

d×m = Id×d . We have the following proposition:

Proposition 4. If the lower-dimensional data set {y1, y2,

. . . , ym} ⊂ Rd obtained by the LLE satisfies Eqs. (3), (4)
and

YT
d×mYd×m = Cm×m, (15)

then the LLE must be a PCA mapping.

Before giving a proof for this proposition, we need at first
to prove the following lemma:

Lemma. Let dim Nl(Wm×m) = k + 1 (k�r) and Qk×m =[ Vr×m

Q(k−r)×m

]2

then Yd×m is a lower-dimensional data

matrix satisfying the constraints (3) and (4) if and only
if there exists a linear mapping Ad×k from k-dimensional
space to d-dimensional space such that

Yd×m = Ad×kQk×m. (16)

Proof. (⇒) Since the row-orthogonal matrix

[ Qk×m(
1/

√
m

)
1T
m

]

satisfies[ Qk×m

(1/
√

m)1T
m

]
Wm×m = 0(k+1)×m

and dim Nl(Wm×m) = k + 1, by the constraint (3), there
must exist a matrix Ãd×(k+1) such that

Yd×m = Ãd×(k+1)

[ Qk×m(
1/

√
m

)
1T
m

]
. (17)

Then, from the constraint (4), we have

1√
m

Yd×m1m = Ãd×(k+1)

[ Qk×m(
1/

√
m

)
1T
m

] (
1√
m

1m

)

= Ãd×(k+1)

[0k

1

]
= 0d .

Thus, Ãd×(k+1) must be of the following form:

Ãd×(k+1) = [Ad×k, 0d ].
2 When k = r, the matrix Q(k−r)×m will disappear in this expression.
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Therefore, substituting it into Eq. (17) gives

Yd×m = Ad×kQk×m.

(⇐) Since the row-orthogonal matrix

[ Qk×m(
1/

√
m

)
1T
m

]
sat-

isfies[ Qk×m(
1/

√
m

)
1T
m

]
Wm×m = 0(k+1)×m,

by Eq. (16), the matrix Yd×m satisfies the constraints (3)
and (4). �

By the lemma and the discussions in Section 2, the ma-
trix Yd×m satisfies the constraints (3)–(5) if and only if the
matrix Ad×k in Eq. (16) is a row-orthogonal matrix.

Next, we will prove Proposition 4.

Proof of Proposition 4. Let dim Nl(Wm×m)=k+1 (k�r),
and Yd×m be a lower-dimensional data matrix satisfying the
constraints (3) and (4), then by the lemma, we have

Yd×m = Ad×kQk×m.

Therefore, by Eqs. (6) and (15), we have

QT
k×mAT

d×kAd×kQk×m = Cm×m = ẐT
n×mẐn×m

= VT
r×m�2

r×rVr×m.

From the row orthogonality of Qk×m, we have

AT
d×kAd×k =

[�2
r×r

0(k−r)×(k−r)

]
. (18)

Hence, d = r = rank(Ẑn×m),3 and

Ad×k = Rd×d [�d×d , 0r×(k−d)], (19)

where Rd×d is an orthogonal matrix.
By Eqs. (16), (19) and (6), we have

Ẑn×m = Un×dRT
d×dYd×m. (20)

Then, we can obtain

Yd×m = Rd×dUT
n×d Ẑn×m. (21)

This is just a PCA of Ẑn×m. �

According to Eq. (20), the LLE satisfying the constraint
(15) must preserve distance, i.e. ∀zi , zj and their correspond-
ing yi , yj , the following equality holds:

√
(zi − zj )

T(zi − zj ) =
√

(yi − yj )
T(yi − yj ).

3 If YT
d×m

Yd×m =Cm×m, then d = rank(Ẑn×m), i.e. the dimension-

ality of z can only be reduced to rank(Ẑn×m).

This is because

(zi − zj )
T(zi − zj ) = (ẑi − ẑj )

T(ẑi − ẑj )

= ((yi − yj )
TRd×dUT

n×d)

× (Un×dRT
d×d(yi − yj ))

= (yi − yj )
T(yi − yj ).

Hence, the constraint (15) ensures that there is a one-to-one
correspondence and the k-neighborhood keeps unchanged
between the two data sets. On the other hand, if the LLE
preserves distance, then it must satisfy the constraint (15),
and thus we have the following corollary.

Corollary. The (global) distance-preserving LLE must be a
PCA mapping.

5. The local distance-preserving LLE

According to the discussions in Section 4, the (global)
distance-preserving LLE must be a PCA mapping. In this
section, we have an investigation on the local distance-
preserving LLE.

Definition. Let {zi1 , zi2 , . . . , zis } be the s-neighborhood of
zi , and

d2
il

= (zil − zi )
T(zil − zi ),

l = 1, 2, . . . , s, i = 1, 2, . . . , m. (22)

If the lower-dimensional data set {y1, y2, . . . , ym} ⊂ Rd

obtained by the LLE satisfies the constraints (3) and (4), and
additionally

(yil − yi )
T(yil − yi ) = d2

il
,

l = 1, 2, . . . , s, i = 1, 2, . . . , m, (23)

then the LLE is called the local distance-preserving LLE.

Proposition 5. For any given high-dimensional data set
{zi1 , zi2 , . . . , zis }, we can always find out a matrix Ad×k ,
such that Yd×m = Ad×kQk×m is a lower-dimensional data
matrix satisfying the local distance-preserving constraint.

Proof. By the lemma in Section 3, if a matrix Yd×m satisfies
the constraints (3) and (4), then we have

Yd×m = Ad×kQk×m, (24)

where the matrix Ad×k is unknown. Therefore, we only need
to determine the matrix Ad×k by the constraint (23).

Let Qk×m = [q1, q2, . . . , qm], then, yi = Ad×kqi , i =
1, 2, . . . , m. By (23), we have

q̃T
il

AT
d×kAd×kq̃il = d2

il
,

l = 1, 2, . . . , s, i = 1, 2, . . . , m, (25)

where q̃il = qil − qi = [q(il )
1 , q

(il )
2 , . . . , q

(il )
k ]T.
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Let

Xk×k = AT
d×kAd×k ≡ [xij ],

xk(k+1)/2 = [x11, x12, . . . , x1k, x22, x23, . . . , x2k, . . . , x(k−1)(k−1),

x(k−1)k, xkk]T,

B(i)
s×[k(k+1)/2] =

⎡
⎢⎢⎢⎢⎢⎢⎣

(q̃
(i1)
1 )2 2q̃

(i1)
1 q̃

(i1)
2 · · · 2q̃

(i1)
1 q̃

(i1)
k · · · (q̃

(i1)
k−1)

2 2q̃
(i1)
(k−1)q̃

(i1)
k (q̃

(i1)
k )2

(q̃
(i2)
1 )2 2q̃

(i2)
1 q̃

(i2)
2 · · · 2q̃

(i2)
1 q̃

(i2)
k · · · (q̃

(i2)
k−1)

2 2q̃
(i2)
(k−1)q̃

(i2)
k (q̃

(i2)
k )2

...
...

...
...

...
...

(q̃
(is )
1 )2 2q̃

(is )
1 q̃

(is )
2 · · · 2q̃

(is )
1 q̃

(is )
k · · · (q̃

(is )
k−1)

2 2q̃
(is )
(k−1)q̃

(is )
k (q̃

(is )
k )2

⎤
⎥⎥⎥⎥⎥⎥⎦

,

b(i)
s = [d2

i1
, d2

i2
, . . . , d2

is
]T.

Then, the constraint (25) can be rewritten as

B(i)
s×[k(k+1)/2]xk(k+1)/2 = b(i)

s , i = 1, 2, . . . , m.

Hence, we have

Bms×[k(k+1)/2]xk(k+1)/2 = bms , (26)

where

Bms×[k(k+1)/2] =

⎡
⎢⎢⎢⎢⎢⎢⎣

B(1)
s×[k(k+1)/2]

B(2)
s×[k(k+1)/2]

...

B(m)
s×[k(k+1)/2]

⎤
⎥⎥⎥⎥⎥⎥⎦

, bms =

⎡
⎢⎢⎢⎢⎢⎣

b(1)
s

b(2)
s

...

b(m)
s

⎤
⎥⎥⎥⎥⎥⎦

.

Since the local distance-preserving constraint is weaker
than the above-mentioned (global) distance-preserving con-
straint, Eq. (26) must have solution. Here we use the least
squares solution:

xk(k+1)/2 = B+
ms×[k(k+1)/2]bms.

4 (27)

Let X∗
k×k be the symmetric matrix from the k(k + 1)/2-

dimensional vector xk(k+1)/2, then

AT
d×kAd×k = X∗

k×k . (28)

Assume X∗
k×k has rank t, then it can be factorized by the

SVD decomposition as

X∗
k×k = U∗

k×t (�
∗
t×t )

2(U∗
k×t )

T. (29)

Hence, by (28) we have

Ad×k = Rt×t�
∗
t×t (U

∗
k×t )

T, (30)

4 B+ is the Moore–Penrose inverse of matrix B.

where Rt×t is an orthogonal matrix. Substituting Eq. (30)
into Eq. (24) gives

Yt×m = Rt×t�
∗
t×t (U

∗
k×t )

TQk×m. �

6. Conclusions

The LLE is considered an effective algorithm for dimen-
sionality reduction. In this paper, we obtained the some of
its key properties: (1) for a given high-dimensional data set,
there always exists a linear mapping such that all the con-
straint conditions in the LLE can be satisfied. The implica-
tion of the existence of such a linear mapping is that the
LLE cannot guarantee a one-to-one mapping from the high-
dimensional space to the low-dimensional space; (2) if the
LLE is required to globally preserve distance, it must be a
PCA mapping; (3) for a given high-dimensional data set,
there always exists a local distance-preserving LLE. The re-
sults in this paper can bring some new insights into a better
understanding of the LLE.
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