
Pitch Prediction for Mandarin TTS with Mutual 
Prosodic Constraint 

1Jian Yu, 1Jianhua Tao, 2Xia Wang 

1National Laboratory of Pattern Recognition (NLPR), Institute of Automation,  
Chinese Academy of Sciences 

2Multimedia Technologies Laboratory, Nokia Research Centre, China 
1{jyu, jhtao}@nlpr.ia.ac.cn, 2Xia.S.wang@nokia.com 

Abstract. Most of current pitch prediction methods for mandarin TTS try to get 
pitch contours from the contextual information with a group of weights 
assigning. Without a good method in prosody concatenation constraint, the 
predicted pitch contours are not always stable because of the incomplete 
accordance between prosody information and text information. The paper 
presents a new mandarin pitch prediction method with mutual prosodic 
constraint between syllables. The idea of this mutual constraint is first inspired 
by lots of observations on corpus, but then it has been strictly proved with 
performance comparison and feature contribution analysis of CART-Based 
prosodic parameter prediction. Based on this, a reasonable definition of prosody 
concatenation cost is presented to measure the naturalness of pitch contours 
between two adjacent syllables. By minimizing this cost, the model can 
generate fluent pitch contours, which has been proved to be able to make the 
TTS system more natural than traditional systems.  

Keywords: Speech synthesis, TTS, Mandarin, prosody model, pitch generation, 
mutual constraint. 

1   Introduction 

With the popularity of corpus-based technology in Text-to-Speech, the synthesis 
quality has been highly improved. Many statistical models, including decision tree, 
neural network, GMM and HMM [3][4][5][6], are used to describe the relationship 
between prosody information and text information, which results in better synthetic 
speech than the traditional rule-based approach. However, all of these studies fail to 
consider the fact that there is no complete accordance between prosody information 
and text information. For example, even the same sentence uttered by one person, the 
appearances of pitch contours may be different at different time and different 
locations. This fact leads to unsatisfactory results generated by previous pitch 
prediction models. 

Recently, we realize that the reason for this incomplete accordance is that there is 
strong mutual prosodic constraint between adjacent units, which are syllables in 
Mandarin particularly. The idea of this mutual constraint is first inspired by lots of 
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observations on large corpus, but then it has been strictly proved with performance 
comparison and feature contribution analysis of CART-Based prosodic parameter 
prediction in this paper. Based on these analyses, our new pitch prediction model 
makes full use of the mutual prosodic constraint between syllables: In the prosodic 
parameter prediction process, not only frequently used text features, but some 
prosodic features, such as adjacent syllables’ pitch contours and initial length, are 
involved, which greatly reduces the predicting error; In pitch generation process, a 
new concatenation cost is defined to measure the naturalness of pitch contours 
between two adjacent syllables. This cost is minimized at every concatenation place, 
which makes the output pitch contour similar to that of the natural sentence on overall 
trend. 

The structure of this paper is organized as follows: Section two introduces the 
method to extract prosodic parameters. Section three describes the meaning of mutual 
prosodic constraint using an example from recorded corpus, and then the existence of 
this constraint is strictly proved with performance comparison and feature 
contribution analysis of CART-based prosodic parameter prediction. Section four 
shows how to make use of this constraint in detail. Base on a new definition of 
prosody concatenation cost, the whole pitch contour is generated using a nonlinear 
estimation algorithm. Section five makes an evaluation to show the good performance 
of this model. Lastly, section six brings a conclusion and lists the deficiency of this 
model and the future work. 

2   Pitch Contour Parameterization 

In Mandarin, the pitch contour within a syllable has its own standard tone pattern, 
which is subject to various modifications in continuous speech. To construct a pitch 
prediction model, this continuous curve must be converted to a pattern represented by 
a series of parameters. In our pitch contour parameterization method, the pitch 
contour within a syllable is parameterized into five parameters, as Fig 1 shows. 
Among these, 0MF is the mean value of pitch contour, which reflects the pitch register 
of current syllable, while 0 , 0 , 0S E SDF F F and 0EDF are the starting value, the ending value, 
the starting derivative value, and the ending derivative value of the pitch contour, 
respectively. These four parameters are considered as boundary parameters, which 
can be used to measure the naturalness of pitch contours at concatenation places. All 
in all, the pitch contour within a syllable can be noted as a vector:  

( 0 , 0 , 0 , 0 , 0 )M S E SD EDPitchContourWihinASyllable F F F F F=  

 
Fig. 1. Pitch contour parameterization  



3. The Mutual Prosodic Constraint 

The mutual prosodic constraint is the basic framework of the new pitch model. In this 
section, the meaning of mutual prosodic constraint is expatiated, and then the 
existence of this strong mutual constraint is strictly analyzed and proved from two 
aspects: the performance comparison and the feature contribution analysis of CART-
based prosodic parameter prediction. 

3.1 The meaning of mutual prosodic constraint 

The meaning of mutual prosodic constraint between syllables is that adjacent 
syllables' pitch contours have great impacts on the current one. This viewpoint is 
inspired by lots of observations on large corpus. Fig 2 lists a typical pitch contour 
from recorded corpus. It seems that the pitch contour is virtually connected across the 
silence and voiceless initial. Both 0SF and 0SDF values are greatly impacted by the 
previous syllable’s pitch contour; and 0EF and 0EDF are mostly impacted by the next 
syllable’s pitch contour. In addition, we also notice that the initial category and its 
length have some great impacts on the boundary prosodic parameters. For example, 
when current initial is nasal or non-initial, the current syllable’s starting pitch value is 
exactly the same as the previous syllable’s ending value; in other situations, it seems 
that the pitch value continues to vary as same speed and same direction. All of these 
facts are caused by the mutual prosodic constraint between syllables.  
 

 
          Fig. 2. An example showing the mutual prosodic constraint 

3.2 The performance comparison 

Maybe just an illustration from one figure is too impressionistic and not enough as a 
basis for a whole argument. Therefore, much effort should be done to prove the 
existence of strong mutual prosodic constraint between syllables. If this constraint is 
strong enough, adjacent syllables’ prosodic parameters must be very useful for the 
prediction of current ones. Therefore, a performance comparison is made between two 
different kinds of prediction methods, in which one only predicts target prosodic 
parameters from frequently used text features, named as rough prediction method; 
while another involves more adjacent prosodic features in its input feature set(the 
detailed information of involved prosodic features are listed in Table 2), named as 



precise prediction method. CART (Classification and Regression Tree), which can 
make use of both continuous features and categorical features at the same time, is 
adopted as the training model. For each feature, two kinds of regression trees are 
constructed, and their performance results are compared, listed in Table 1. 

In table 1, RMSE depicts the predicting error and correlation depicts the 
relationship between predicted values and target values. These two terms are different 
measures to describe how well the CART model performs. From this table, we can 
see that the inclusion of prosodic features has greatly improved the performance of 
CART in terms of both RMSE and correlation. Based on the analysis in section 1, the 
imprecise results of rough prediction method are induced by the incomplete 
accordance between prosody information and text information. In addition, we also 
can see that the influence of mutual prosodic constraint focuses on boundary prosodic 
features including 0 , 0 , 0S E SDF F F and 0EDF , while the predicting result of 0MF does not 
get much improvement. 

Table 1. Comparison of predicted results of 0 , 0 , 0S E SDF F F and 0EDF by CART 

Precise Prediction Method 
(Prosodic features included) 

Rough Prediction Method 
 (Prosodic features excluded) 

 

RMSE Correlation RMSE Correlation 
0SF  24.7hz 0.92 32.8hz 0.84 
0EF  23.4hz 0.91 35.2hz 0.81 
0SDF  0.36hz/ms 0.75 0.45hz/ms 0.61 
0EDF  0.34hz/ms 0.78 0.49hz/ms 0.63 
0MF  22.1hz 0.91 25.5hz 0.89 

3.3 The feature contribution analysis 

For getting more evidences of the existence of mutual prosodic constraint, another 
experiment is done to show the feature contribution in the precise CART-Based 
boundary prosodic parameter prediction, in which the performances of CARTs are 
evidently improved.  

As we know, a general splitting criteria for regression tree is least-squares 
deviation. For every node, the best splitting feature is the one which maximize this 
equation: 

_ _ _ _ _( * * ) /feature name parent left node Left node right node right node parentS R R N R N N= − +  
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_feature nameS reflects this feature’s contribution in current node. By going through 
all nodes, the contribution for one particular feature can be calculated, the formula is: 
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=
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Table 2 lists the contributions of most input features in CART-based prediction and 
shows several remarkable points: (1) All in all, prosodic features make significant 
contributions in the prediction of all four boundary prosodic parameters, which 



further proves the existence of strong mutual prosodic constraint. (2) The degree of 
mutual prosodic constraint is not uniform. For instance, the contribution of previous 
syllable’s prosodic parameters in 0SF and 0SDF prediction is much larger than the 
contribution of next syllable’s prosodic parameters in 0EF and 0EDF prediction. This 
fact shows that the constraint of first syllable on second syllable is stronger than that 
of second syllable on first syllable, which is consistent with previous research [11]. (3) 
Actually, some prosodic features can be considered as more precise descriptions of 
corresponding text features. Let’s take 0SF prediction as an example, as our priori 
knowledge, the previous tone should plays an important role in this prediction, but 
from this table the contribution of previous tone is not very large, just 3.08%. In our 
opinion, the reason for this phenomenon is that previous 0EF and 0EDF actually cover 
more precise information than previous tone. For example, if previous tone is tone 4, 
its ending value is between 150 Hz and 200 Hz, which influences current 
syllable’s 0SF value. But now, we can exactly know the value of previous ending value, 
so it can get more precise results just with little contribution from previous tone. (4) 
Some duration information also make significant contributions in the CART-based 
prediction, the explanation of this fact can be got from Fig.2. When the initial is 
voiceless, the pitch deviation across the voiceless initial and pause is increased as the 
length increased.  

Table2. The feature contribution analysis in CART-based prediction 

Feature Contribution  
 0SF  0SDF  0EF  0EDF  

All prosodic features 43.4% 40.5% 19.4% 16.7% 
Previous syllable’s 0EF  27.3% 15.45% * * 

Previous syllable’s 0EDF  1.25% 5.66% * * 

Next syllable’s 0SF  * * 12.94% 5.80% 

Next syllable’s 0SDF  * * 1.23% 4.50% 

Pause length before current syllable 3.16% 1.68% * * 
Pause length after current syllable * * 1.29% 3.11% 

Current syllable’s initial length 11.67% 17.69% * * 
Next syllable’s initial length * * 3.87% 3.21% 

 
All frequently used text features 56.6% 59.5% 80.6% 83.3% 

Current syllable’s tone 39.68% 33.39% 53.72% 61.7% 
Previous syllable’s tone 3.08% 7.99% * * 

Next syllable’s tone * * 6.15% 3.58% 
Syllable ID(include initial and final) 1.43% 6.4% 0.04% 1.2% 

Prosodic structure(includes position and 
length of word, phrase and intonation phrase)

12.37% 11.65% 20.68% 16.82% 



4. Pitch Prediction with mutual prosodic constraint 

4.1 The Definition of Concatenation Cost 

The existence of strong mutual prosodic constraint has been strictly proved, but there 
is still a big problem remaining to be resolved before this constraint can be made use 
of in pitch prediction: how to make adjacent syllables’ prosodic parameters be the 
input features of CART while predicting them at the same time. In the previous work 
[2], a prosody template based method was proposed to solve this problem. In this 
work, a new target cost and concatenation cost was defined to measure the naturalness 
of pitch contours between syllables, and then the viterbi algorithm was used to select 
the best prosody template sequence which minimizes the cost.  

In our new pitch model, the definition of concatenation cost is still valuable. But 
now because no template could be used, different prosodic parameters of one syllable 
can be treated separately, while in the previous method, once the template is selected, 
all of the prosodic parameters are fixed. Therefore, the concatenation cost can be 
minimized separately at each concatenation place. Currently, the best in local is the 
best in whole.  

Before presenting the new algorithm in detail, it’s necessary to explain the 
definition of concatenation cost. A reasonable concatenation cost could be applied to 
the measurement of the naturalness of pitch contours between adjacent syllables. The 
prosodic parameter values predicted by precise prediction method with adjacent 
syllables’ prosodic features involved can be considered as the expected values by 
adjacent syllables, thus the differences between the predicted values and the real 
values reflect the naturalness of pitch contours between these two adjacent syllables. 
Therefore, the value of concatenation cost is defined as the weighted sum of 
differences between predicted values and real values of the four boundary prosodic 
parameters, noted as 0 , 0 , 0S E SDDF DF DF and 0EDDF respectively. The formula is: 

1 2 3 4* 0 * 0 * 0 * 0S E SD EDconcatenation_cost w DF w DF w DF w DF= + + +  
Where iw is the weight of corresponding parameter, which is assigned according to 

expert knowledge. Fig 3 schematically illustrates the definition of concatenation cost. 
This definition is much reasonable because it makes full use of the mutual prosodic 
constraint between syllables.  

4.2 Prosodic parameters prediction algorithm 

Based on this definition of cost, our algorithm tries to minimize the concatenation 
cost separately at every concatenation place, which is described in detail as follows: 

Step 1: Range Estimation. Based on the rough prediction method described in 
section 3.2, the rough range of each prosodic parameter can be obtained, noted as 
[Avg-r*Dev, Avg+r*Dev]. 

Where Avg and Dev are the predicted value and RMSE of the rough prediction 
method, respectively, and r is a coefficient to modify the range, whose default value is 
1. The final value of each prosodic parameter should be in this range and the next step 



is to find the precise position based on the mutual prosodic constraint between 
syllables. 

Step 2: Precise Search. For each parameter, the range is equally divided into N  
parts. That is to say, there are N  candidate values for each parameter, as Fig 4 
shows. Then, the next algorithm tries to choose the most proper values which 
minimize the concatenation cost. As showed in Fig 3, among all input features of 
CART, the contextual information can be got through text analysis module and the 
initial length and pause length can be predicted by duration model. Therefore, once all 
the four parameters values in Fig 4 are fixed, the value of concatenation cost at 
current concatenation place can be calculated. Obviously, the most direct and simplest 
method to minimize the concatenation cost is to enumerate all possible values of 
prosodic parameters at concatenation place. Suppose the number of syllables in 
current sentence is M , the computation complexity is 4 *( 1)N M − .  

From the feature contribution analysis on the precise prediction method, it can be 
seen that the derivative values 0SDF and 0EDF do not play a very important role in the 
prediction for pitch values 0SF and 0EF . Therefore, the pitch values and the pitch 
derivative values can be treated separately in turn to simplify the computation: 

Step 2.1: assign the values of 0SDF and 0EDF as the mean values of their rough ranges, 
respectively. Then enumerate all possible values of 0SF and 0EF and select the values 
which minimize current concatenation cost. 

Step 2.2: based on the values of 0SF and 0EF obtained at step 2.1, enumerate all 
possible values of 0SDF and 0EDF , and select the values which minimize current 
concatenation cost. 

By this way, the computation complexity is reduced to 2 2( ) *( 1)N N M+ − , which does 
not cause imprecision. 

Such search algorithm is carried out at every concatenation place, which updates 
the values of all boundary prosodic parameters at concatenation places. Meanwhile, 
all the F0 mean values, the starting value of first syllable and the ending value of last 
syllable are kept as the rough prediction results. Until now, all prosodic parameters in 
the whole sentence are precisely obtained. 

 

  
Fig.3. The definition of concatenation cost 

 



 
Fig.4. The precise search (N=5) 

4.3. Pitch generation based on prosodic parameters 

After precise search, the last step is the generation of pitch contour based on the 
predicted prosodic parameters. Suppose the pitch contour within a syllable can be 
precisely depicted by a function f(x), an equation group can be listed based on the 
values of prosodic parameters. That is: 

( ) 0Sf s F=                         (1) 

( ) 0Ef e F=                   (2) 

( )' 0SDf s F=                    (3) 

( )' 0EDf e F=                   (4) 
( ) ( )* 0

e

Ms
f x dx e s F= −∫                         (5) 

Where e and s are the starting time and ending time of the pitch contour within a 
syllable, respectively. 

Two kinds of formulas are supposed to represent the function f(x): third order 
polynomial function and exponential function, as follows: 

1: ( ) 3 2f x ax bx cx d= + + +  
2: ( ) * bxf x a e cx d= + +  

Among these two formulas, the second is based on the theory of PENTA model [7], 
and it is much easier to explain in phonetics. However, it can not precisely depict the 
pitch contour with more than one polar, just like the pitch contour plotted in Fig 1. 
Therefore, the first one is adopted in our pitch model. 

In addition, both two functions only have four coefficients, but the number of 
equations is five. Actually, this equation group has no solutions. To solve this 
problem, a nonlinear least squares minimization algorithm named Levenberg-
Marquardt [12] is used to calculate similar solutions. Fig 5 shows a comparison 
between a natural pitch contour sketched as gray and a generated one sketched as 
black, which shows the advantages of the new pitch model. 



 
Fig.5. A comparison between a natural pitch contour and a synthesized one 

5. Evaluation 

How to evaluate a TTS system is a very difficult problem for a long time. On one 
hand, unlike speech recognition and machine translation, there is no perfect objective 
evaluation target for TTS system. On the other hand, the most frequently used 
subjective evaluation method-Mean Opinion Score(MOS), may not be able to provide 
much information in the performance comparison of TTS systems based on different 
corpuses and designed for different domains. 

Even with above difficulties, making an informal evaluation for our new pitch 
model is essential. In this paper, the evaluation task is done by two ways: one 
subjective test with MOS which shows human’s perception feelings and another 
objective test with correlation and RMSE between real and synthesized pitch contours, 
in which correlation indicates the similarity in shape and RMSE indicates the 
characteristic divergence. Two models are compared in this evaluation, one is the new 
model presented in this paper, and the other is a primitive one which predicts prosodic 
parameters only from text information, just like the rough prediction method 
introduced in section 3.2. 

One more thing need mentioned, in the MOS test, the evaluation target is the 
naturalness of pitch contour. To abandon the influences of other acoustic parameters, 
an HMM-based speech synthesis system [5] is used to generate the spectrum of 
synthesized speech, and then after coordination with different pitch contours 
generated by two systems, STRAIGHT-based vocoding algorithm is used to generate 
speech [10]. By this way, it focuses on the difference of pitch contour. 
  The corpus used in the paper contains 6000 sentences, in which 5000 sentences are 
used for training, and others are used for open test, among these sentences, only 200 
are used in MOS scoring for simplicity. Table 3 shows the comparison result, which 
reveals that the new model generates much more natural pitch contours than the 
primitive one does. 

Table 3. The comparison result of pitch contours generated by two pitch models 

Objective evaluation  
RMSE Correlation 

Subjective evaluation MOS 

Primitive Model 51hz 0.66 2.9 
New Model 22hz 0.87 4.0 



6. Conclusions 

This paper presents a new pitch prediction model for mandarin TTS system based on 
the mutual prosodic constraint between syllables. By concentrating on the mutual 
constraint, the model can make sure that there is no unnatural pitch contours between 
every two adjacent syllables, which leads to very natural pitch contours on overall 
trend. 

However, this model still has some shortcomings. Firstly, the supposition of 
function f(x) in pitch generation can only depict the main trend and register of the 
pitch contour within a syllable, but can not depict small changes near syllable 
boundaries, especially in tone 2 and tone 3. Secondly, the computation complexity is 
still high when the value of N  is large. How to design an iterative algorithm to 
further simplify computation is another part to be improved. 
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